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Глава 1

Булевы функции

Лекция I
1 сентября 2022 г.

1.1 Введение в булевы функции

Нотация:

Ниже я пишу f(g(xi)), где f — некая булева функция, g — булева функция одной переменной,
имея в виду f(g(x1), g(x2), . . . , g(xn)), где n — количество переменных, принимаемых f .

! — логическое отрицание. (x = y) — функция равенства — равна 1 ⇐⇒ x = y.

f? по умолчанию имеет n переменных.

Определение 1.1.1 (Булева функция ). Функция f : {0; 1}n → {0; 1}

1.1.1 Примеры

Бывает удобно интерпретировать 0 как ложь, 1 — как истину. А именно, по этой причине основные
функции имеют следующие названия:

• Конъюнкция (логическое «И») — результат истинен, если и один, и другой аргументы ис-
тинны. Обозначается x ∧ y, или x@y, или x&y или xy (без знака, как умножение (на деле ∧
— действительно умножение, умножение в F2)).

x ∧ y = 1
def⇐⇒ x = 1 и y = 1

• Дизъюнкция (логическое «ИЛИ») — результат истинен, если один, или другой аргумент
истинен. Обозначается x ∨ y, или x|y.

x ∨ y = 1
def⇐⇒ x = 1 или y = 1 (или и то, и то)

• Импликация (логическое «следует»). Предположим, нам известно, что из x следует y. Тогда
результат импликации истинен, если возможна ситуация, когда x имеет истинность a, в то
время как y имеет истинность b. Обозначается x ⇒ y, или x → y.

x → y = 1
def⇐⇒ x = 0 или y = 1 (или и то, и то)
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• Симметрическая разность (логическое «либо-либо») — результат истинен, если либо один,
либо другой аргумент истинен. Обозначается x⊕ y, или x ̸= y.

x⊕ y = 1
def⇐⇒ x ̸= y

• Отрицание (логическое «не») — результат истинен, если аргумент ложен. Обозначается !x,
или ¬x.

¬x = 1
def⇐⇒ x = 0

1.1.2 Основные эквивалентности

Истинность любой не слишком большой булевой формулы можно проверить перебором — две
функции равны, если их результат совпадает на любом наборе значений.

• ¬¬x = x

• x ⇒ y = ¬x ∨ y

• x ⇒ y = ¬y ⇒ ¬x

• x ∨ y = y ∨ x — коммутативность дизъюнкции

• x ∧ y = y ∧ x — коммутативность конъюнкции

• (x ∨ y) ∨ z = x ∨ (y ∨ z) — ассоциативность дизъюнкции

• (x ∧ y) ∧ z = x ∧ (y ∧ z) — ассоциативность конъюнкции

• x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) — дистрибутивность дизъюнкции относительно конъюнкции

• x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) — дистрибутивность конъюнкции относительно дизъюнкции

• ¬(x ∨ y) = ¬x ∧ ¬y — закон де Моргана

• ¬(x ∧ y) = ¬x ∨ ¬y — закон де Моргана

1.1.3 Базис

Определение 1.1.2 (Базис). Некоторое подмножество булевых функций F .

Определение 1.1.3 (Формула над базисом F). Определение по индукции: Во-первых (база), вся-
кая функция f ∈ F является формулой над F . Во-вторых (переход), для Ф1, . . . ,Фn, каждая из
которых — либо формула над базисом F , либо переменная, формула f(Ф1, . . . ,Фn), где f ∈ F —
функция, принимающая n аргументов, является формулой над F .

Так, (x ∨ y) ∧ y — формула над базисом {∧,∨}.

1.2 Способы задания булевых функций

1.2.1 Таблица истинности

Булеву функцию можно задать таблицей истинности: Если хочется, то строчки в таблице можно

x ¬x
0 1
1 0

x y x ∧ y x ∨ y x ⇒ y x⊕ y
0 0 0 0 1 1
0 1 0 1 1 1
1 0 0 1 0 1
1 1 1 1 1 0

упорядочить в лексикографическом порядке (смотрим на первое различие, сравниваем там), как
в таблицах выше. Тогда для описания функции достаточно только результатов, для 2n возмож-
ных значений n переменных. Это называется задание булевым вектором, например, булев вектор
функции логического «И» — это 0001.
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Факт 1.2.1. Если все наборы (σ1, . . . , σn) пронумеровать в лексикографическом порядке, то
номер очередного набора — его дешифровка, как числа в двоичной системе счисления. Так,

номер набора (0, 1, 0, 1, 1) — это 010112 = 1110. Это же можно записать в виде
n∑

i=1

σi2
n−i.

1.2.2 Дизъюнктивная нормальная формула

Будем обозначать xσ =

{
x, σ = 1

¬σ, σ = 0

Определение 1.2.1 (Простая конъюнкция). Конъюнкция нескольких переменных, возможно, с
отрицаниями. Каждая переменная встречается не более одного раза.

Определение 1.2.2 (Дизъюнктивная нормальная форма, ДНФ). Представление булевой формулы
в виде дизъюнкции простых конъюнкций.

Так, (x ∧ ¬y) ∨ z — дизъюнктивная нормальная форма.

Определение 1.2.3 (Совершенная дизъюнктивная нормальная форма, СДНФ). Дизъюнктивная
нормальная форма, в каждой конъюнкции которой — все переменные данной формулы. Ещё можно
потребовать, чтобы все конъюнкции были различны.

Замечание. У любой формулы есть совершенная дизъюнктивная нормальная форма; её можно
построить по таблице истинности.

А именно: для всякого набора переменных (σ1, . . . , σn) такого, что при данных значениях перемен-
ных результат функции истинен, добавить в текущую СДНФ (изначально пустую) конъюнкцию
(xσ1

1 ∧ · · · ∧ xσn
n ).

Таким образом, СДНФ равна ∨
f(σ1,...,σn)=1

(xσ1
1 ∧ · · · ∧ xσn

n )

Несложно убедиться, что данная СДНФ описывает именно данную булеву формулу.

1.2.3 Конъюнктивная нормальная формула

Определение 1.2.4 (Простая дизъюнкция). Дизъюнкция нескольких переменных, возможно, с
отрицаниями. Каждая переменная встречается не более одного раза.

Определение 1.2.5 (Конъюнктивная нормальная форма, КНФ). Представление булевой формулы
в виде конъюнкции простых дизъюнкций.

Так, (x ∧ ¬y) ∨ z — конъюнктивная нормальная форма.

Определение 1.2.6 (Совершенная конъюнктивная нормальная форма, СКНФ). Конъюнктивная
нормальная форма, в каждой дизъюнкции которой — все переменные данной формулы. Ещё можно
потребовать, чтобы все дизъюнкции были различны.

Замечание. У любой формулы есть совершенная конъюнктивная нормальная форма; её можно
построить по таблице истинности.

А именно: для всякого набора переменных (σ1, . . . , σn) такого, что при данных значениях пере-
менных результат функции ложен, добавить в текущую СКНФ (изначально пустую) дизъюнкцию
(x¬σ1

1 ∨ · · · ∨ x¬σn
n ).

Таким образом, СКНФ равна ∧
f(σ1,...,σn)=0

(
x¬σ1
1 ∨ · · · ∨ x ̸=σn

n

)
Несложно убедиться, что данная СДНФ описывает именно данную булеву формулу.
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1.2.4 Многочлен Жегалкина

Взаимоисключающее «или» конъюнкций (допускается слагаемое 1) без повторений слагаемых.

Ещё его можно описать, как обычный многочлен над F2.

Так, f(x, y, z) = 1 ⊕ x ⊕ (x ∧ y ∧ z) — многочлен Жегалкина. Иногда константу 0 не считают
многочленом Жегалкина, но это что-то странное.

Теорема 1.2.1. Всякая функция имеет единственное представление многочленом Жегалкина

Доказательство.

• Существование: заметим, что x∨ y = x⊕ y⊕ (x∧ y). Ещё заметим, что ¬x = (x⊕ 1). Наконец
заметим дистрибутивность ⊕ относительно ∧ — (x ⊕ y) ∧ z = (x ∧ z) ⊕ (y ∧ z), «можно
раскрывать скобки».

Таким образом можно преобразовать ДНФ данной формулы, получив многочлен Жегалкина
— одинаковые слагаемые сокращаются, так как x⊕ x = 0.

• Единственность: применим количественный аргумент. Всего многочленов Жегалкина 22
n

—
всякая конъюнкция может либо встретиться, либо нет. Но булевых функций столько же.

1.3 Замкнутые классы

Рассмотрим множество булевых формул F .

Определение 1.3.1 (Замыкание F). Множество всех булевых функций, представимых формулами
над F . Обозначают [F ].

Так, [∅] = ∅; [¬] = {id,¬}, [∨] = {x1 ∨ · · · ∨ xn | n > 1}. Пояснение к последнему примеру: ∨ —
функция двух аргументов, логическое «ИЛИ». Замыкание класса, состоящего из этой функции,
равно функции логического «ИЛИ» многих (хотя бы двух) переменных.

Определение 1.3.2 (Замкнутый класс). Класс, равный своему замыканию.

1.3.1 Примеры замкнутых классов

• T0 — класс функций, сохраняющий 0.

f ∈ T0 ⇐⇒ f(0, . . . , 0) = 0

Так, ∧,∨,⊕, 0 сохраняют 0 (0 — функция, возвращающая ноль при любых значениях аргу-
мента; тождественный ноль).

• T1 — класс функций, сохраняющий 1.

f ∈ T1 ⇐⇒ f(1, . . . , 1) = 1

Так, ∧,∨, 1 сохраняют 1 (1 — функция, возвращающая единицу при любых значениях аргу-
мента; тождественная единица).

• Определение 1.3.3 (Двойственная функция к f). f∗(x1, . . . , xn) = ¬f(¬x1, . . . ,¬xn)

Так, ∧ и ∨ двойственны друг другу.

Определение 1.3.4 (Самодвойственная функция f). Функция, двойственная сама себе: f∗ =
f .

Так, ¬ самодвойственно.

Класс самодвойственных функций S замкнут.
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Доказательство. Для доказательства достаточно убедиться, что все одноэтажные формулы
(f(Ф1, . . . ,Фn), где Фi — либо функция из S, либо переменная) над S самодвойственны.

Тогда, строя формулу над S по индукции, можно убедиться, что на каждом шаге будет
самодвойственная функция.

Утверждение проверяется так: самодвойственная функция — функция, при замене истин-
ности всех аргументов которой меняется результат. Но тогда при замене истинности всех
аргументов Фi на противоположную, истинность Фi тоже изменится (если это переменная —
как истинность переменной, иначе — как самодвойственная функция). Отсюда и истинность
f(Ф1, . . . ,Фn), где Фi сменится на противоположную.

• Введём частичный порядок на множестве двоичных наборов: ((x1, . . . , xn) ⩽ (y1, . . . , yn)) ⇐⇒
∀i : (xi ⩽ yi).

Определение 1.3.5 (Монотонная функция). f : ∀α, β ∈ {0, 1}n : (α ⩽ β ⇒ f(α) ⩽ f(β)).

Иными словами, при изменении какого-то аргумента с лжи на истину, значение функции не
может поменяться в обратную сторону. Так, ∨ и ∧ — монотонны, а ¬,⊕,⇒ — нет.

Класс монотонных функций M замкнут.

Доказательство. Аналогично, убедимся, что все одноэтажные формулы (f(Ф1, . . . ,Фn), где
Фi — либо функция из M , либо переменная) над M монотонны.

Тогда, строя формулу над M по индукции, можно убедиться, что на каждом шаге будет
монотонная функция.

