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Глава 1

База топологии

Лекция I
8 ноября 2022 г.

1.1 Метрические пространства

Рассмотрим произвольное множество X. Введём на нём метрику d : X ×X → R⩾0, удовлетворяю-
щую некоторым тождествам:

∀x, y ∈ X : ad(x, y) = 0 ⇐⇒ x = y (1.1)

Симметричность:
∀x, y ∈ X : d(x, y) = d(y, x) (1.2)

Неравенство треугольника:

∀x, y, z ∈ X : d(x, y) + d(y, z) ⩾ d(x, z) (1.3)

Определение 1.1.1 (Метрическое пространство). Пара (X, d), где d удовлетворяет трём вышепе-
речисленным аксиомам.

При проверке, что некая функция действительно является метрикой, сложности чаще всего вы-
зывает проверка третьей аксиомы, неравенства треугольника. Скорее всего, проверки остальных
двух аксиом я буду опускать.

1.1.1 Примеры метрических пространств

• Дискретная метрика может быть введена на любом множестве X : d(x, y) =

{
0, x = y

1, x ̸= y
.

• Для X = Rn манхеттенская метрика d(x, y) =
n∑

i=1

|xi − yi|.

• Для X = Rn шахматная метрика (метрика Чебышёва) d(x, y) =
n

max
i=1

|xi − yi|.

• Для X = C[0; 1] — множества непрерывных функций [0; 1] → R — можно задать метрику
d(x, y) = max

t∈[0;1]
|x(t)− y(t)|. Данная метрика вместе с C[0; 1] образуют пространство непре-

рывных функций (X, d).
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• Для X = Rn евклидова метрика d(x, y) =

√
n∑

i=1

(xi − yi)2. Проверим, что для евклидовой

метрики выполняется неравенство треугольника:

Теорема 1.1.1 (Прямое произведение метрических пространств). Пусть (X1, d1) и (X2, d2)
— метрические пространства. Тогда функция d : (X1 ×X2)× (X1 ×X2) → R⩾0, определённая
d((A1, A2), (B1, B2)) =

√
d1(A1, B1), d2(A2, B2), задаёт метрику на X1 ×X2.

Доказательство.

Проверим неравенство треугольника: рассмотрим (A1, A2), (B1, B2), (C1, C2) ∈ X1 ×X2.

Обозначим ai = di(Bi, Ci), bi = di(Ai, Ci), ci = di(Ai, Bi).

Используя свойства неравенств треугольника для d1 и d2, получаем√
c21 + c22 ⩽

√
(a1 + b1)2 + (a2 + b2)2

Рассмотрим на плоскости треугольник с координатами вершин (0, 0), (b1, b2), (a1 + a2, b1 + b2).
Неравенство треугольника для него выглядит√

(a1 + b1)2 + (a2 + b2)2 ⩽
√
a21 + a22 +

√
b21 + b22

Дальше, по транзитивности, получаем
√
c21 + c22 ⩽

√
a21 + a22 +

√
b21 + b22, откуда в самом деле

d является метрикой.

Следствие 1.1.1. На произведении n пространств X1 × · · · ×Xn аналогичная функция

d((a1, . . . , an), (b1, . . . , bn)) =

√√√√ n∑
i=1

di(ai, bi)

также является метрикой.

Замечание. Также иногда рассматривают метрику на прямом произведении пространств
d((a1, a2), (b1, b2)) = max{d1(a1, b1), d2(a2, b2)}. Проверить, что данная функция тоже явля-
ется метрикой, довольно просто.

• Определение 1.1.2 (Сужение метрического пространства). Метрическое пространство (X, d)
можно сузить на Y ⊂ X, метрикой будет d

∣∣
Y×Y

.

Определение 1.1.3 (Открытый шар в метрическом пространстве (X, d) с центром в a ∈ X и
радиусом r > 0). Br(a) = {x ∈ X | d(a, x) < r}.

Определение 1.1.4 (Замкнутый шар в пространстве (X, d) с центром в a ∈ X и радиусом r > 0).
Br(a) = {x ∈ X | d(a, x) ⩽ r}.

По умолчанию все шары открыты.

Определение 1.1.5 (Сфера в метрическом пространстве (X, d) с центром в a ∈ X и радиусом
r > 0). Sr(a) = {x ∈ X | d(a, x) = r}.

Определение 1.1.6 (Расстояние от точки a ∈ X до подмножества A ⊂ X). inf {d(x, a) | x ∈ A}

Определение 1.1.7 (Окрестность множества A ⊂ X с радиусом r). Ur(A) = {x ∈ X | d(x,A) < r}.

Определение 1.1.8 (Диаметр множества A ⊂ X). diam(A) = sup {d(x, y) | x, y ∈ X}.

Если diam(A) < ∞, то множество называют ограниченным.

Несложно проверить, что условие ограниченности эквивалентно тому, что множество лежит в
некотором (открытом) шаре.
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Определение 1.1.9 (Множество A ⊂ X открыто). Любая точка a ∈ A содержится в A вместе с
некоторым своим шаром:

∀a ∈ A : ∃r > 0 : Br(a) ⊂ A

Факт 1.1.1. Множество A открыто, если оно представимо, как объединение множества от-
крытых шаров. A =

⋃
α∈Λ

Brα(xα).

Доказательство.

⇒. Возьмём для каждой точки шар, с которым она содержится в множестве, и объединим их
всех.

⇐. Для каждой точки x из шара S подойдёт шар радиусом r(S) − d(x, c(S)), проверяется нера-
венством треугольника.

Следствие 1.1.2. Открытый шар открыт.

Замечание. В метрике (X, d) X и ∅ открыты.

В дискретной метрике (все расстояния целые) (X, d) любое одноэлементное множество открыто.
Достаточно рассмотреть шар радиусом 1/2.

Теорема 1.1.2. Объединение открытых множеств открыто. Пересечение конечного числа откры-
тых множеств открыто.

Доказательство.

• Очевидно из определения через объединение шаров

• Всякая точка a ∈ A лежит вместе с шаром радиуса min(r1, . . . , rn), где ri — радиус открытого
шара с центром в a, содержащегося в Ai.

Замечание. [0; 1] =
⋂(

− 1
n ; 1 +

1
n

)
— пересечение бесконечного числа открытых множеств может

не быть открыто.