Несложно видеть, что при замене аргумента со лжи на истину, истинность Фi не поменяется в
обратную сторону, откуда и истинность f(Ф1, . . . ,Фn) не поменяется в обратную сторону.

• Определение 1.3.6 (Линейная функция). Функция, многочлен Жегалкина которой не ис-
пользует нетривиальные (с хотя бы двумя переменными) конъюнкции.

Иными словами, ⊕ нескольких переменных, и, возможно, 1.

Класс линейных функций L замкнут.

Доказательство. Аналогично, убедимся, что все одноэтажные формулы (f(Ф1, . . . ,Фn), где
Фi — либо функция из L, либо переменная) над L монотонны.

Тогда, строя формулу над L по индукции, можно убедиться, что на каждом шаге будет
линейная функция.

Для доказательства просто заметим, что ⊕ ассоциативен, коммутативен, и прочая, и прочая,
откуда можно просто раскрыть скобки и получить опять же линейую функцию.

Лекция II
5 сентября 2022 г.

1.4 Теорема Поста

Теорема 1.4.1 (Пост, 1921). Множество булевых функций F является полной системой ⇐⇒ F
не содержится ни в одном из пяти классов T0, T1,M, S, L.

Доказательство.

⇒. Если F ⊂ A для некоего A ∈ {T0, T1, S,M,L}, то [F ] = A и A ̸= U

7



⇐. 1. Рассмотрим f0 /∈ T0. Тогда f(0) = 1. Если f(1) = 1, то f(x) = 1 и нами получена
константа 1. Иначе f(1) = 0, то f(x) =!x, и нами получено отрицание.

Аналогично для f1 /∈ T1 мы получаем либо константу 0, либо отрицание.

Покамест нами получены либо обе константы, либо отрицание, либо и то, и то (из
константы и отрицания получается и другая константа тоже).

2. Пусть получено отрицание; получим константы. Рассмотрим fS /∈ S. Для некоего набора
{σi} верно fS(σi) = fS(¬σi). Тогда рассмотрим fS(x = σi) для некой переменной x.

∀x ∈ {0, 1} (x = σi) ∈ {σi, !σi}, откуда fS(x = σi) не зависит от x; это константа. С
помощью отрицания получаем другую константу.

3. Пусть нами получены константы; получим отрицание. Рассмотрим fM /∈ M . Существуют
два набора переменных {αi}, {βi} : α < β, однако fM (αi) = 1 ∧ fM (βi) = 0.

Пусть I = {i ∈ N|αi ̸= βi},M1 = {i ∈ N|αi = 1 = βi},M0 = {i ∈ N|αi = 0 = βi}.
Очевидно I ⊔M1 ⊔M0 = {i ∈ N |1 ⩽ i ⩽ n}.

Тогда fM



1, i ∈ M1,

0, i ∈ M0,

x, i ∈ I

 =!x. Мы получили отрицание.

4. Выразим конъюнкцию (∧) из fL /∈ L. Рассмотрим представление fL через многочлен Же-
галкина. В нём существует нетривиальная конъюнкция, имеющая хотя бы две перемен-
ные. Пусть они xj , xk. Несложно видеть, что всегда многочлен Жегалкина разбивается
следующим образом:

fL(xi) = (xj ∧ xk ∧ P (. . . ))⊕ (xj ∧Q(. . . ))⊕ (xk ⊕R(. . . ))⊕ S(. . . )

Здесь P,Q,R, S — булевы функции n− 2 переменных. P не является константой 0.

Для некоего {αi}n−2
i=1 : P (αi) = 1. Подставив x = xj , y = xk, остальные x = α мы получим

fL(xi) = (x ∧ y)⊕ (x ∧ a)⊕ (y ∧ b)⊕ c для неких a, b, c ∈ {0, 1}. Тогда подставив вместо
x, y пару x⊕ b, y ⊕ a, мы получим

((x⊕ b) ∧ (y ⊕ a))⊕ ((x⊕ b) ∧ a)⊕ ((y ⊕ a) ∧ b)⊕ c = (x ∧ y)⊕ (a ∧ b)⊕ c

Отсюда возможным отрицанием получаем чистую конъюнкцию.

Мы выразили константы, отрицание, конъюнкцию, значит, мы выразили базис.
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Глава 2

Комбинаторика, выборки, числа
Каталана

2.1 Выборки

Пусть дано некое множество элементов A.

Выборки — некие наборы M , такие, что set(M) ⊂ A. Выборки бывают упорядоченными (M —
упорядоченный массив) и неупорядоченными (M — (мульти)множество), с повторениями (в M
возможны одинаковые элементы) и без повторений (все элементы в M уникальны).

Правила суммы и произведения я пропущу.

Формулы:

Упорядоченные Неупорядоченные
С повторениями nk Ĉk

n = Ck
n+k−1 =

(
n+k−1

k

)
Без повторений Размещения Ak

n =
n!

(n− k)!
Сочетания Ck

n =
(
n
k

)
=

n!

(n− k)!k!

Предлагается выводить формулу Ĉk
n =

(
n+k−1

k

)
из бинарного вектора, а именно:

Доказательство.

• Ĉk
n равно числу решений уравнения в неотрицательных числах

n∑
i=1

xi = k.

• Закодируем некоторое решение {xi}1⩽i⩽n двоичным вектором, где число xi кодируется xi

единицами, а между числами стоит 0. Заметим, что существует биекция всех двоичных
строк длины n+ k − 1 с k единицами на решения вышеприведённого уравнения.

• Но таких строк
(
n+k−1

k

)
Теорема.

(
n
k

)
=

(
n−1
k−1

)
+
(
n−1
k

)
.

Доказательство.
(
n−1
k−1

)
+
(
n−1
k

)
=

(n− 1)!

(k − 1)!(n− k)!
+

(n− 1)!

k!(n− 1− k)!
=

(n− 1)!k

k!(n− k)!
+
(n− 1)!(n− k)

k!(n− k)!
=

(n− 1)! · n
k!(n− k)!

=
n!

k!(n− k)!
=

(
n
k

)
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2.1.1 Треугольник Паскаля

Извините, он у меня не треугольник

1 1 1 1 1 1
1 2 3 4 5 6
1 3 6 10 15 21
1 4 10 20 35 . . .
1 5 15 35 . . . . . .
1 6 21 . . . . . . . . .

2.1.2 Бином Ньютона

(a+ b)n =
n∑

i=0

(
n
i

)
aibn−i.

Доказательство. Раскроем скобки. В итоговой сумме все слагаемые akbl удовлетворяют тожде-
ству k + l = n; количество способов выбрать k раз a, а остальные разы — b — равно

(
n
k

)
2.1.3 Оценки на факториал

Для n > 1

(n
e

)n

< n! < nn

Правое очевидно, докажем левое неравенство по индукции.

Доказательство. База: n = 1,
(
1

e

)1

< 1, верно. Переход: Пусть
(n
e

)n

< n!. Докажем, что(
n+ 1

e

)n+1

< (n+ 1)!.

Домножим обе части индукционного неравенства на (n+1). (n+1)
(n
e

)n

< (n+1)!. Покажем, что

(n+ 1)
(n
e

)n

>

(
n+ 1

e

)n+1

, или же — e · nn > (n+ 1)n. Это верно, так как e >
(
1 + 1

n

)n
, что мы

узнаем в курсе матанализа. Отсюда переход верен и индукция верна.

2.1.4 Асимптотические оценки

f(n) = o(g(n)) по определению означает lim
n→∞

f(n)

g(n)
= 0. f(n) = o(1) ⇐⇒ limn→∞ f(n) = 0.

Формула Стирлинга

n! = (1 + o(1))
√
2πn

(n
e

)n

Доказательство будет в курсе матанализа.

Лекция III
12 сентября 2022 г.
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2.2 Числа Каталана

Определение 2.2.1 (Язык Дика). Определён над алфавитом {(.)} (в такой нотации . — разде-
литель между символами). Правильной скобочной последовательностью ПСП называется

пустая строка ε,

(u) для строки над языком Дика u,

uv, для строк u и v над этим языком.

Определение 2.2.2 (Числа Каталана). Числом Каталана Dn называется количество строк над
языком Дика длины 2n.

http://oeis.org/A000108

Теорема 2.2.1 (Рекурсивная формула для чисел Каталана). Dn =

1, n = 0
n−1∑
k=0

DkDn−1−k, n > 0

Доказательство. База очевидна.

Рассмотрим произвольную непустую ПСП w. Она начинается с символа (. Найдём парную ей
скобку и назовём строку между скобками u, а строку после закрывающейся скобки v. Тогда w =
(u)v. Заметим, что любая пара (u, v) подходящих длин подходит. Формула отсюда очевидна.

2.2.1 Числа Каталана через монотонные пути

Пусть дан квадрат [0;n]×[0;n]. Назовём монотонным путём длины n конечную последовательность
длины 2n+ 1, состоящую точек (xi, yi), таких, что (x1, y1) = (0, 0); (x2n+1, y2n+1) = (n, n); ∀i : 0 ⩽

i ⩽ 2n : (xi+1, yi+1) =

[
(xi + 1, yi)— горизонтальный переход

(xi, yi + 1)— вертикальный переход

Дополнительным условием на «правильные» монотонные пути поставим ∀i : xi ⩾ yi. Это обознача-
ет, что все точки пути лежат ниже или на прямой y = x.

Факт 2.2.1. Для ∀ префикса ПСП s: количество ( не меньше количества ) на этом префиксе.
Доказывается по индукции.

Этот факт показывает возможность биекции монотонных путей длины 2n+1 и ПСП длины 2n. . .

Теорема 2.2.2. Аналитическая формула для чисел Каталана

Dn = 1
n+1

(
2n
n

)
.

Доказательство. Рассмотрим аналогичный путь, в котором все yi уменьшены на 1. Тогда в новом
пути yi < xi∀i. Посчитаем количество путей из (0;−1) в (n;n − 1) как общее число монотонных
путей за вычетом тех путей, у которых присутствует точка (xi, yi) : xi ⩾ yi.

Общее число путей очевидно
(
2n
n

)
— среди 2n переходов выбрать n горизонтальных.

Очевидно, что в каждом неправильном пути с ∃(xi, yi) : xi ⩾ yi присутствует точка (a; a) для
некоего a. Пусть a — первая точка пересечения пути с прямой y = x. Тогда отразим первую
половину пути до a от прямой y = x и получим путь из (−1; 0) в (n;n−1). Заметим, что существует
биекция между неправильными путями (пересекающими y = x) из (0, 0) в (n;n) и путями из
(0;−1) в (n − 1;n), а последних

(
2n
n−1

)
— в каждом таком пути n + 1 горизонтальный переход и

n− 1 вертикальный. // todo: нарисовать картинку

Dn =
(
2n
n

)
−
(

2n
n−1

)
=

(2n)!

n!n!
− (2n)!

(n− 1)!(n+ 1)!
=

(2n)!

n!(n+ 1)!
= 1

n+1

(
2n
n

)
.

Теорема 2.2.3 (Асимптотика чисел Каталана). Dn = (1 + o(1))
4n

n
3
2
√
π
.
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Доказательство. Использование формулы Стирлинга.

2.2.2 Другие комбинаторные объекты

Есть очень много разумных комбинаторных объектов, количество которых для данного размера —
число Каталана.
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Глава 3

Графы

3.1 Вступление

Графическое представление — вершины — точки, рёбра — линии.

Морально — объекты и связи между ними.

История про Кенигсбергские мосты — можно ли обойти все мосты, пройдя ровно по разу через
каждый из мостов?
todo: прикрепить картинку. Данный граф — мультиграф, так как присутствуют кратные
рёбра, то есть некоторые вершины связаны дважды. Эйлеров обход графа — путь, проходящий по
каждому ребру графа ровно один раз.