Предложение 1.1.1. Все открытые множества на прямой — дизъюнктные объединения ин-
тервалов.

Доказательство.

Заметим, что Br(x) = (x− r;x+ r).

Для каждой точки можно найти максимальный по включению интервал, содержащийся в множе-
стве, и содержащий данную точку.

Любые два таких интервала либо уж не пересекаются, либо уж совпадают.

1.2 Топологические пространства

Пусть X — произвольное множество. Рассмотрим Ω ⊂ 2X , такое, что

∅ ∈ Ω; X ∈ Ω

∀U ⊂ Ω :
⋃

U ∈ Ω

∀U ⊂ Ω : (|U | < ∞ ⇒
⋂

U ∈ Ω)

Тогда будем говорить, что Ω — топологическая структура (топология) на множестве X.

Определение 1.2.1 (Топологическое пространство (X,Ω)). Множество X с заданной на нём то-
пологией Ω.

В топологических пространствах элементы Ω называют открытыми множествами.
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1.2.1 Примеры топологических пространств

• Для метрического пространства (X, d) определяют индуцированное метрикой d топологи-
ческое пространство (X,Ωd) где Ωd — множество подмножеств X, метрически открытых в
X.

Так, на прямой R при рассмотрении дискретной метрики d(x, y) =

{
1, x ̸= y

0, x = y
, или стандарт-

ной метрики d(x, y) = |x− y|, получаются различные топологические пространства.

Дискретную метрику можно определить на любом множестве, породится дискретная тополо-
гия Ω = 2X .

• Антидискретная топология Ω = {∅, X}.

• Определение 1.2.2 (Топология стрелки). : (R,Ω), где Ω =
{
(a; +∞)

∣∣∣a ∈ R
}
∪ {∅,R}.

Замечание. Пространство при Ω =
{
[a; +∞)

∣∣∣a ∈ R
}
∪{∅,R} не удовлетворяет второй аксио-

ме.

• Топология конечных дополнений: для произвольного X : Ω =
{
A ⊂ X

∣∣∣|X\A| < ∞
}
.

• На двухточечном множестве {0, 1} есть 4 различные топологии, из них интересна (может
быть?) топология Ω = {∅, {0}, {0, 1}} (или {∅, {1}, {0, 1}}, неважно).

Определение 1.2.3 (Замнкутое множество). Множество с открытым дополнением

Теорема 1.2.1. Для топологического пространства (X,Ω)

∅, X замкнуты

пересечение замкнутых множеств замкнуто

объединение конечного числа замкнутых множеств замкнуто

Доказательство. Следует из формулы двойственности де Моргана.

1.2.2 Примеры замкнутых множеств

• В дискретной метрике все множества замкнуты, так как все (их дополнения) открыты.

• На прямой R со стандартной метрикой отрезки [a, b] и точки {a} замкнуты.

• Хорошего вида у замкнутых множеств нет: так, Канторово множество замкнуто.

Определение 1.2.4 (Канторов множество). Строится итеративно:

1. Берём отрезок [0; 1].

2. Вырезаем из него средний интервал, равный трети длины (1/3; 2/3).

3. Осталось два отрезка, [0; 1/3] и [2/3; 1]. Опять вырезаем из каждого средний интервал,
равные трети длины.

4. И так далее: можно доказать по индукции, что на очередном шагу будет некоторое
конечное множество непересекающихся отрезков.

Канторово множество замкнуто, так как можно взять последовательность надмножеств Кан-
торова множества, появляющихся в определении (каждое замкнуто) и взять их пересечение.

• Точка и вообще замкнутый шар замкнуты в любом метрическом пространстве.

Доказательство. Несложно проверить.
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Факт 1.2.1. Для топологического пространства (x,Ω) U\F = U ∩ F открыто, где U — от-
крыто, F — замкнуто.

Факт 1.2.2. Для топологического пространства (x,Ω) F\U = F ∩ U замкнуто, где U — от-
крыто, F — замкнуто.

1.3 Метрики и топологии

Определение 1.3.1 (Метризуемое топологическое пространство (X,Ω)). Существует метрика d : X ×X → R,
такая, что Ω = Ωd.

Дискретная топология метризуема, порождается дискретной метрикой.

Факт 1.3.1. Для X : |X| > 1 антидискретная топология не является метризуемой.

Доказательство. Так как |X| > 1, то ∃x, y ∈ X : B d(x,y)
2

(x) содержит x, но не содержит y.

Факт 1.3.2. Стрелка (определение 1.2.2) тоже не метризуема.

Доказательство. Найдётся два непустых непересекающихся шара, но в стрелке любе два непу-
стых открытых множества пересекаются.

Факт 1.3.3. Топология конечных дополнений метризуема ⇐⇒ множество X конечно.

Доказательство. |X| < ∞ — топология дискретна.

|X| ⩾ ∞ — неметризуема по той же причине, что и стрелка, любые два открытых пересекаются

1.4 Сравнение метрик и топологий

Пусть на множестве X заданы две различные топологии Ω1 и Ω2, причём Ω1 ⊆ Ω2. Говорят, что
Ω1 слабее (грубее) Ω2, или же Ω2 сильнее (точнее) Ω1.

Из определения видно, что дискретная топология — самая сильная, а антидискретная — самая
слабая.

Теорема 1.4.1. Для множества X с двумя метриками d1 и d2 топология Ωd1 слабее Ωd2 , если и
только если

∀Bd1
r1 (a) : ∃r2 : Bd1

r1 (a) ⊇ Bd2
r2 (a)

Доказательство.

⇒. Рассмотрим шар Bd1
r1 (a). Он открыт в первой топологии, но первая — слабее, значит, открыт

во второй. Значит, ∃r2 : Bd1
r1 (a) ⊇ Bd2

r2 (a)

⇐. Для множества U , открытого в первой топологии, найдётся объединению шаров в первой
топологии, равное ему.

Из условия теоремы каждый такой шар содержит шар во второй метрике. Объединив их все,
получим, что U открыто во второй топологии.

Лекция II
15 ноября 2022 г.

Следствие 1.4.1. Для двух метрик d1 и d2, определённых на одном и том же множестве X,
условие ∀x, y ∈ X : d1(x, y) ⩽ d2(x, y) влечёт условие: топология (X, d1) грубее топологии
(X, d2).