История про 3 дома, 3 колодца и тропинки между каждой парой разнотипных объектов — яв-
ляется ли граф K3,3 планарным? Можно ли граф K3,3 расположить на плоскости, чтобы кривые,
соответствующие рёбрам, не пересекались?

История про знакомых юношей и девушек в деревне, требуется сыграть максимальное количество
свадьб между знакомыми парами — нахождение максимального паросочетания в двудольном графе.

История о раскраске карты, чтобы граничащие по области ненулевой длины государства — одно-
связные множества плоскости — имели разный цвет. Минимальное количество цветов для раскрас-
ки? (Максимальное хроматическое число планарных графов). Вообще задача о раскраске графа —
нахождении хроматического числа.

3.1.1 Формально

Формально (V ;E), где V — как правило конечное множество вершин, любое множество; E ⊂
V × V .

Граф можно задать квадратной матрицей смежности ai,j порядка |V |:

ai,j =

{
1, (i, j) ∈ E

0, otherwise
.

Определение 3.1.1 ((Не)ориентированный граф). (u, v) ∈ E ⇐⇒ (v, u) ∈ E. Иначе граф называ-
ется ориентированным.

Определение 3.1.2 (Мультиграф). Мультиграф задаётся матрицей смежности, здесь ai,j ∈ N.

Определение 3.1.3. Смежные вершины — для неориентированного графа

Вершины u, v — смежные, если (u, v) ∈ E.

Определение 3.1.4 (Инцидентные вершина и ребро). Ребро (u, v) и вершина u для некоего v.

Определение 3.1.5 (Петля). Ребро (u, u) для некоего u.
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Определение 3.1.6 (Степень вершины v : deg(v)). deg(v) =
∑

{av,u|u ∈ V } + av,v. Иначе гово-
ря, количество рёбер, инцидентных v, где петли считаются дважды. В ориентированных графах
выделяют исходящую и входящую степени.

3.1.2 Факты

Факт 3.1.1. В неориентированном графе сумма степеней всех вершин равна удвоенному числу
рёбер.

Факт 3.1.2. В ориентированном графе сумма входящих степеней равна сумме исходящих
степеней.

Факт 3.1.3. Всякий конечный граф содержит чётное число вершин нечётной степени.

3.1.3 Пути

Определение 3.1.7 (Путь). Конечная последовательность ai нечётной длины 2k+1. ai ∈

{
V, 2 ̸ | i
E, 2 | i

Необходимое требование на путь: ∀i ∈ {2, 4, . . . , 2k}: ai — ребро между ai−1 и ai+1.

Различные вершины в пути ⇒ вершинно-простой путь.

Различные рёбра в пути ⇒ рёберно-простой путь.

Цикл — путь с a1 = a2k+1. Цикл простой, если все его вершины, кроме a2k+1 различны.

Цикл — рёберно-простой, если соответствующий путь рёберно-простой.

Факт 3.1.4. Если существует путь, соединяющий u и v, то существует и простой путь,
соединяющий u и v.

Определение 3.1.8 (Связанные вершины). Две вершины u и v называются связанными, если
существуют пути из u в v и из v в u. (В неориентированных графах очевидно достаточно су-
ществования одного, любого, пути). (В ориентированных графах наличие одного пути влечёт не
сильную, обычную для ориентированных графов, связность, а так называемую слабую связность).

Факт 3.1.5. Связанность — отношение эквивалентности

Определение 3.1.9 (Компоненты связности). Классы эквивалентности для отношение связанно-
сти. В ориентированном случае называются компонентами сильной связности.

Граф связный, если в нём ровно одна (хотя бы одна) компонента связности. В ориентированном
случае граф сильно связный.

Лемма 3.1.1. Компонента связности — связный граф

Доказательство. Докажем для любых вершин компоненты u и v, что существует путь между
ними, использующий только вершины из данной компоненты. Так как u и v в одной компоненте
связности, то существует путь в исходном графе между ними. Но все промежуточные вершины по
определению связаны с u и v, поэтому этот путь — в компоненте связности.

Лекция IV
15 сентября 2022 г.

3.2 Эйлеровы и Гамильтоновы пути и циклы

3.2.1 Эйлеров путь

Определение 3.2.1 (Эйлеров путь). Рёберно-простой путь, содержащий все рёбра графа.

Определение 3.2.2 (Эйлеров цикл). Эйлеров путь, являющийся циклом.
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Теорема 3.2.1. Связный граф содержит эйлеров цикл ⇐⇒ все вершины в нём имеют чётную
степень. Связный граф содержит эйлеров путь ⇐⇒ все вершины, кроме быть может ровно двух,
в нём имеют чётную степень.

Доказательство.

⇒. Очевидно

⇐. Индукция по числу рёбер. Индукционное предположение — верность сразу обоих предполо-
жений, и про пути, и про циклы.

Пусть верно для всех графов с ⩽ n рёбрами. Рассмотрим граф с n+ 1 ребром.

– Рассмотрим две вершины нечётной степени. Найдём между ними простой путь и удалим
его. Граф, возможно, распадётся на компоненты связности, в каждой все степени вершин
чётны. Значит, по предположению, во всех компонентах есть эйлеровы циклы (во всех
компонентах рёбер не больше n).

Для воссоздания эйлерового пути будем двигаться по найденному пути. Встречая вер-
шину из необойдённой компоненты, обходим по эйлеровому циклу её компоненту, после
чего продолжаем движение по пути.

– Если все вершины чётной степени, то будем удалять не путь, а цикл, всё аналогично.
Формально — упражнение читателю.

Теорема 3.2.2. Сильно связный ориентированный граф содержит эйлеров цикл ⇐⇒ каждая его
вершина имеет равные степени захода и исхода. Для эйлерового пути — все вершины таковы,
кроме быть может двух, для которых одна имеет степень захода на 1 больше степени исхода, а
другая — на 1 меньше.

Определение 3.2.3 (Граф де Брейна (de Bruijn) порядка n для k-символьного алфавита Σ). Мно-
жество вершин V = Σn

Множество рёбер: у каждой вершины есть k исходящих дуг. Слово из букв w1w2 . . . wn имеет i-ю
(1 ⩽ i ⩽ k) из инцидентных дуг с вторым концом w2w3 . . . wnΣi, здесь Σi — i-й символ алфавита.

Иначе говоря, ориентированная дуга (u, v) есть ⇐⇒ u[1; n) = v[0; n - 1) для 0-индексированных
строк. Здесь s[i; j) означает подстроку строки s с i-го символа включительно по j-й невклю-
чительно.

Теорема 3.2.3. В графе де Брейна есть эйлеров цикл.

Доказательство. В каждой вершине и входящая, и исходящая степень равны k.

Следствие 3.2.1. Существует строка над алфавитом Σ длины kn+1 + n, у которой все под-
строки длины n+1 различны; их множество совпадает с множеством всех строк длины n+1
над алфавитом Σ.

Так, для n = 2, k = 2 в графе де Брейна kn = 4 вершин и kn+1 = 8 рёбер. Существует строка
длины kn+1 + n = 10, содержащая все строки длины n+ 1 = 3 над двухсимвольным алфавитом по
разу.

Алгоритм построения строки де Брейна:

1. записывается произвольная начальная строка w0.

2. находится эйлеров цикл.

3. Начиная с w0 производится движение по циклу, символы, соответствующие посещённым
рёбрам, дописываются в конец строки.

//todo: нарисовать картинку.
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3.2.2 Гамильтонов цикл

Определение 3.2.4 (Гамильтонов цикл). Простой цикл в графе называется гамильтоновым, если
он проходит через каждую вершину ровно один раз.

Замечание. Вероятно, не существует полиномиального алгоритма о поиске гамильтонова цикла.
NP -полная задача, никто, вероятно, не знает, существует ли алгоритм.

Достаточное условие существования гамильтонова цикла:

Теорема 3.2.4 (Дирак, 1952). В графе G = (V,E) : |V | ⩾ 3 существует гамильтонов путь (цикл),
если сумма степеней любых двух вершин хотя бы n− 1 (n)

Доказательство.

Лемма 3.2.1. В графе с |V | = k ⩾ 3 с гамильтоновым путём сумма степеней концов вершин
хотя бы k. Тогда в графе существует гамильтонов цикл.

Доказательство леммы. Пусть гамильтонов путь в данном графе содержит вершины в порядке
следования {Ai}1⩽i⩽k. Пусть adji — множество вершин, смежных с i-й. Если существуют вершины
u ∈ adj1, v ∈ adjk : u+ 1 = v, то существует понятный гамильтонов цикл

1, 2, . . . , u−1, u, k, k−1, . . . , v+1, v, 1. //todo: нарисовать картинку. Иначе |adj1|+|adjk| < k,
противоречие.

Из леммы понятно, что достаточно доказать для пути. Рассмотрим самый длинный в данном графе
простой путь P . Предположим, что он не гамильтонов: |P | = k < n. Рассмотрим подграф H =
(set(P ), {(u, v) ∈ E|u, v ∈ set(P )}), где set(P ) — множество вершин в пути. По предположению не
существует рёбер из концов пути во внешний граф — в любую из вершин V \set(P ). Тогда в графе
H по лемме существует гамильтонов цикл, так как n− 1 ⩾ k.

Но цикл практически всегда можно удлиннить: если цикл проходит по вершинам {Ai}1⩽i⩽k, то
любое ребро вида (ai, b) при условии b /∈ A можно добавить, как первое ребро нового пути.
Получаем противоречие, так как мы нашли более длинный путь.

Если же такого ребра не существует, то степени всех вершин пути не больше k − 1, а степени
остальных вершин не больше n− 1− k. Противоречие с суммой степеней.

3.3 Деревья

Определение 3.3.1 (Дерево). Связный граф без циклов

Определение 3.3.2 (Лес). Граф без циклов

Определение 3.3.3 (Ориентированное дерево). орграф (ориентированный граф) без циклов, в
котором ровно одна вершина имеет степень захода 0, а остальные — степень захода 1. Здесь
вершина с нулевой степенью захода называется корень дерева, а вершины с нулевой степенью
исхода — листьев.

Определение 3.3.4 (Мост). Ребро, удаление которого увеличивает число компонент связности
графа.

Теорема 3.3.1 (Теорема о мостах). Ребро является мостом ⇐⇒ оно не принадлежит ни одному
(простому) циклу.

Доказательство. ⇒ (Мост ⇒ не принадлежит циклам). От противного — пусть ребро содержится
в цикле. Покажем, что связность вершин u и v не зависит от наличия данного ребра. В самом деле,
если путь не u− v не содержал это ребро, то он остался. Если пути между u и v не существовало,
то он не появился. Иначе путь между u и v проходил по данному ребру, но тогда ребро можно
обойти по остальным рёбрам цикла, содержащего ребро, противоречие.
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⇐ (Не принадлежит циклам ⇒ мост). Изначально концы ребра x и y были в одной компоненте
связности. От противного — пусть после удаления ребра они остались в одной компоненте связно-
сти. Тогда существует путь между x и y, не содержащий данное ребро. Значит, после добавления
ребра получится цикл, противоречие.

//todo: нарисовать картинку

Теорема 3.3.2. Следующие утверждения для (простого) графа равносильны:

1. G — дерево

2. ∀u, v ∈ V : существует ровно один простой путь из u в v.

3. G не содержит циклов, но при добавлении любого несуществующего ребра теряет это свой-
ство.

4. G — связный граф и |E| = |V | − 1.

5. G не содержит циклов и |E| = |V | − 1.

6. G — связный граф и каждое ребро является мостом.

Определение 3.3.5 (H — остовный подграф G). VH = VG;EH ⊂ EG.