Определение 1.4.1 ((Топологически) эквивалентные метрики). Метрики, порождающие одно и то
же топологическое пространство.
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Замечание. Для C ∈ R>0 и метрики d1 : X × X → R⩾0 функция Cd1 — тоже метрика, причём
эквивалентная d1.

Доказательство. Рассмотреть шары.

Замечание. Метрика d1 грубее метрики d2, если ∃C > 0 : ∀x, y : d1(x, y) ⩽ C · d2(x, y).

Доказательство. Cd2 эквивалентна d2 и точнее d1.

Определение 1.4.2 (Липшицево эквивалентные метрики d1 и d2). Такие метрики, что ∃c, C > 0 :
∀x, y ∈ X : c · d2(x, y) ⩽ d1(x, y) ⩽ C · d2(x, y).

Замечание. Липшицева эквивалентность влечёт топологическую эквивалентность. Обратное в об-
щем случае неверно: метрики |x− y| и

√
|x− y| на R эквивалентны лишь топологически.

Так, на прямом произведении множеств метрики

d((A1, A2), (B1, B2)) =
√
d1(A1, B1)2 + d2(A2, B2)2.d̃((A1, A2), (B1, B2)) = max d1(A1, B1)

2, d2(A2, B2)
2.

билипшицево эквивалентны (что такое билипшицево эквивалентны? Тем не менее, просто липши-
цева эквивалентность понятна). Более точно, ∀x, y : d̃(x, y) ⩽ d(x, y) ⩽

√
2d̃(x, y).

На обычной плоскости R2 метрики √
(x1 − x2)2 + (y1 − y2)2

max{|x1 − x2|, |y1 − y2|}
|x1 − x2|+ |y1 − y2|

липшицево эквивалентны. Коэффициенты не превосходят 2.

1.5 Специальные точки множеств в топологии

Рассмотрим произвольную топологию (X,Ω).

1.5.1 Внутренность множества. Внутренние точки

Определение 1.5.1 (Внутренность множества A). Наибольшее по включению открытое множе-
ство, содержащееся в A, как подмножество.

Замечание. Существование следует из того, что объединение любого количества открытых мно-
жеств открыто.

Свойства внутренности

• IntA ⊂ A

• Для открытого B : B ⊂ A ⇒ B ⊂ IntA.

• A = IntA ⇐⇒ A открыто.

• Int(IntA) = IntA.

• A ⊂ B ⇒ IntA ⊂ IntB.

• Int(A ∩B) = IntA ∩ IntB.

Доказательство.

⊆ A ∩B ⊆ A ⇒ Int(A ∩B) ⊆ IntA.

⊇
IntA ⊆ A

IntB ⊆ B

}
⇒ IntA ∩ IntB ⊆ A ∩B

Int∩ Int открыто⇒ IntA ∩ IntB ⊆ Int(A ∩B).
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• Int(A ∪B) ⊃ IntA ∪ IntB

Доказательство.

⊇
IntA ⊆ A

IntB ⊆ B

}
⇒ IntA ∪ IntB ⊆ A ∪B

Int∪ Int открыто⇒ IntA ∪ IntB ⊆ Int(A ∪B).

̸= в общем случае: Для A = Q и B = I Int(A ∪B) = R, но IntA ∪ IntB = ∅.

Определение 1.5.2 (Окрестность точки x ∈ (X,Ω)). Любое открытое множество, содержащее x.

Определение 1.5.3 (Внутренняя точка). Содержится с некой своей окрестностью.

Теорема: внутренность множества — множество его внутренних точек. Доказательство: Докажем
два включения. ∀b ∈ B рассмотрим окрестность U(b), как внутренней точки A. Это открытое
подмножество A, значит, U(b) ⊂ IntA. Отсюда B ⊂ IntA. С другой стороны, для любой точки из
IntA верно, что она внутренняя — подходящей окрестностью является сама IntA.

Следствие: А открыто – все его точки внутренние.

1.5.2 Замыкание множества. Точки прикосновения

Определение 1.5.4 (Замыкание множества A). Пересечение всех замкнутых множеств, его содер-
жащих.

Обозначается ClA или ClosA.

Замечание. Замыкание — наименьшее замкнутое множество, содержащее данное. ClA =
⋂

X\F∈Ω∧F⊃A

F

Свойства замыкания

• Замыкание замкнуто

• A ⊂ ClA.

• Для замкнутого B : B ⊃ A ⇒ B ⊃ ClA.

• A = ClA ⇐⇒ A — замкнуто.

• A ⊂ B ⇒ ClA ⊂ ClB.

• Cl(A ∪B) = ClA ∪ ClB

• Cl(A ∩B) ⊂ ClA ∩ ClB

• ClA = IntA

Определение 1.5.5 (Точка x — точка прикосновения A). ∀U(x) : U(x) ∩A ̸= ∅.

Теорема 1.5.1. Для произвольного A : ClA = {x ∈ X | x — точка прикосновения A}.

Доказательство. ClA = X\ Int(X\A), откуда, видно, что ClA — действительно, множество то-
чек, не содержащих окрестности, которая не пересекается с A.

Следствие 1.5.1. Множество замкнуто ⇐⇒ оно совпадает со множеством точек прикосно-
вения.

9



1.5.3 Граница множества, граничные точки

Определение 1.5.6 (Граница множества). Точки, лежащие в замыкании, но не во внутренности:
FrA = ClA\ IntA.

Замечание. Точка x — граничная для A, если любая окрестность точки x пересекается и с A, и с
A.

Теорема 1.5.2. Граница множества совпадает со множеством граничных точек.

Доказательство.

(x ∈ FrA) ⇐⇒ (x ∈ ClA ∧ x /∈ IntA) ⇐⇒ (∀U(b) : U(b) ∩A ̸= ∅ ∧ U(b) ∩A ̸= ∅) ⇐⇒ x ∈ FrA

Свойства

• Граница — замкнутое множество (как пересечение ClA и IntA).

• FrA = Fr(X\A)

• A — замкнуто ⇐⇒ A ⊃ FrA.

• A — открыто ⇐⇒ A ∩ FrA ̸= ∅.

1.5.4 Предельные, изолированные точки

Определение 1.5.7 (x — предельная точка A). Любая проколотая окрестность пересекается с A.