Определение 3.3.6 (Остовное дерево). Остовный подграф, являющийся деревом.

Факт 3.3.1. Всякий связный граф содержит остовное дерево.

Доказательство. Пока в G есть ребро, содержащееся в цикле, удалим его. Это не мост, граф
останется связным.

Теперь в G нет циклов. Значит, это дерево.

Следствие 3.3.1. Связный граф с n вершинами содержит хотя бы n− 1 ребро.

Определение 3.3.7 (H — индуцированный подграф G). VH ⊂ VG;EH = {(u, v) ∈ EG|u, v ∈ VH}.

3.4 Изоморфность

Определение 3.4.1 (Графы G1 и G2 изоморфны). Существует биекция f : V1 → V2 : ∀u, v ∈ V1 :
((u, v) ∈ E1 ⇐⇒ (f(u), f(v)) ∈ E2).

Факт 3.4.1. Проверка двух графов на изоморфность — NP -трудная задача.

Лекция V
19 сентября 2022 г.

3.5 Планарные и плоские графы

Определение 3.5.1 (Плоский граф). Граф, существует укладка которого на плоскость, то есть
существует отображение из вершин графа в точки плоскости, а из рёбер — в кривые, с концами
— образами вершин, инцидентных ребру, причём кривые не должны пересекаться. Формальнее,
рёбра можно отображать в ломаные с конечным числом звеньев.

В сигнатуру плоского графа входит ещё множество областей, на которые образы рёбер разбивают
плоскость — граней. Неограниченная область тоже является гранью (называется внешняя грань).
G = (V,E, F ).

Определение 3.5.2 (Планарный граф). Граф, изоморфный некоему плоскому графу.

Замечание. Плоский граф знает своё расположение на плоскости, а планарный граф — нет.
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Факт 3.5.1. Граф плоский /планарный ⇒ существует укладка графа на сфере.

// Доказательство получается из стереографической проекции.

3.5.1 Двойственные графы

Пусть дан плоский связный мультиграф G = (V,E, F ).

Определение 3.5.3 (Граф, двойственный G). Новый плоский граф H. Грани графа G → вершины графа H.
В графе H существует ребро между новыми вершинами, если в графе G прообразы вершин — гра-
ни — имели общую границу ненулевой длины.

Факт 3.5.2. Для плоского графа G граф G∗ — тоже плоский; (G∗)∗ = G. Я пропустил, было
ли доказательство...

Замечание. Изоморфные плоские графы могут иметь неизоморфные графы, двойственные им. Так,
например, графы «бамбук длины 3» и «солнышко с тремя листьями» имеют изоморфные двой-
ственные им графы. //todo: нарисовать картинку.

Теорема 3.5.1 (Эйлер, 1758). Во всяком плоском связном графе |V | − |E|+ |F | = 2.

Замечание. Для укладки не на плоскость, а на сферу с k ручками выполняется |V | − |E|+ |F | =
2− 2k. Доказательства и даже точной формулировки, увы и ах, не будет...

Доказательство случая для плоскости. Индукция по числу граней |F |.

База: |F | = 1 ⇒ граф без циклов. Из связности следует, что это дерево, значит, действительно
|V | − |E| = 1.

Переход: Пусть |F | ⩾ 2. Удалим какое-нибудь ребро, входящее в цикл. Ребро, входящее в цикл,
разделяло две грани, образы которых в двойственном графе были смежны.

После удаления ребра количество и рёбер, и граней уменьшилось ровно на 1. Итак, (V,E, F ) 7→
(V ′, E′, F ′) : |V | = |V ′|; |E′| = |E|−1; |F ′| = |F |−1, и мы можем воспользоваться индукционным
предположением.

Следствие 3.5.1. В планарном графе без петель и кратных рёбер G = (V,E) : |E| ⩽ l

l − 2
(|V | −

2). Здесь за l обозначается длина наименьшего цикла в графе.

Доказательство. Заметим, что |F | ⩽ 2

l
|E|, так как каждой грани соответствует не менее l рёбер,

а каждому ребру — ровно 2 грани. Подставив в формулу Эйлера, получим |E| = |V | + |F | − 2 ⇒(
1− 2

l

)
|E| ⩾ |V | − 2, откуда выражается требуемое.

Следствие 3.5.2. Во всяком планарном графе без петель и кратных рёбер есть вершина сте-
пени не более, чем 5.

Доказательство. От противного: пусть степень любой вершины хотя бы 6. Тогда несложно полу-
чить |E| ⩾ 3|V |, это противоречит предыдущему следствию.

Следствие 3.5.3. Графы K3,3 (полный двудольный граф, размер каждой доли 3) и K5 (полный
граф на 5 вершинах) не являются планарными.

Теорема 3.5.2. Граф G планарен ⇐⇒ любой его подграф не гомеоморфен ни графу K5, ни графу
K3,3.
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Определение 3.5.4 (Операция разбиения ребра e в неориентированном графе G). Уда-
ление ребра e, создание новой вершины w, добавление в граф двух рёбер (u,w) и (v, w),
где e = (u, v).

Определение 3.5.5 (Гомеоморфные графы). Графы G1 и G2 гомеоморфны, если, приме-
няя к каждому из них произвольное количество раз операцию разбиения ребра, можно
получить изоморфные графы.

Замечание. В одну сторону доказательство очевидное — если существует и укладка, и подграф,
гомеоморфный запретному K5 или K3,3, то из укладки для данного графа можно извлечь укладку
для K5 или K3,3, что приводит к противоречию.

3.5.2 Теорема о художественной галерее

Пусть дан произвольный n-угольник. Требуется расставить минимальное количество «сторожей»
— точек внутри многоугольника, чтобы всякая точка многоугольника была обозреваема каким-
либо сторожем — существовал отрезок из «сторожа» в данную точку, не выходящий за пределы
многоугольника.

Замечание. Для выпуклого многоугольника достаточно одного «сторожа» — в любой точке данного
многоугольника.

Теорема 3.5.3 (Хватал, 1975). Для любого n ⩾ 3 достаточно
⌊
n
3

⌋
сторожей в некоторых его

вершинах.

Доказательство. Нижняя оценка — гребёнка Хватала. Для n = 3k необходимо минимум k «сто-
рожей» в некоем специфическом многоугольнике, называемом «гребёнка Хватала». //todo: до-
бавить картинку.

Лемма 3.5.1. Всякий многоугольник разбиваем диагоналями на треугольники. Граф
с вершинами, совпадающими с вершинами многоугольника, и рёбрами, соответству-
ющими диагоналям / сторонам, раскрашиваем в 3 цвета.

Доказательство. По индукции.

База: n = 3. Треугольник разбит и раскрашиваем.

Переход: n ⩾ 4. Пусть ∠Ai−1AiAi+1 < 180o. Такой угол есть, например, в качестве точки
Ai можно взять крайнюю в каком-то направлении.

• Пусть отрезок Ai−1Ai+1 лежит внутри многоугольника. Тогда применим индукци-
онное предположение для многоугольника A1 . . . Ai−1Ai+1A|A| — многоугольника A
с выкинутой вершиной Ai, после чего покрасим Ai в подходящий цвет (запрещены
всего 2 цвета, цвета смежных с ней вершин).

• Пусть отрезок Ai−1Ai+1 не лежит внутри многоугольника. Тогда треугольник Ai−1AiAi+1

содержит некие вершины многоугольника. Сопоставим каждой такой вершине пря-
мую, проходящую через неё, и параллельную Ai−1Ai+1. Возьмём среди всех вершин
ту, у которой соответствующая прямая ближе всего к точке Ai, пусть это точка Aj .
Утверждение: отрезок AiAj лежит внутри многоугольника. // нарисовать кар-
тинку. Тогда применим индукционное предположение для половинок и склеим их.
написать подробнее

По лемме строим разбиение многоугольника на треугольники, красим вершины в 3 цвета. Выби-
раем среди трёх цветов вершин тот, который используется нестрого реже (не чаще) остальных
цветов. Ему соответствует

⌊
n
3

⌋
вершин. Расставим сторожей именно в этих вершинах. Тогда каж-

дый треугольник из триангуляции обозреваем.
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Теорема 3.5.4 (Фари, 1948). Для любого планарного графа существует отображение на плоскость,
такое, что рёбра переходят в отрезки

Лекция VI
26 сентября 2022 г.

Доказательство. Докажем, что существует преобразование произвольной укладки в укладку, где
рёбрам соответствуют отрезки, сохраняющее множество граней.

Добавим в граф рёбра, пока все грани не станут треугольниками. Для жизнеспособности доказа-
тельства удалим добавленные рёбра после построения укладки.

Лемма 3.5.2 (О триангуляции). Пусть G — планарный граф без петель и кратных рё-
бер. Тогда существует триангуляция T — плоский граф, каждая грань в котором —
треугольник (с возможно кривыми рёбрами), в котором G содержится, как остовный
подграф.

Доказательство леммы.

Так как G — без петель и кратных рёбер, то существует грань f , на границе которой
больше 3 вершин.

• Грань f имеет связную границу.

Рассмотрим граф H, индуцированный на множестве вершин грани f . Он не явля-
ется кликой∗, можно добавить ребро (в H могут быть рёбра между несоседними
вершинами f , проведённые вне f).

∗ – при |VH | ⩾ 5 H содержит индуцированный K5, не являющийся планарным.
Иначе |VH | = 4 и надо разобрать случаи:

1. Граница — треугольник и ребро вовнутрь. Тогда есть висячая вершина, можем
провести ребро

2. Граница — четырёхугольник. Не могут без пересечений вне него быть проведены
всевозможные рёбра.

• Граница грани f несвязна. Тогда она содержит вершины из хотя бы двух компонент
связности, можем соединить любые две из разных компонент.

В таком процессе на каждом шагу увеличивается количество рёбер, но мы поддерживаем
граф простым; значит, если шаг возможен, то граф ещё не полный — можно добавить
ребро. Иначе доказательство завершено за конечное число шагов.

Индукция по числу вершин.

База: |V | = 3 — можем нарисовать подходящий треугольник.

Шаг индукции: В планарном графе есть вершина v : deg v ⩽ 5. Докажем, что есть такая, не
лежащая на внешней грани.

От противного: пусть у всех |V |−3 вершин не на внешней грани степень хотя бы 6. Тогда
сумма степеней всех вершин (внешняя грань связана с внутренностью, значит, на ней
есть вершина степени хотя бы 3)

∑
v
deg(v) ⩾ 6(|V |−3)+3+2+2 = 6|V |−11 > 6|V |−12,

но мы знаем, что 2|E| ⩽ 6|V | − 12. Противоречие.

Рассмотрим такую вершину v. Из неё исходит deg v рёбер, deg v граней, примыкающих к (содержа-
щих) v являются треугольниками. Значит, v лежит внутри некоего (не-более-чем-пяти)угольника.
deg v ⩾ 3, так как все грани являются треугольниками.
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Применим индуктивное предположение теоремы Фари к графу G без вершины v и инцидентных
её рёбер.

Дальше по теореме Хватала во всяком пятиугольнике есть вершина, которая «обозревает» весь
пятиугольник. Расположим удалённую вершину v в данной точке.

3.6 Раскраски графов

Определение 3.6.1 (Раскраска графа). Раскраска графа цветами из множества C — функция
f : V → C.

Определение 3.6.2 (Правильная раскраска графа). Такая функция, что (u, v) ∈ E ⇒ f(u) ̸= f(v).
Я пишу граф красится в k цветов ≡ существует правильная раскраска при |C| ⩽ k.

1. Двудольный граф красится в два цвета.