∀U(x) ∋ x : (U(x)\x) ∩A ̸= ∅

Определение 1.5.8 (x — изолированная точка A). Существует проколотая окрестность, не пере-
секающаяся с A.

∃U(x) ∋ x : (U(x)\x) ∩A = ∅

Свойства

• Предельные точки включают точки прикосновения.

• ClA = IntA ⊔ FrA = {предельные точки A} ⊔ {изолированные точки A}.

1.6 База топологии

Определение 1.6.1 (Для (X,Ω) Σ ⊂ Ω — база топологии). ∀U ∈ Ω : ∃ΓU ⊂ U : U =
⋃

w∈ΓU

w =⋃
ΓU .

Предостережение. База не единственна; в качестве Σ всегда можно рассмотреть Ω, но хочется
поменьше.

Так, для метризуемой топологии в качестве базы можно рассмотреть множество всех открытых
шаров; Для топологии на прямой можно рассмотреть множество всех шаров с рациональным
радиусом, или даже радиусом 1/n.

Определение 1.6.2 (Γ ⊂ 2X — покрытие X).
⋃

Γ = X.

В частности, любая база топологии — покрытие X, так как X — открыто в любой топологии.

Теорема 1.6.1. Для (X,Ω) Σ — база топологии Ω ⇐⇒ ∀U ∈ Ω,∀a ∈ U : ∃w ∈ Σ : a ∈ w ⊂ U .

Доказательство.
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⇒. Пусть U =
⋃

w∈Γ

w.

Тогда для любого a ∈ U : a содержится в каком-то w ∈ Γ, и, действительно, a ∈ w ⊂ U .

⇐. Построим для открытого U ∈ Ω множество ΓU из определения базы. Согласно посылке
теоремы ∀a ∈ U : ∃wa ∈ Σ : a ∈ wa ⊂ U .

Рассмотрим в качестве Γ = {wa}a∈U .

Определение 1.6.3 (Σa — база топологии в точке a ∈ X (база окрестностей)). ∀w ∈ Σa : w ∋ a и
∀U(a) : ∃w ∈ Σa : w ∈ U(a).

Замечание. Для Σ — базы Ω: Σa = {w ∈ Σ | a ∈ w} — база топологии в точке a.

Замечание. Обратно:
⋃
{Σa} — база топологии.

В метризуемой топологии базой точки является, например, совокупность шаров с центром в данной
точке.

Теорема 1.6.2 (Критерий базы). Рассмотрим Σ = {Bα}α∈Λ — некоторое покрытие.

Σ — база некоторой топологии ⇐⇒ ∀α1, α2 : Bα1
∩Bα2

представимо, как объединение некоторого
подмножества B.

Доказательство.

⇒. По определению базы топологии (пересечение открытых множеств открыто)

⇐. Построим топологию Ω над базой Σ и проверим, что это — топология.

Ω :=

{ ⋃
α∈S

Bα | S ⊂ Λ

}
.

1. ∅, X принадлежат Ω (последнее — так как Σ — покрытие X).

2. Объединение двух множеств из Ω очевидно принадлежит Ω.

3. Проверим, что пересечение двух множеств из Ω принадлежит Ω.

Пусть U1 =
⋃

α∈S1

Bα, U2 =
⋃

α∈S2

Bα. Несложно видеть, что U1∩U2 =
⋃

α1∈S1,α2∈S2

(Bα1 ∩Bα2).

Но согласно свойству, что пересечение элементов Σ является объединением некоторого
его подмножества, автоматически получаем, что U1 ∩ U2 — объединение некоторого
подмножества Σ.

Для покрытия Σ, удовлетворяющему условию теоремы, обозначим топологию, задаваемую Σ сле-
дующим образом: Ω(Σ).

Замечание. Ω(Σ) — наименьшая по включению топология, содержащая Σ. (Наименьшая по вклю-
чению топология существует, так как пересечение топологий — топология).

Построим топологию из произвольного набора подмножеств ∆ ⊂ 2X . Тогда построим Σ(∆), как
все конечные пересечения элементов ∆ (и само множество X).

Σ(∆) = {X} ∪

{
k⋂

i=1

| ki ∈ N, wi ∈ ∆

}

Такая база топологии Σ(∆) удовлетворяет критерию базы, на ней можно построить топологию
Ω(Σ(∆)).

Такая ∆ называется предбаза — множество подмножеств такое, что база — объединение конечных
пересечений его элементов.
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Замечание. ∆ — предбаза топологии Ω, если Ω — наименьшая по включению топология, содер-
жащая ∆.

1.7 Подпространства

Рассмотрим A ⊂ X для топологического пространства (X,Ω). Обозначим ΩA = {U ∩A | U ∈ Ω}.
Такая ΩA — топология, индуцированная на подпространстве A.

Несложно убедиться, проверив три аксиомы, что ΩA — топология на множестве A.

Лекция III
22 ноября 2022 г.

1.7.1 Свойства подпространства

• Множество, открытое в подпространстве, необязательно открыто. Так, подпространство все-
гда открыто в себе.

• Тем не менее, в открытом подпространстве открытые подмножества исходно открыты.

• Для Σ — базы исходной топологии — можно определить базу для подпространства A, как
ΣA = {A ∩ U | U ∈ Σ}.

• Пусть B ⊂ A ⊂ X. Тогда топологии ΩB и (ΩA)B совпадают.

Пусть A ⊂ X, где на X определена метрика d.

На A можно ввести топологию двумя способами:

1. Топология, индуцированная на метрике-сужении d
∣∣
A
, называется ΩdA

2. Подпространство топологии (X,Ωd). Для данной теоремы назовём её ΩX
A .

Теорема 1.7.1. Эти топологии совпадают.

Доказательство. Проверим, что для всякой пары {точка; открытое множество, её содержащее}
из первой топологии, точка содержится в меньшем по включении открытом множестве из второй
топологии. И наоборот.

Так как про обе конструкции понятно, что они являются топологиями, то этой проверки будет
достаточно.

• ΩdA
⊆ ΩX

A .

Зафиксируем точку a ∈ A и открытое множество U ∈ ΩdA
(a ∈ U). Так как ΩdA

— индуци-
рована на метрике, то a содержится с неким открытым шаром радиуса r внутри U .

Этот же шар содержится в исходной топологии Ω

• ΩdA
⊆ ΩX

A .

Зафиксируем точку a ∈ A и открытое множество U ∈ ΩX
A (a ∈ U).

U = V ∩A для некоего V ∈ Ω. В множестве V : a содержится вместе с неким шаром радиуса
r.

В топологии ΩX
A есть как раз пересечение этого шара и множества A (так как этот шар был

в Ω).

Вроде бы доказательство правильное, на лекции было что-то странное, я, к сожалению,
как раз отвлёкся, поэтому вышенаписанное — частично моя импровизация. Тем не менее,
не понимаю, почему на доске была разность каких-то радиусов.
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1.8 Произведение метрических пространств

Пусть даны метрически пространства (X,ΩX) и (Y,ΩY ).

Положим Σ := {U × V | U ∈ ΩX , V ∈ ΩY }.

Теорема 1.8.1. Σ — база некой топологии.

Доказательство. Проверим критерий базы.

∀(u1 × v1), (u2 × v2) ∈ Σ : (u1 × v1) ∩ (u2 × v2) = (u1 ∩ u2)× (v1 ∩ v2).

Данная формула красиво обосновывается через пересечение прямоугольников.

Из свойства топологии u1 ∩ u2 ∈ ΩX и v1 ∩ v2 ∈ ΩY .

Определение 1.8.1 (Стандартная топология на произведении пространств). Топология, построен-
ная на базе Σ, определённой выше.

Пример. Пусть Ω — множество метрически открытых множеств в R.

Тогда стандартная топология на (R,Ω)× (R,Ω) — стандартная топология плоскости.

Доказательство. В базе Σ содержится «открытый квадрат» с данным центром и сколь угодно
малым радиусом

Замечание. Перемножать можно не сами топологии, а их базы ΣX и ΣY , всё равно будет база
стандартной топологии произведения Σ = {u× v | u ∈ ΣX , v ∈ ΣY }.

Рассмотрим два метрических пространства (X, dx) и (Y, dy). На их произведении X×Y топологию
можно ввести двумя способами:

1. Индуцировать топологию на стандартной метрике произведения пространств d((x1, y1), (x2, y2)) =√
dx(x1, x2)2 + dy(y1, y2)2.

2. Перемножить, как топологические пространства (X,Ωdx
) и (Y,Ωdy

).

Теорема 1.8.2. Эти топологии совпадают.

Доказательство.

Вместо d =
√
d2x + d2y будем рассматривать ей липшицево эквивалентную (определение 1.4.2) мет-

рику d̃ = max{d1, d2}. Она индуцирует ту же топологию.

Заметим, что эта топология порождаются базой Σ =
{
Bd̃

r ((x, y)) | x ∈ X, y ∈ Y, r ∈ R>0

}
.

Но Σ =
{
Bd̃

r ((x, y)) | x ∈ X, y ∈ Y, r ∈ R>0

}
=
{
Bdx

r (x)×B
dy
r (y) | x ∈ X, y ∈ Y, r ∈ R>0

}
.

Теперь видно, что Σ является базой (X,Ωdx)×(Y,Ωdy ) тоже. В самом деле, если перемножить базы

— открытые шары в dx и dy, то получится база Σ′ =
{
Bdx

r1 (x)×B
dy
r2 (y) | x ∈ X, y ∈ Y, r1, r2 ∈ R>0

}
.

Но — так как можно взять из радиусов наименьший — мы поймём, что ΩΣ′ = ΩΣ.

1.8.1 Тихоновская топология прямого произведения бесконечного числа про-
странств

Рассмотрим множество пространств, проиндексированное Λ: {(Xα,Ωα)}α∈Λ.

Определение 1.8.2 (Прямое произведение множеств {Xα}α∈Λ).

Множество функций X =

{
x ∈

( ⋃
α∈Λ

Xα

)Λ

| ∀α ∈ Λ : x(α) ∈ Xα

}
.
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Определение 1.8.3 (Координатная проекция). Функция pα : X → Xα: pα(x) = x(α).

Определение 1.8.4 (Цилиндр). Подмножество произведения, открытое в одном сомножителе, и
совпадающее с другими. Формально, p−1

α (U) для некоего α ∈ Λ и U ∈ Ωα.

Определение 1.8.5 (Тихоновская топология произведения пространств {(Xα,Ωα)}α∈Λ). Топология
строится с помощью предбазы ∆ :=

{
p−1
α (U) | α ∈ Λ, U ∈ Ωα

}
.

Замечание. Для |Λ| < ∞ топология совпадает с ранее определённой.
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Глава 2

Непрерывные отображения

2.1 Свойства образа и прообраза

Задана функция f : X → Y .

Определение 2.1.1 (Образ A ⊂ X). f(A)
def
= {f(a) | a ∈ A}.

Определение 2.1.2 (Прообраз B ⊂ Y ). f−1(B)
def
= {a ∈ A | f(a) ∈ B}.

1. Прообраз объединения — объединение прообразов f−1(A ∪B) = f−1(A) ∪ f−1(B).

2. Прообраз пересечения — пересечение прообразов f−1(A ∩B) = f−1(A) ∩ f−1(B).

3. Прообраз дополнения — дополнение прообраза f−1(Y \ U) = X \ f−1(U).

4. Образ объединения — объединение образов f(A ∪B) = f(A) ∪ f(B).

5. Образ пересечения содержится в пересечении образов f(A ∩B) ⊆ f(A) ∩ f(B).

Контрпример. f : x 7→ x (mod 2).

{1} = f({0, 1} ∩ {1, 2}) ⊆ f({0, 1}) ∩ f({1, 2}) = {0, 1}

Определение 2.1.3 (Тождественное отображение). idX : X → X; x 7→ x.

Определение 2.1.4 (Вложение A ⊂ X в X). inA→X : A → X; x 7→ x.

2.2 Непрерывность отображения

Пусть X,Y — топологические пространства.

Определение 2.2.1 (Непрерывное отображение f : X → Y ). Отображение, в открытые множества
переводящее только открытые множества. ∀U ∈ ΩY : f−1(U) ∈ ΩX .

Замечание. Применив дополнение, очевидно, что альтернативным определением является то же
про замкнутые множества: ∀V /∈ ΩY : f−1(V ) /∈ ΩX

Пример. idX непрерывно: прообраз всякое открытого множества открыт.