2. Полный граф на n вершинах не красится в менее чем n цветов.

Теорема 3.6.1 (Хивуд). Всякий планарный граф красится в 5 цветов.

Доказательство.

Индукция по числу вершин.

База: |V | ⩽ 5, f = id.

Шаг индукции: рассмотрим вершину минимальной степени v. Удалим её и покрасим остальной
граф. Дальше её надо добавить, сохранив правильность раскраски.

Если deg v ⩽ 4, то её можно покрасить в тот цвет, которым не покрашен ни один из соседей v —
смежных с ней вершин.

Если deg v = 5, то рассмотрим соседей вершины и пронумеруем их в порядке укладки на плоскости:
{vi}i∈{1,2,3,4,5}. Добавим каждое ребро в случае его отсутствия — между vi и vj если i + 1 ≡

5
j.

Какой-то из диагонали (vi, vj) нет для i+ 2 ≡
5
j, так как K5 непланарен.

Определение 3.6.3 (Склейка вершин в графе G/uv). Отождествление вершин u и v. В новом
графе есть ребро, если между любыми прообразами концов данного ребра есть хотя бы одно
ребро.

Склеим такие вершины vi и vj , а ещё вершину саму v. Раскрасим склеенный граф, дальше vi и vj
оставим такого цвета, а v покрасим в какой-то пятый цвет, не совпадающий с цветом ни одного
из её соседей.

Интересный факт (Аппель, Хакен, 1977). Всякий планарный граф красится в 4 цвета. Доказа-
тельство использует компьютерный перебор — первое в истории такое доказательство.

Определение 3.6.4 (Хроматическое число графа G). Минимальное число цветов, в которое кра-
сится граф G. Обозначается χ(G).

В частности, хроматическое число любого планарного графа не больше 4.

Определение 3.6.5 (k-дольный граф). Граф с хроматическим числом k

Факт 3.6.1. Граф двудольный ⇐⇒ он не содержит циклов нечётной длины.

Лемма 3.6.1. Если граф H не красится в k цветов, то он содержит индуцированный подграф,
в котором степени всех вершин хотя бы k.

Доказательство. Удалим вершину v : deg v < k. Покрасим граф и вернём её обратно. Нельзя
покрасить, если и только если остался граф, где степени всех вершин ⩾ k.
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Следствие 3.6.1. Пусть вершины v1, . . . , vn графа G пронумерованы так, что любая вершина
vk имеет не более d соседей среди вершин v1, . . . , vk−1. Тогда граф красится в d+ 1 цвет.

Доказательство. От противного: применим лемму, в индуцированном подграфе вершина с мак-
симальным номером имеет степень не более d, противоречие.

Теорема 3.6.2 (Брукс, 1941). В графе G степени всех вершины ⩽ d. Для d ⩾ 3: если ни одна из
компонент связности G не является полным графом, то χ(G) ⩽ d.

Доказательство.

Решаем для каждой компоненты связности независимо, предполагаем G связным.

Пусть u, v — несмежные вершины графа G. Рассмотрим следующие графы:

• G/uv — склейка G по вершинам u и v.

• G+ (u, v) — граф с добавленным ребром (u, v).

Заметим, что если G красится в k цветов, то и хотя бы один из данных двух графов красится в k
цветов. (Рассмотреть случаи u и v одного цвета, либо разных)

От противного: возьмём граф при наименьшем |V |, такой, что он не красится в d цветов. По лемме
в нём есть индуцированный подграф, где все вершины степени хотя бы d. Взяли минимальный
граф, значит, в индуцированный подграф совпадает с ним самим, все вершины степени хотя бы d.

Рассмотрим любую вершину p степени d, у неё есть два соседа, несмежных между собой, так как
G ̸= Kd+1. Тогда так как G не красился, то и G/uv равно как и G+ (u, v) не красятся в d цветов.

G/uv:

• Не красится в d цветов

• Граф связен

• deg p < d;∀w ∈ V : w ̸= uv : degw ⩽ d.

• В G/uv по лемме есть индуцированный подграф, содержащий вершину uv (иначе есть мень-
ший контрпример), который не красится в d цветов. Он не содержит вершину p, так как её
степень меньше d.

• Все вершины степени d в данным подграфе не имеют рёбер вовне, так как их степень в графе
G равна d. Единственной вершиной, могущий иметь рёбра вовне, является uv.

G+ (u, v):

• Определим H ′ как тот индуцированный подграф из G/uv, который мы нашли, только в H ′

вершины u и v расклеены. Проведём в графе H ′ ребро (u, v).

• Определим H̃ — индуцированный на (VG\VH′)∪{u, v} вершинах граф. В нём также проведём
ребро (u, v).

• H ′ ∩ H̃ = (u, v).

• Цель — покрасить H̃ и H ′ в d цветов каждый. Тогда склеивая эти раскраски по ребру мы
получим раскраску графа G.

• Докажем, что все вершины в H̃ имеют степень не больше d. Для этого достаточно проверить,
что ∃wu ∈ VH′ : (u,wu) ∈ E. И для v надо найти аналогичную wv. Но если бы для u
или v таких рёбер не было, то в H ′ все степени были бы не больше d, противоречие с
минимальностью графа.

Тогда для H ′ и H̃ выполняется утверждение теоремы, но раз граф G не красится, то H ′ =

Kd−1 ∨ H̃ = Kd−1. Но в H ′ вершины u и v не имеют общих соседей; в H̃ тоже что-то не так
(пойму позже)
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Лекция VII
3 октября 2022 г.

3.7 Паросочетания

Определение 3.7.1 (Паросочетание). Подмножество рёбер M ⊆ E, такое, что все рёбра не имеют
общих концов. Совершенное паросочетание — паросочетание, в котором участвуют все вершины.

Теорема 3.7.1 (Холл, 1935). В двудольном графе (G,V1, V2) существует паросочетание, покры-
вающее V1 ⇐⇒ ∀U ⊂ V1 :

(⋃
u∈U adju

)
⩾ |U |, где adju — множество вершин, смежных с u.

Очевидно, что для u ∈ V1 : adju ⊂ V2.

Доказательство.

⇒ очевидно: если есть паросочетание, насыщающее V1, то
(⋃

u∈U adju
)
⊂

(⋃
u∈U{pairu}

)
= |U |,

где pairu — соответствующая u вершина в паросочетании.

⇐ Докажем по индукции, по числу вершин в левой доле |V1|.

Предположим, что ∃U1 ⊊ V1 :
(⋃

u∈U1
{adju}

)
= |U1|.

Для U1 выполняется предположение индукции, есть паросочетание в подграфе, ин-

дуцированном на U1∪
(⋃

u∈U1
{adju}

)
. По условию теоремыW = V1\U1 :

(⋃
u∈(U1∪W ){pairu}

)
⩾

|V1| − |U1|. Так как
(⋃

u∈W {adju}
)
∩
(⋃

u∈U1
{adju}

)
= ∅, то

(⋃
u∈W {adju}

)
⩾ |W | и

по предположению индукции есть паросочетание, насыщающее и W1 тоже.

Иначе ∀U ⊂ V1 :
(⋃

u∈U adju
)
> |U |. Будем удалять из графа рёбра, пока это верно. В

какой-то момент наступит равенство, и можно будет применить предыдущее решение.

3.7.1 Паросочетания в графах общего вида

Назовём компоненту связности нечётной, если в ней нечётное количество вершин. Для U ⊂ VG

обозначим G\U — индуцированный на V \U подграф.

Теорема 3.7.2 (Татт, 1947). В графе G(V,E) есть совершенное паросочетание ⇐⇒ ∀U ⊂ V :
odd(G\U) ⩽ |U |, где odd(H) — количество нечётных компонент связности в H.

В частности, для U = ∅ : odd(G) = 0, то есть G состоит из нескольких компонент связности из
чётного количества вершин.

Доказательство.

⇒ В графе существует паросочетание ⇒ все компоненты связности чётного размера. После
удаления |U | вершин станет не более |U | нечётных компонент связности, так как нечётными
могли стать только компоненты, содержащие pairu для u ∈ U .

⇐ Предположим, что совершенного паросочетания нет. Рассмотрим Ĝ = (V, Ê) — такой граф,
где E ⊂ Ê, и Ê — максимально по размеру, и таково, что совершенного паросочетания всё
ещё нет. Иначе говоря, докинем рёбер, пока можно.

Покажем, что на деле в Ĝ есть совершенное паросочетание.

Положим U =
{
v ∈ V | degĜv = |V | − 1

}
— множество вершин, связанных со всеми в новом

графе Ĝ. Не исключено, что U = ∅.

Предложение 3.7.1. В графе Ĝ\U всякая компонента связности — полный граф.
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Доказательство. От противного: пусть есть C — компонента связности в Ĝ\U ,
не являющаяся полным графом. Тогда ∃u, v, w ∈ C :

(
(u,w) ∈ Ê

)
∧
(
(v, w) ∈ Ê

)
∧(

(u, v) /∈ Ê
)
. (Это упражнение читателю, верно для любой компоненты связности,

не являющейся полным графом).

Так как w /∈ U , то ∃p ∈ V1 : (p, w) /∈ Ê. По построению Ĝ при добавлении ребра
(p, w) появится совершенное паросочетание M1, а при добавлении ребра (u, v) по-
явится совершенное паросочетание M2. Посмотрим на рёбра из M1 ∪M2. Так как
оба паросочетания совершенны, то каждой вершине инцидентны по два ребра из
M1 ∪ M2, то есть рёбра формируют циклы чётной длины из чередующихся M1 и
M2 рёбер и изолированные рёбра, принадлежащие M1 ∩M2.

Так как в Ĝ нет совершенного паросочетания, то (u, v) и (w, p) лежат в одном и
том же цикле, образовавшемся на рёбрах M1 ∪M2 — иначе можно перекомбиниро-
вать паросочетания M1 и M2 так, что появится совершенное паросочетание на Ĝ.
Вспомним, что (w, u), (w, v) ∈ Ê. Можно заметить, что в таком случае паросочета-
ния всё ещё можно перекомбинировать так, чтобы по-прежнему быть полным, но не
использовать ни одно из рёбер (u, v) и (w, p). Противоречие с определением Ĝ

Зная устройство графа Ĝ, несложно построить в нём совершенное паросочетание — чётные
компоненты «замкнём» сами на себя, а к нечётным компонентам связности присоединим одну
вершину из U . Это возможно, так как по условию |U | ⩾ odd(Ĝ\U).

Теорема 3.7.3 (Берж, 1958). Наименьшее число вершин, непокрытых паросочетанием, равно де-

фекту графа d(G)
def
= max

U⊂V
(odd(G\U)− |U |).

Доказательство.

⇒. Рассмотрим максимальное паросочетание M . Оно оставляет непокрытыми m вершин. Оче-
видно, ∀U ⊂ V : odd(G\U) ⩽ |U | + m, так как в каждой нечётной компоненте связности
должна быть либо непокрытая M вершина, либо непарная — с соседом в U . Неравенство
перепишу как d(G) ⩽ m для любого паросочетания M .

⇐. Добавим в граф d(G) (d(G) — дефект графа) новых вершин {v1, . . . , vd(G)}, соединим каж-
дую из них со всеми вершинами из VG. Покажем, что полученный граф G′ удовлетво-
ряет условию теоремы Татта, то есть содержит совершенное паросочетание. Для всякого
U ′ ⊂ V ∪ {v1, . . . , vd(G)} рассмотрим два случая:

– {v1, . . . , vd(G)}\U ′ ̸= ∅. В таком случае G′\U ′ имеет ровно одну компоненту связности,
для U ′ = ∅ она ещё и чётная.