Пример. f(x) = c — постоянное отображение — непрерывно: прообраз всякое множества открыт
(либо X, либо ∅).

Пример. Если в X много открытых множеств, или в Y мало, то f : X → Y непрерывна. Так,
непрерывны функции, определённые на дискретном X и/или действующие в антидискретное Y .

Замечание. Если X2 тоньше X1, а Y2 грубее Y1, то f : X1 → Y1 непрерывна ⇒ f : X2 → Y2

непрерывна.
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Теорема 2.2.1. Композиция непрерывных функций непрерывна.

Так, пусть f : X → Y и g : W → X.

Доказательство. ∀U ∈ ΩW : g−1(U) ∈ ΩX ⇒ (f ◦ g)−1(U) = f−1(g−1(U)) ∈ ΩY .

Следствие 2.2.1. Если f непрерывна, то её сужение f
∣∣
W

непрерывно.

Доказательство. Рассмотреть g = inW→X .

Пусть f : X → Y , а множество Z таково, что f(x) ⊂ Z ⊂ Y .

Положим f̃ : X → Z, f̃(x) = f(x).

Теорема 2.2.2. f непрерывна ⇐⇒ f̃ непрерывна.

Доказательство.

⇒. f = inZ ◦ f̃

⇐. Всякое открытое множество в Z имеет вид w = u ∩ Z для некоего U ∈ ΩY .

f−1(w) = f−1(u) ∩ f−1(Z) = f−1(u)

2.3 Локальная непрерывность

Определение 2.3.1 (f : X → Y непрерывна в a ∈ X). ∀U ∋ f(a) : ∃V ∋ a : f(V ) ⊆ U .

Теорема 2.3.1. Функция f непрерывна ⇐⇒ во всякой точки области определения функция
непрерывна.

Доказательство.

⇒. Очевидно из определений.

⇐. Рассмотрим U ∈ ΩY . Проверим, что f−1(U) открыто. f−1(U) =
⋃

x∈f−1(U)

V (x), где V (x) —

окрестность точки x, содержащая образ в U . Объединение открытых — открыто. значит,
f−1(U) в самом деле открыто.

Замечание. Условие локальной непрерывности можно проверять не на всех открытых множествах,
а только на базах окрестностей Σa и Σf(a).

Следствие 2.3.1. Для метрических пространств X,Y удобно рассмотреть в качестве базы
множество открытых шаров. Определение непрерывности в таком случае переписывается
так:

f непрерывна в точке a: ⇐⇒ ∀ε > 0 : ∃δ > 0 : f(BdX

δ (a)) ⊂ BdY
ε (f(a)).

f непрерывна в точке a: ⇐⇒ ∀ε > 0 : ∃δ > 0 : dX(x− a) < δ ⇒ dY (f(x)− f(a)) < ε.

Узнали? Согласны?

Определение 2.3.2 (Липшицево отображение между метрическими пространствами). Такое отоб-
ражение f : X → Y , что ∃C ∈ R>0 : ∀a, b ∈ X : dY (f(a), f(b)) ⩽ C · dX(a, b).

Константа C из определения — константа Липшица. Отображение, липшицевое с константой c
называется c-липшицевым.

Теорема 2.3.2. Липшицево отображение непрерывно.

Доказательство. Легко проверить, что оно непрерывно в любой точке.
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Примеры.

• Пусть x0 ∈ X. Положим dx0
(y)

def
= d(x0, y). Утверждается, что dx0

— 1-липшицево.

• Более общий случай: пусть A ⊂ X. Положим dA(y)
def
= d(A, y)

def
= inf

a∈A
d(a, y). Утверждается,

что dA — 1-липшицево.

Доказательство. По определению инфимума ∀τ > 0 : ∃ay ∈ A : d(y, ay) < d(y,A) + τ .

Тогда d(x,A) ⩽ d(x, ay) ⩽ d(x, y) + d(y, ay) ⩽ d(x, y) + d(y,A) + τ — дважды применили
неравенство треугольника.

Используя ∀τ > 0 : d(x,A) ⩽ d(x, y) + d(y,A) + τ , получаем d(x,A) ⩽ d(x, y) + d(y,A).

Аналогично-симметрично d(y,A) ⩽ d(x, y) + d(x,A), то есть |dA(x)− dA(y)| ⩽ d(x, y).

• Пусть d — произвольная метрика на X. d : X ×X → R. Утверждается, что d — липшицево
отображение.

Коэффициент зависит от того, как определена метрика на произведении. Для d =
√

d2X + d2Y
этот коэффициент равен

√
2.

Доказательство.

Рассмотрим две произвольные точки из области определения: (a, b), (x, y) ∈ X ×X.

Без потери общности предположим, что d(x, y) ⩾ d(a, b). В таком случае |d(x, y) − d(a, b)| =
d(x, y)− d(a, b).

d(x, y)− d(a, b) ⩽ d(x, a) + d(a, y)− d(a, b) ⩽ d(x, a) + d(y, b) ⩽
√
2
√

d(x, a)2 + d(y, b)2, что по
определению равно

√
2 · d((x, y), (a, b)).

Здесь мы воспользовались двумя неравенствами треугольника, а также тем, что s + t ⩽√
2
√
s2 + t2, что очевидно после возведения в квадрат.

Лекция IV
26 ноября 2022 г.

2.4 Гомеоморфизмы

Определение 2.4.1 (Гомеоморфизм). Непрерывное отображение f : (X,ΩX) → (Y,ΩY ), такое, что
f — биекция, причём f−1 — тоже непрерывно.

Если между (X,ΩX) и (Y,ΩY ) существует гомеоморфизм, то говорят, что (X,ΩX) гомеоморфно
(Y,ΩY ), пишут (X,ΩX) ∼ (Y,ΩY ).

Теорема 2.4.1. Гомеоморфность — отношение эквивалентности на множестве топологических про-
странств.

Доказательство.

• id — гомеоморфизм.

• Если f — гомеоморфизм, то f−1 — гомеоморфизм.

• Композиция гомеоморфизмов — гомеоморфизм.

Примеры.

• X = {a, b}. Для топологий Ω1 = {∅, X, {a}} и Ω2 = {∅, X, {b}} (X,Ω1) ∼ (X,Ω2). Гомеомор-

физм — функция f(x) =

{
a, x = b

b, x = a
.
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• Всякие два отрезка с одинаковым типом концом гомеоморфны: [a, b] ∼ [c, d]. Можно построить
непрерывное линейное отображение.

• (−π
2 ;

π
2 ) ∼ R. В качестве непрерывного отображения может выступать функция y = tan(x).

• На плоскости R2 всякие два шара (два открытых, или два замкнутых) гомеоморфны.

• Квадрат гомеоморфен кругу: можно рассмотреть отображение, линейно переводящее «радиу-
сы» в радиусы.

• Интересный факт. Более того, всякие два выпуклых непустых замкнутых множества го-
меоморфны друг другу.

• Sn \ {точка} ∼ Rn. Sn — стандартная сфера в пространстве Rn+1, так, S1 — окружность.

Доказательство. Рассмотрим сферу, а на ней — два полюса A и B. Проведём касатель-
ную плоскость α через точку B; всякой точке C ∈ Sn сопоставим пересечение луча AC и
плоскости α.

Проверить, что это гомеоморфизм, можно с помощью инверсии с центром в точке O (центр
сферы) и радиусом R (радиус сферы).

Применив инверсию к плоскости α, получим сферу, построенную на BO, как на диаметре.

Таким образом, после сужения инверсии, получается отображение из плоскости в сферу без
точки.

Доказательство того, что инверсия непрерывна, будет чуть позже.

• Круг без точки гомеморфен кольцу — кругу без круга. Опять же, отображение линейно
переводит радиусы в радиусы.

• Если из пространства выкинуть окружность, то это будет то же самое, что и выкниуть
прямую и точку.

R3 \ S1 ∼ R3 \ (R1 ∪ {точка вне прямой})

• Пример непрерывной биекции, не являющейся гомеоморфизма: f : [0; 2π) → S1, такая, что
f(x) = (cos(x), sin(x)).

Обратное отображение не является непрерывным, так как [0; 1) открыто в [0; 2π), но f([0; 1))
— отнюдь не открытое подмножество окружности.

2.5 Фундаментальные покрытия

Определение 2.5.1 (Фундаментальное покрытие пространства X). Такое покрытие Γ = {Aα}α∈Λ

топологического пространства (X,Ω), что

∀u ⊂ X : (u ∈ Ω ⇐⇒ ∀α ∈ Λ : u ∩Aα ∈ ΩAα
)

Замечание. Аналогично можно рассмотреть не открытые, а замкнутые множества: F замкнуто в
X ⇐⇒ ∀α : F ∩Aα замкнуто в Aα.

Теорема 2.5.1. Пусть {Aα}α∈Λ — фундаментальное покрытие X.

Если f : X → Y таково, что ∀α : f
∣∣
Aα

— непрерывно, то само f — непрерывно.

Доказательство. Рассмотрим произвольное открытое множество u ∈ ΩY . Докажем, что f−1(u) ∈
ΩX .

Для произвольного α ∈ Λ : (
f
∣∣
Aα

)−1

(u) ∈ ΩAα ⇒ f−1(u) ∩Aα ∈ ΩAα

откуда по определению фундаментального покрытия f−1(u) ∈ ΩX .
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Контрпример. Для X = [0; 1) можно рассмотреть покрытие [0; 1) =
[
0; 1

2

)
∪
[
1
2 ; 1
)
. Оно не является

фундаментальным, так как f(x) = {x} — взятие дробной части — не непрерывно, хотя непрерывно
на каждом полуинтервале из покрытия.

В то же время покрытие [0; 1) =
[
0; 1

2

]
∪
[
1
2 ; 1
)
— фундаментально (например, см. (теорема 2.5.2)).

Определение 2.5.2 (Открытое покрытие). Такое покрытие, что все его элементы открыты в X.

Определение 2.5.3 (Замкнутое покрытие). Такое покрытие, что все его элементы замкнуты в X.

Определение 2.5.4 (Локально конечное покрытие). ∀x ∈ X : ∃Vx ∈ ΩX : x ∈ Vx такая, что она
пересекает конечное число элементов покрытия: {α ∈ Λ | Vx ∩Aα ̸= ∅} конечно.

Теорема 2.5.2.

1. Открытое покрытие фундаментально.

2. Конечное замкнутое покрытие фундаментально.

3. Локально конечное замкнутое покрытие фундаментально.

Доказательство.

1. Рассмотрим произвольное множество U ⊂ X. Если ∀α ∈ Λ : Aα∩U ∈ ΩAα
, то — по тривиаль-

ному свойству топологии, индуцированной на открытом множестве — ∀α ∈ Λ : Aα ∩U ∈ ΩX .
В таком случае U можно представить, как объединение всех таких частей.

2. Рассмотрим произвольное множество U ⊂ X. Если ∀α ∈ Λ : Aα ∩ U ∈ ΩAα
, то дополнение

Aα ∩ (X \ U) замкнуто в Aα. По тривиальному свойству замкнутой индуцированной тополо-
гии получаем, что X \ U замкнуто во всех Aα.

В таком случае X \ U можно представить, как объединение всех таких частей (объединение
конечного числа замкнутых — замкнуто). Значит, U открыто.

3. Зафиксируем для каждой точки окрестность Vx, пересекающую конечное число элементов
покрытия — из определения локальной конечности.

Рассмотрим произвольное множество U ⊂ X. Несложно видеть, что U =
⋃

x∈U

(U ∩ Vx).

Если все эти части открыты в Vx, где — после сужения — конечные замкнутые покрытия,
то, объединив их все, получаем, что и само U открыто.

2.6 Непрерывность и произведение пространств

Рассмотрим X =
∏
α∈Λ

Xα — произведение топологических пространств.

Теорема 2.6.1. Координатные проекции pα : X → Xα (определение 1.8.3) непрерывны.

Доказательство. Всякое множество U ∈ ΩXα такого, что p−1(U) открыто — по определению, как
элемент предбазы

∏
Xα.

Определение 2.6.1 (Координатная компонента f). Пусть f : Z →
∏
α∈Λ

Xα. Тогда компонентой f по

координате α называется fα = pα ◦ f .

Теорема 2.6.2. f : Z →
∏
α∈Λ

Xα непрерывно ⇐⇒ ∀α : fα непрерывно.

Доказательство.