– Иначе {v1, . . . , vd(G)} ⊂ U ′. Тогда G′\U ′ = G\U для U = U ′\{v1, . . . , vd(G)}. Заметим,
что |U | = |U ′| − d(G). Применив определение d(G) = max

U⊂V
(odd(G\U)− |U |), получаем,

что d(G) ⩾ odd(G\U)− |U | = odd(G′\U ′)− (|U ′| − d(G)), то есть |U ′| ⩾ odd(G\U ′), что
и требовалось.

Итак, в графе G′ есть совершенное паросочетание. Выкинув вершины {v1, . . . , vd(G)} полу-
чаем в графе G паросочетание, оставляющее непокрытыми не более d(G) вершин. Но так
как всякое паросочетание оставляет непокрытыми хотя бы d(G) вершин (см. ⇒ .), то d(G) в
точности равно количеству вершин, оставленных непокрытыми максимальным паросочетани-
ем.

Определение 3.7.2 (k-регулярный граф). Граф, степень каждой вершины которого равна k.

Теорема 3.7.4 (Петерсон, 1981). Всякий 3-регулярный граф без мостов содержит совершенное
паросочетание.
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Доказательство. Применим теорему Татта. Для этого рассмотрим произвольное U ⊂ V . Утвер-
ждается, что нечётных компонент связности в G\U не более |U |. Пусть этих компонент k. Посчи-
таем количество рёбер, соединяющих вершины из U и нечётные компоненты извне.

С одной стороны, их не больше, чем 3|U | — сумма степеней вершин из U .

С другой стороны, их не меньше, чем 3k — каждая нечётная компонента связности должна иметь
хотя бы 3 ребра, соединяющих её и остальной граф. Этих рёбер должно быть нечётное число
(следует из нечётности каждой степени вершины), а ещё больше одного, так как граф без мостов.

Отсюда k ⩽ |U |, и теорема Татта применима.

Лекция VIII
10 октября 2022 г.

3.7.2 Устойчивое паросочетание

Рассмотрим полный двудольный граф G(V1, V2, E).

Зададим порядок < на множестве рёбер для каждой конкретной вершины v ∈ V1 ∪ V2.

Неформально говоря, считаем, что пара (u, v1) предпочтительнее для u, чем пара (u, v2), если
(u, v1) <u (u, v2).

Определение 3.7.3 (Устойчивое паросочетание M). Паросочетание M , такое, что не существует
ребра (v1, v2) ∈ E\M , для которого выполнены каждое из двух условий:

• (v1, v2) <v1 (v1,pairv1)

• (v2, v1) <v2 (v2,pairv2)

Теорема 3.7.5 (Гейл, Шепли, 1962). Во всяком полном двудольном графе G = (V1, V2, E), для
всяких предпочтений {<v}v∈V1∪V2

, |V1| = |V2| существует устойчивое паросочетание.

Доказательство.

Построим какое-то нас устойчивое паросочетание, запустив алгоритм:

Изначально паросочетание M пусто.

Заведём множество {Av}v∈V1
: Av ⊂ V2. Изначально ∀v ∈ V1 : Av = V2, потом множества будут

уменьшаться.

Можно думать об Av, как о множестве вершин из V2 = {v2,1, v2,2, . . . } таких, что ранее данной
стадии алгоритма ещё не было попытка провести ребро (v1, v2,i).

Пока паросочетание M не максимально по размеру, рассмотрим любую вершину v1 ∈ V1, не
насыщенную паросочетанием. Рассмотрим ребро (v1, u), где u — наиболее предпочтительная для v1
вершина среди Av1 и удалим вершину u из множества Av1 ; проведём это ребро если и только если
вершине u не инцидентно никакого ребра из текущего паросочетания, или же (u, v1) <u (u,pairu).

Алгоритм очевидно конечен (на каждом шаге
∑
v
|Av| уменьшается на 1), докажем его корректность:

Рассмотрим пару (v1, v2) ∈ E\M . Если (v1,pairv1) < (v1, v2), то пара не является причиной неустой-
чивости. Иначе (v1,pairv1) > (v1, v2) и в какой-то момент была попытка провести ребро (v1, v2), но
оказалась (раньше или позже) такая вершина v′1, что (v′1, v2) < (v1, v2). Тогда пара (v1, v2) тоже не
является причиной неустойчивости.

Свойства устойчивого паросочетания MGS (ниже pairx относится к паре x в данном паросочетании
MGS), найденного данным алгоритмом:

• В Kn,n образуется максимальное по размеру паросочетание |M | = n, которое является совер-
шенным.
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• Паросочетание «самое хорошее» для каждой v1 ∈ V1: пара (v1,pairv1) среди всех устойчивых
паросочетаний для v1 наиболее предпочтительная.

Доказательство.

Назовём пару (x, y) возможной, если ∃ стабильное паросочетание, в котором данная пара
входит в паросочетание.

Докажем от противного: пусть есть определённая возможная пара (x, y) ∈ V1 × V2 такая,
что ∄y′ ∈ V2 : (x, y′) <x (x, y), для возможной пары (x, y′), но (x, y) /∈ MGS . Существует
паросочетание M ′ ∋ (x, y).

Рассмотрим пары (x, pairx) ∈ M и (x, y) ∈ M ′. Пусть y′ — пара pairx в M ′, то есть ∃y′ :
(pairx, y

′) ∈ M ′. Из работы алгоритма GS следует, что (pairx, y
′) <y′ (x, pairx) и получаем

противоречие со стабильностью MGS .

• Паросочетание «самое плохое» для каждой v2 ∈ V2: пара (v2,pairv2) среди всех устойчивых
паросочетаний для v2 наименее предпочтительная.

3.8 Связность и разделяющие множества

Рассмотрим граф G = (V,E). Множество X ⊂ V назовём (V1, V2)-разделяющим, если в графе
G\X : ∀v1 ∈ V1\X;∀v2 ∈ V2\X нет пути из v1 в v2, то есть v1 и v2 лежат в разных компонентах
связности.

Теорема 3.8.1 (Геринг, 2000). Пусть V1, V2 ⊂ V ; k ∈ N. Тогда ровно одно из двух условий верно:

1. ∃U ⊂ V : |U | < k и U — (V1, V2)-разделяющее.

2. Существует по крайней мере k вершинно простых путей из V1 в V2, попарно не имеющих
общих вершин.

Доказательство.

• Если верно (2), то ¬(1) очевидно — надо удалить по крайней мере по одной вершине из
каждого пути.

• Докажем импликацию ¬(1) ⇒ (2).

По индукции:

База: k = |U | = 1, очевидна — из ¬(1) следует, что V1 и V2 не разделены пустым множеством,
то есть ∃(v1, v2) ∈ V1 × V2 : v1 и v2 соединены путём.

Переход: Пусть ∃V1, V2 ⊂ V такие, что ∀U ⊂ V : (U — (V1, V2)-разделяющее) ⇒ (|U | ⩾ k).
Будем считать, что |V1∩V2| < k, иначе k разделяющих путей уже нашлись — одновершинные.

Будем удалять рёбра из графа до тех пор, пока в новом графе противное предположение всё
ещё верно.

Теперь при удалении любого ребра (x, y) ∈ E′: появляется (V1, V2)-разделяющее множество
U : |U | < k. Отсюда видно, что до удаления (x, y) множество U ∪ {x} — разделяющее, равно
как и U ∪ {y}.

– В случае {U ∪ {x}, U ∪ {y}} = {V1, V2} в качестве k путей можно взять k − 1 одновер-
шинных путей V1 ∩ V2, а ещё ребро (x, y).

– В случае U ∪ {x} /∈ {V1, V2} возьмём W = U ∪ {x}. Иначе U ∪ {y} /∈ {V1, V2}, возьмём
W = U ∪ {y}. Теперь |W | = k, а ещё W /∈ {V1, V2}, но W — (V1, V2) разделяющее.

W — разделяющее ⇒ все пути от v ∈ V1 до w ∈ W не заходят в V2. Рассмотрим граф
G1 = G\(V2\W ). Граф уменьшился, так как V2\W ̸= ∅. Любое (V1,W )-разделяющее
множество в новом графе является (V1,W )-разделяющим и в старом, поскольку вершины
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из V2\W не лежат ни на каком пути из W в V1. Следовательно, в любом (V1,W )-
разделяющем множестве хотя бы k вершин.

По предположению индукции для графа G1 имеется k непересекающихся путей из V1 в
W .

Аналогичными рассуждениями есть k путей из V2 В W . Но |W | = k, значит, данные
пути можно «склеить» и получить k путей из V1 в V2.

Лекция IX
13 октября 2022 г.

Теорема 3.8.2 (Менгер, 1927). Пусть дан граф G = (V,E). Пусть a, b ∈ V . Тогда наименьшее
число вершин (a, b)-разделяющего множества (не включающего ни a, ни b) равно наибольшему
числу непересекающихся по вершинам (за исключением a и b) путей, соединяющих a и b.

Доказательство. Применить теорему Геринга к графу, индуцированному на V \{a, b}, и применить
к множествам соседей, adja и adjb.

Определение 3.8.1 (Вершинное покрытие). Такое множество вершин, что каждое ребро содержит
хотя бы одну их них (ребро рассматривается здесь, как множество инцидентных ей вершин).

Теорема 3.8.3 (Кёниг, 1931). Наибольшее число рёбер в паросочетании двудольного графа G
равно наименьшему числу вершин в вершинном покрытии.

Доказательство. Применим теорему Геринга к графу G и множествам, являющимися левой и пра-
вой долями. Наибольшее количество путей — наибольшее паросочетание. Наименьшее вершинное
покрытие — наименьшее разделяющее множество.

3.9 Рёберные раскраски

Для C — множества цветов

Определение 3.9.1 (Рёберная раскраска). Отображение c : C → E. Раскраска правильная, если
c(e) ̸= c(e′) для всех смежных рёбер e и e′.

Замечание. Для любого цвета c ∈ C множество рёбер цвета c образует паросочетание.

Теорема 3.9.1 (Кёниг, о раскраске рёбер). В двудольном графе G = (V1, V2, E) существует пра-
вильная раскраска рёбер в D цветов, где D = max

v∈V1∪V2

deg v.

Доказательство. Необходимость очевидна — у вершины степени D все инцидентные рёбра долж-
ны быть разноцветными.

Достаточность: зафиксируем D.

Будем доказывать по индукции, перебирая графы по параметру d = min
v∈V1∪V2

deg v.

• База: d = D, D-регулярный граф.

Для данного графа выполняется условие леммы Холла: ∀U ⊂ V1

⋃
u∈U

adju ⩾ |U | · |D|
|D| . Значит,

есть совершенное паросочетание.

Удалим его (предварительно покрасив в цвет D), останется D − 1-регулярный граф. В нём
покрасим паросочетание в цвет D − 1. И так D раз.

• Переход: d < D. Пусть G′ = (V ′
1 , V

′
2 , E

′) — копия G. Объединим G и G′ в один граф
G′′ = (V1∪V ′

2 , V2∪V ′
1 , E∪E′∪E0), где E0 = {(v, v′) | v ∈ V1 ∪ V2 ∧ v′ — копия v ∧ deg v = d}.
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В G′′ наибольшая степень вершины всё ещё D, а наименьшая — d + 1. По предположению
индукции G′′ красится D цветов, значит, индуцированный на V1∪V2 подграф G тоже красится
в D цветов.

Теорема 3.9.2 (Визинг, 1964). В произвольном графе существует раскраска рёбер в D + 1 цвет,
где D — наибольшая степень вершины.

Доказательство.

Лемма 3.9.1. Рассмотрим граф G = (V,E). Пусть v ∈ V . Тогда при условиях

deg v ⩽ k ∧ ∀u ∈ adjv : (deg u ⩽ k ∧ # {u ∈ adjv | deg u = k} ⩽ 1)

выполняется следующее: если рёбра графа G\{v} можно покрасить в k цветов, то и
рёбра графа G можно покрасить в k цветов.

Доказательство леммы.

Индукция по k.

База: k = 1. v — либо изолированная вершина, либо инцидентна изолированному ребру.

Переход: m := deg v; {u1, . . . , um} = adjv, причём deg u1 ⩽ k, ∀i = 2, . . . ,m : deg ui < k.

Рассмотрим c — раскраску G′ = G\{v} в цвета {1, . . . , k}.

Добавим в граф G′ новые рёбра от ui до новых вершин так, чтобы выполнялись равенства

deg ui =

{
k, i = 1

k − 1, i ⩾ 2
.

Обозначим Xi = {u ∈ adjv | В графе G′ вершине u не инцидентно рёбер цвета i}.

Зная степени вершин u1, . . . , um понимаем, что для u1 ∃!j : u1 ∈ Xj ; для ui (i ⩾ 2) :
∃!{j1, j2}, j1 ̸= j2 : ui ∈ Xj1 ∧ ui ∈ Xj2 .

Тогда
k∑

i=1

|Xi| = 2deg v − 1 = 2m− 1 < 2k.

Пусть ∃i, j : |Xi| > |Xj | + 2. Рассмотрим подграф G′
i,j графа G′, образованный рёбрами

цветов i и j. В G′
i,j всякая компонента связности — путь или чётный цикл с чередующи-

мися рёбрами цвета i и j. Все вершины, кроме Xi ∩Xj , не являются изолированными в
G′

i,j . Есть компонента связности в G′
i,j , в которой больше вершин из Xi, чем из Xj . Тогда

это простой путь, начинающийся с ребра цвета j в вершине из Xi, и не заканчивающийся
ребром цвета i в вершине из Xj . Поменяем в этом пути все вершины цвета i на вершины
цвета j и наоборот. Одно такое перекрашивание увеличивает |Xj | на k и уменьшает |Xi|
на k, где k — количество вершин из Xi на концах данного пути (1 или 2). Повторив это
сколько надо раз, получим: теперь для всех i, j : ||Xi| − |Xj || ⩽ 2.

Так как
k∑

i=1

|Xi| нечётна, то ∃i : |Xi| = 1, так как есть нечётный, меньший 2 (если все

хотя бы 2, то сумма хотя бы 2k).

Отсюда получается, что есть цвет i : |Xi| = 1. Пусть Xi = {ũ}. Всякой другой вер-

шине uj ̸= ũ инцидентно ребро цвета i в графе G′. Построим граф G̃ =
(
V ; Ẽ

)
, где

Ẽ = E\ ({(v, ũ)} ∪ {Рёбра цвета i в графе G′}). В графе G̃ степени v и всех её соседей
уменьшились на единицу ⇒ так как G̃\{v} красится в k − 1 цвет (той же раскраской,
что G′ красится в k цветов), то применимо индукционное предположение.
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А именно, G̃ красится в k − 1 цвет. Тогда вернём рёбра из EG\EG̃, покрасив их в цвет
k.

Для графа G = (V,E) обозначим D = max
v∈V

deg v. Пусть U ⊂ V . Докажем индукцией по |U |, что
рёбра графа, индуцированного на U , красятся в D + 1 цветов.

База: |U | = 1, рёбер нет, любая раскраска годится.

Переход: Пусть U = U ′⊔{v}. По предположению индукции рёбра между вершинами из U ′ красятся
в D цветов. Так как все степени вершин не превышают (на деле строго меньше) D+1, то по лемме
граф, индуцированный на U ′ тоже красится в D + 1 цвет.

3.9.1 Классы графа по отношению к теореме Визинга

1. Графы, рёбра которых красятся в D
def
= max

v∈V
deg v цветов.

Некоторые из них перечислены ниже:

• Двудольные графы.

• Планарные графы при D ⩾ 7.

• Почти все случайные графы

2. Графы, рёбра которых не красятся в D
def
= max

v∈V
deg v цветов. Однако, по теореме Визинга,

они красятся в D + 1 цвет. Некоторые из них перечислены ниже:

• Некоторые планарные графы для D ⩽ 5.

Замечание. Вопрос, существует ли планарный граф с максимальной степенью вершин D = 6,
рёбра которого красятся только в D + 1 цвет, является открытым.

Замечание. Алгоритм проверки, принадлежит ли данный граф первому классу, является NP -
полной задачей.

Лекция X
17 октября 2022 г.

3.10 Теория Рамсея

3.10.1 Числа Рамсея

Поиск регулярной структуры в, казалось бы, хаотическом устройстве.

Так, в полном графе на шести вершинах есть либо треугольник, либо антитреугольник.

Рассмотрим гиперграф, в котором гиперрёбра соответствуют каждому множеству из k человек,
всякое гиперребро может быть двух цветов (знакомы-незнакомы).

Рассмотрим множество M мощности N . Пусть есть произвольная покраска всех k-элементных
подмножеств M в d цветов.

Определение 3.10.1 (Свойство Рамсея). N обладает свойством Рамсея R(k|m1, . . . ,md), если для
всякой раскраски M найдётся какое-то подмножество A ⊂ M такое, что все его k-элементные
подмножества покрашены в один и тот же из k цветов (пусть это цвет c), и ещё |A| = mc.

Определение 3.10.2 (Число Рамсея). R(k;m1, . . . ,md) — наименьшее натуральное число, удовле-
творяющее свойству Рамсея R(k|m1, . . . ,md).
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Пример: R(2; 3, 3) = 6. Можно проверить, например, полным перебором (проверить, что 6 обладает
свойством R(2|3, 3), а все меньшие натуральные числа — нет).

Теорема 3.10.1 (Рамсей, 1930). R(k;m1, . . . ,md) существует (и конечно) для данных параметров
k,m1, . . . ,md.

Доказательство.

• Найдём явно R(1;m1, . . . ,md). Здесь красятся одноэлементные подмножества. По принципу

Дирихле
(

d∑
i=1

mi

)
− d + 1 обладает свойством Рамсея R(1|m1, . . . ,md). С другой стороны,

все меньшие числа не обладают свойством — контрпримером является mi − 1 вершин цвета

i для
(

d∑
i=1

mi

)
− d, или сужение раскраски на меньшее множество.

• Если min
1⩽i⩽d

mi < k, то R(k;m1, . . . ,md) = min
1⩽i⩽d

mi. Достаточно выбрать подмножество мощ-

ности min
1⩽i⩽d

mi: в нём все k-элементные подмножества имеют необходимый цвет (так как их

нет).

• Будем доказывать существование чисел Рамсея индукцией, в порядке лексикографического

возрастания
(
k;

d∑
i=1

mi

)
.

Считаем, что min
1⩽i⩽d

mi ⩾ k. Обозначим Qi = R(k|m1, . . . ,mi − 1, . . . ,md). Эти числа суще-

ствуют по индукционному предположению.

Тогда утверждается, что R(1;m1, . . . ,md) ⩽ 1+R(k−1|Q1, . . . , Qd). Обозначим данную оценку
сверху N := R(k − 1|Q1, . . . , Qd).

Покажем, что N обладает свойством Рамсея R(k|m1, . . . ,md): рассмотрим множество MN =
{1, . . . , N} и произвольную покраску его k-элементных подмножеств в d цветов. Построим
другую покраску другого множества MN−1{1, . . . , N − 1}: красить теперь будем (k − 1)-
элементные подмножества. Подмножество A ⊂ MN−1 покрасим в тот же цвет, что и A∪{N}
покрашено в множестве MN .

Но так как |MN−1| = R(k|Q1, . . . , Qd), то существует B ⊂ MN−1 : |B| = Qi, в котором все
(k − 1) элементные подмножества имеют цвет i. Но по определению Qi = R(k|m1, . . . ,mi −
1, . . . ,md). Значит, в B содержится, как подмножество

– либо для некоего j ∈ {1, . . . , d}\{i} подмножество мощности mj , все k-элементные
подмножества которого имеют цвет j.

– либо подмножество мощности mi − 1, все k-элементные подмножества которого имеют
цвет i. Пусть оно C, тогда C ∪ {N} таково, что все его k-элементные подмножества
имеют цвет i.

Некоторые оценки на числа Рамсея

Назовём R(n,m) = R(2|n,m).

Теорема 3.10.2 (Верхняя оценка числа Рамсея). R(n,m) ⩽
(
n+m−2
n−1

)
.

Доказательство.

Из доказательства теоремы Рамсея, имеем R(2;n,m) ⩽ 1 + R(1|R(2, n − 1,m), R(2, n,m − 1)) =
R(n− 1,m) +R(n,m− 1).

Тогда из индукции действительно
(
n+m−2
n−1

)
⩽

(
n+m−3
n−2

)
+

(
n+m−3
n−1

)
(вообще говоря, в формуле ра-

венство).
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Следствие 3.10.1. Асимптотическими оценками на биномиальные коэффициенты, получаем

R(n, n) ⩽ (1 + o(1))
4n−1

√
2πn

Теорема 3.10.3 (Нижняя оценка на числа Рамсея).

R(n, n) ⩾ 2
n/2

Доказательство. Рассмотрим n ⩾ 3. Пусть N < 2n/2. Различных графов на N вершинах 2
N(N−1)

2 .
Ребро проведено — первый цвет, ребра нет — второй цвет.

Покажем, что графов на N вершинах, содержащих клику на n вершинах, строго меньше, чем
2

N(N−1)
2

2
. Тогда очевидно, что графов, содержащих антиклику такое же количество, откуда есть

граф на N вершинах, не содержащий ни того, ни другого.

Оценка на количество графов на N вершинах, содержащих клику на n вершинах:

Для данных n вершин есть 2
N(N−1)

2 −n(n−1)
2 графов, в которых эти n вершин — клика. Но тогда

всего графов размера N , содержащих клику(
N

n

)
· 2

N(N−1)
2 −n(n−1)

2 <
Nn

n!
· 2

N(N−1)
2 −n(n−1)

2

При N < (n!)
1
n · 2n−1

2 − 1
n это действительно меньше, чем 2N(N−1)/2. Так как n! > 2n/2+1 для n ⩾ 3,

то N = ⌊2n/2⌋ подойдёт.

Открытая задача: для каких λ верна асимптотическая оценка R(n, n) > λn+o(n)?

Применение чисел Рамсея

Теорема 3.10.4 (Шур, 1917). Если натуральный ряд покрашен в конечное число цветов, то урав-
нение x+ y = z имеет одноцветное решение.

Доказательство.

Рассмотрим полный граф, построенный на множестве вершин N. Ребро (i, j) покрасим в цвет
|i − j|. По теореме Рамсея, в этом графе найдётся одноцветный треугольник, то есть a < b < c :
b− a, c− b, c− a одного цвета, откуда нашлось решение в виде (c− a) = (c− b) + (b− a).

Теорема 3.10.5 (Фолькман — Радо — Сандерс). Для натурального ряда, покрашенного в конечное
количество цветов, найдётся сколь угодно большое конечное подмножество, такое, что суммы всех
его подмножеств имеют один и тот же цвет.

Теорема 3.10.6 (Hindman, 1974). Для натурального ряда, покрашенного в конечное количество
цветов, найдётся бесконечное подмножество, такое, что суммы всех его конечных подмножеств
имеют один и тот же цвет.

Лекция XI
24 октября 2022 г.

Теорема 3.10.7. Для любого k ∈ N : ∃n ∈ N : среди любых n точек общего положения найдутся
k, образующих вершины выпуклого многоугольника.

Доказательство.
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Факт 3.10.1. Среди любых 5 точек общего положения найдётся 4, формирующих
вершины выпуклого четырёхугольника.

Доказательство. Пусть выпуклая оболочка данного набора точек содержит всего 3 точ-
ки, формируют треугольник ABC. Тогда остальные две лежат внутри, посмотрим на
прямую, проходящую через эти две точки.

Факт 3.10.2. Если в наборе из n ⩾ 4 точек любые 4 формируют вершины выпук-
лого четырёхугольника, то все точки являются вершинами некоего выпуклого n-
угольника.

Доказательство. От противного: пусть есть точка P , лежащая внутри выпуклой обо-
лочки данного набора точек. Тогда есть треугольник, содержащий данную точку, проти-
воречие.

В качестве подходящего n рассмотрим R(4|5, k). Здесь в первый цвет красятся четвёрки точек в
невыпуклом положении, а во второй цвет — четвёрки точек в выпуклом положении.

Используя доказанные факты видим, что не может найтись пяти точек, любые 4 из которых в
невыпуклом положении. Отсюда найдутся k точек, любые 4 из которых в выпуклом положении. То
есть по сути все точки, среди данных k, формируют вершины некоего выпуклого k-угольника.

3.10.2 Числа ван дер Вардена

Теорема 3.10.8 (Ван Дер Варден, 1927). Пусть натуральный ряд раскрашен в конечное количество
цветов, c цветов. Утверждается, что для данного k ∈ N определено число ван дер Вардена W (k, c),
такое, что среди первых W (k, c) натуральных чисел найдётся одноцветная прогрессия длины k.

Доказательство.

• Спойлер: все пункты данного списка, кроме последнего, бесполезны.

• W (1, c) = 1 — ищем арифметическую прогрессию длины 1.

• W (k, 1) = k — ищем арифметическую прогрессию длины k, один цвет.

• W (2, c) = c + 1 — ищем арифметическую прогрессию длины 2, по сути, два одноцветных
элемента.

• W (3, 2)−?. Перебор показывает, что это 9, докажем без перебора худшую оценку.

Лемма 3.10.1. Рассмотрим блок из пяти подряд идущих чисел B = {n, n + 1, . . . , n + 4}.

Утверждается, что существуют a, d :


d > 0

{a, a+ d, a+ 2d} ⊂ B

χ(a) = χ(a+ d)

.

Доказательство. Среди первых трёх {n, n + 1, n + 2} есть два одноцветных, возьмём их в
качестве a и a+ d.

Разобьём натуральный ряд на блоки размера 5 : (1, 2, 3, 4, 5), (6, 7, 8, 9, 10), . . .

Лемма 3.10.2. Среди 165 = 5 · (25 + 1) подряд идущих чисел найдутся два оди-
наково раскрашенных блока Bi, Bj , раскрашенных одинаково:

Bi = {5i+ 1, . . . , 5i+ 5}; Bj = {5j + 1, . . . , 5j + 5};


χ(5i+ 1) = χ(5j + 1)
...
χ(5i+ 5) = χ(5j + 5)
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Доказательство. По принципу Дирихле.

Используя (лемма 3.10.2), найдём два одинаково раскрашенных блока Bi, Bj (i < j) среди
первых 165 натуральных чисел.

Согласно (лемма 3.10.1), найдутся a, d: χ(5i + a) = χ(5i + a + d). Если ещё и χ(5i + a) =
χ(5i + a + 2d), то одноцветная прогрессия нашлась. Значит, элемент χ(5i + a + 2d) другого
цвета. Тогда либо χ(5i+ a), χ(5j + a+ d), χ(5(2j − i) + a+2d), либо χ(5i+ a+2d), χ(5j + a+
2d), χ(5(2j − i) + a+ 2d) формируют одноцветную прогрессию.

Так как 5(2j − a) + (a+ 2d) ⩽ 5(2 · 32− 0) + 5 = 325, то мы получили оценку W (3, 2) ⩽ 325.

• W (3, 3)−?. Перебор показывает, что это 27; докажем без перебора худшую оценку.

Лемма 3.10.3. Рассмотрим блок из семи подряд идущих чисел B = {n, n + 1, . . . , n + 6}.

Утверждается, что существуют a, d :


d > 0

{a, a+ d, a+ 2d} ⊂ B

χ(a) = χ(a+ d)

.

Доказательство. Среди первых четырёх {n, n+1, n+2, n+3} есть два одноцветных, возьмём
их в качестве a и a+ d.

Разобьём натуральный ряд на блоки размера 7 : (1, 2, 3, 4, 5, 6, 7), (8, 9, 10, 11, 12, 13, 14), . . .

Лемма 3.10.4. Среди 889 = 7 · (27+1) чисел найдутся два одинаково раскрашен-
ных блока Bi, Bj , раскрашенных одинаково:

Bi = {7i+ 1, . . . , 7i+ 7}; Bj = {7j + 1, . . . , 7j + 7};


χ(7i+ 1) = χ(7j + 1)
...
χ(7i+ 7) = χ(7j + 7)

Доказательство. По принципу Дирихле.

Согласно (лемма 3.10.3), найдутся a, d: χ(7i + a) = χ(7i + a + d). Если ещё и χ(7i + a) =
χ(7i+a+2d), то одноцветная прогрессия нашлась. Значит, считаем, что элемент χ(7i+a+2d)
другого цвета.

Среди 7 · (2 · 27 +1) = 1771 натуральных чисел мы знаем, что χ(7i+ a) = χ(7j+ a+ d); кроме
того, χ(7i + a + 2d) = χ(7j + a + 2d), а ещё эти цвета разные. Таким образом, мы нашли
две арифметические прогрессии, имеющие общую точку цвета 3, цветовых типов (1, 1, 3) и
(2, 2, 3).

Пусть U = 1771. Разобьём первые W натуральных чисел на блоки из U подряд идущих (W
определим позднее). Каждый такой блок может быть раскрашен не более, чем 3U способами.
Рассмотрим раскраску

⌊
W
U

⌋
блоков, каждый блок длины U .

Хотим, чтобы нашлись два одинаковых блока, для этого возьмём W = U · (3U + 1). Эти два
блока, Bi и Bj (i < j) каждый содержат арифметические прогрессии цветовых типов (1, 1, 3)
и (2, 2, 3) с общей точкой цвета 3. Пусть данные прогрессии с общей точкой имеют индексы
внутри блоков a, d, g и e, f, g соответственно.

Теперь надо увидеть, что среди 2W чисел точно найдётся одноцветная прогрессия длины 3.
Ну, посмотрим, какого цвета точка (2j − i)U + g.

– Если цвета 1, то нашли прогрессию iU + a, jU + d, (2j − i)U + g.

– Если цвета 2, то нашли прогрессию iU + e, jU + f, (2j − i)U + g.

– Если цвета 3, то нашли прогрессию iU + g, jU + g, (2j − i)U + g.
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Получили оценку W (3, 3) ⩽ 2W = 2U · (3U + 1) = 2 · 1771 · (31771 + 1).

• W (4, 2)−?. Перебор показывает, что это 35; докажем без перебора худшую оценку (её я не
смогу привести в численном виде, так как она основана на оценке на число W (3, 22W (3,2))).

Разобьём натуральный ряд на блоки длины U := 2W (3, 2). По определению W (3, 2) в каждом
таком блоке есть одноцветная прогрессия длины 3. В блоке длины U есть прогрессия длины
4 цветового типа (1, 1, 1, 2).

По определению W (3, 2U ) среди U ·W (3, 2U ) натуральных чисел найдутся три блока длины
U , имеющих один тип, да ещё и формирующих прогрессию.

Пусть это блоки i < j < k; пусть индексы прогрессии типа (1, 1, 1, 2) — это a, b, c, d.

Тогда одноцветную арифметическую прогрессию формируют либо

iU + a, jU + b, kU + c, (2k − j)U + d, либо iU + d, jU + d, kU + d, (2k − j)U + d

Получили оценку W (4, 2) ⩽ 2(U ·W (3, 2U )) ⩽ 4W (3, 2) ·W (3, 22W (3,2)) (дополнительное до-
множение на двойку нужно для того, чтобы (2k − j) попало внутрь).

• Общий случай. . .

Зафиксируем k, c ∈ N, оценим сверху W (k, c). Будем действовать по индукции, по k.

База: k = 1, убедились, что W (1, c) = 1.

Переход: Зафиксируем c. Считаем, что W (k − 1, c) уже ограничено сверху для любого c.

Лемма 3.10.5. Для всякого n ∈ N найдётся такое U(n) : во всякой раскраске в
c цветов {1, . . . , U(n)}:

если нет n прогрессий длины k, имеющих общую точку цвета n + 1, таких,
что i-я из них имеет цветовой тип (i, . . . , i︸ ︷︷ ︸

k−1

, n + 1), то найдётся одноцветная

прогрессия длины k. Иными словами — если нет структуры, где в каждой из
n прогрессий сначала идут k − 1 число одного цвета, а потом число другого
цвета (общее для всех прогрессий), причём цвета чисел в начале разные для
всех n прогрессий — то найдётся одноцветная прогрессия длины k.

Доказательство леммы.

По индукции, по n.

База: n = 1. Здесь U(n) = 2W (k−1, c): среди такого количества чисел найдётся од-
ноцветная прогрессия длины k−1 в первой половине. Если её k-й элемент окажется
такого же цвета, то следствие импликации верно. Иначе не выполнится посылка —
на самом деле нашлась одна (n = 1) прогрессия, имеющая нужный цветовой тип и
общую точку в конце (прогрессия одна, все точки общие).

Переход: Здесь U(n) = 2U(n − 1) ·W (k − 1, cU(n−1)). Разобьём эти U(n) чисел на
блоки размера U(n− 1).

Возьмём первую половину, первые W (k−1, cU(n−1)) из них. Там найдётся арифмети-
ческая прогрессия из k−1 такого блока, причём блоки, входящие в эту прогрессию,
будут полностью совпадать по цвету.

Если в этих блоках в каждом есть прогрессия длины k, то мы нашли прогрессию
длины k среди U(n) чисел. Иначе в каждом таком блоке есть одинаковые структуры
из n− 1 прогрессии с общей конечной точкой. Пусть это блоки i1, . . . , ik−1.

Пусть j-я прогрессия внутри каждого блока индексируется idxj,1, . . . , idxj,k−1︸ ︷︷ ︸
цвета j

, idxj,k.

idxj,k одинаковы для всех j. Обозначим их общее значение idxk
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Тогда заметим структуру для n арифметических прогрессий с общей точкой в конце:
i-я прогрессия имеет вид{

U(n− 1) · i1 + idxj,1, . . . , U(n− 1) · ik−1 + idxj,k−1, U(n− 1) · ik + idxj,k, j < n

U(n− 1) · i1 + idxk, . . . , U(n− 1) · ik−1 + idxk, U(n− 1) · ik + idxk, j = n

Несложно убедиться, что все эти прогрессии имеют разные цвета в начале и общую
точку в конце.

Применим лемму для n = c. Получим условие, что если среди {1, . . . , U(c)} нет структуры,
состоящей из n прогрессий с разными цветами в начале и общей точкой другого цвета в
конце — а их действительно нет, для такой структуры нужен как минимум n+ 1 цвет — то
найдётся одноцветная прогрессия длины k.

Теорема 3.10.9 (Семереди, 1975). Для любой плотности δ ∈ (0; 1) и любого k ∈ N имеется число
N(k, δ): любое подмножество {1, . . . , N(k, δ)} мощности ⌊δ · N(k, δ)⌋ содержит арифметическую
прогрессию длины k.
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