⇒. Композиция pα ◦ f непрерывна.
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⇐. Проверим, что f непрерывна на элементах предбазы: прообразы ∀U — открытом в произве-
дении — : p−1(U) ∈ ΩXα .

Воспользуемся тем, что p−1
α (U) открыт (по определению топологии произведения). Кроме

этого, f−1
(
p−1
α (U)

)
тоже открыто, как прообраз открытого в f .

Значит, f−1
(
p−1
α (U)

)
= (pα ◦ f)−1(U) — открыто, откуда pα ◦ f непрерывно.

Контрпример. «Обратное» неверно: не факт, что если f :
∏
α∈Λ

Xα → Y непрерывно на всех проек-

циях, то оно непрерывно.

Так, можно рассмотреть f : R2 → R; (x, y) 7→


xy2

x2 + y4
, (x, y) ̸= (0, 0)

0, x = y = 0
.

Такая функция непрерывна в сужении на любую прямую (в том числе и координатную), но не
непрерывна:

Доказательство.

• – Для всякой прямой, не проходящей через 0 (y = kx + b или x = b, где b ̸= 0) суже-
ние функции на эту прямую имеет определённую формулу — частное многочленов, где
знаменатель строго положителен. Она непрерывна.

– Сужение на прямую x = 0 даёт f(0, x) = 0.

– Наконец, для прямых y = kx сужение даёт функцию f(x, kx) =
k2x3

x2 + k4x4
=

k2x

1 + k4x2

при x ̸= 0. Не в нуле функция понятно, что непрерывна; в нуле
kx

1 + k4x2
−→
x→0

0

• Несмотря на всё это, если сузить функцию на параболу x = y2, то окажется, что f(y2, y) = 1/2
при y ̸= 0, однако y = 0 при y = 0. Эта функция непрерывной уже не является.

2.7 Арифметические операции над непрерывными функциями

Теорема 2.7.1. Функции f : R2 → R непрерывны, где f(x, y) = x + y или f(x, y) = x − y, или
может быть f(x, y) = x · y. (Доказываем для трёх функций)

Доказательство.

• f(x, y) = x + y. Проверим непрерывность в точке: рассмотрим открытый шар Bε(x0 + y0).
Докажем, что в его прообразе есть окрестность (x0, y0).

Для этого возьмём δ = ε
2 . Несложно видеть, что f (Bδ(x0), Bδ(y0)) ⊂ Bε(x0 + y0):

∀x ∈ Bδ(x0), y ∈ Bδ(y0) : |x0 + y0 − x− y| ⩽ |x0 − x|+ |y0 − y| ⩽ δ + δ = ε

• Аналогично.

• f(x, y) = x · y. Проверим непрерывность в точке: рассмотрим открытый шар Bε(x0 · y0).
Докажем, что в его прообразе есть окрестность (x0, y0).

Пусть c = max{|x0|, |y0|}.

Для этого возьмём δ = min{ ε
3c ,
√

ε
3}.

∀x ∈ Bδ(x0), y ∈ Bδ(y0) : |x · y − x0 · y0| ⩽ |(x± δ)(y ± δ)− x0 · y0| ⩽ |x0δ|+ |y0δ|+ |δ2| ⩽ ε

Следствие 2.7.1. В топологическом пространстве (X,Ω) для непрерывных функции f, g : X →
R верно, что f + g, f − g и f · g — тоже непрерывны.
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Доказательство.

Пусть функция (f, g) : X → R × R определена так: (f, g)(x) = (f(x), g(x)). Она непрерывна, так
как проекции непрерывны;

тогда

f + g = (x+ y) ◦ (f, g)
f − g = (x− y) ◦ (f, g)
f · g = (x · y) ◦ (f, g)

непрерывны, как композиции.

Следствие 2.7.2. В топологическом пространстве (X,Ω) для непрерывных функции f, g : X →
R верно, что f

g — тоже непрерывна на своей области определения (где g не обращается в 0).

Доказательство.

Рассмотрим h : R \ {0} → R \ {0}; h(x) = 1
x . Как известно из матанализа, она непрерывна.

Тогда 1
g = h ◦ g и f

g = f · (h ◦ g).

2.8 Топологические свойства

Как доказать, что два топологических пространства не являются гомеоморфными?

При гомеоморфизме сохраняются некоторые свойства. Если эти свойства различны, то простран-
ства заведомо не гомеоморфны.

Определение 2.8.1 (Топологическое свойство). Свойство, которое пространства сохраняют при
гомеоморфизме.

Пространство может обладать или не обладать некоторым свойством.

Определение 2.8.2 (Топологический инвариант). Характеристика, которую пространства сохраня-
ют при гомеоморфизме.

Какое-то число, например.

2.8.1 Аксиомы счётности

Ниже для краткости будем называть счётными не более, чем счётные множества.

Определение 2.8.3 (Первая аксиома счётности, AC1). Топологическое пространство X удовлетво-
ряет первой аксиоме счётности, если у любой точки существует счётная база.

Любое метрическое пространство удовлетворяет первой аксиоме счётности: можно взять у всякой
точки открытые шары с центром в ней и радиусом 1

n .

Определение 2.8.4 (Вторая аксиома счётности, AC2). Топологическое пространство X удовлетво-
ряет второй аксиоме счётности, если у него существует счётная база.

Теорема 2.8.1. Из второй аксиомы счётности следует первая: в качестве базы точки можно взять
все открытые множества, содержащие её: Σa = {U ∈ Σ | a ∈ U}.

Определение 2.8.5 (Наследственное топологическое свойство). Если всё пространство X обладает
свойством, то всегда любое его подпространство обладает этим же свойством.

Определение 2.8.6 (Наследование свойства для произведения). Если два пространства X и Y
обладают свойством, то всегда X × Y тоже этим свойством обладает.
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Факт 2.8.1. Вторая аксиома счётности — наследственное свойство. Вторая аксиома счёт-
ности наследуется подпространством: если Σ — счётная база, то

ΣA
def
= {U ∩A | U ∈ Σ}

тоже счётна.

Вторая аксиома счётности наследуется и для произведения: для базы в точке (x, y) доста-
точно взять базу Σ(x,y) = Σx × ΣY

Лекция V
29 ноября 2022 г.

Замечание. R удовлетворяет второй аксиоме счётности: можно рассмотреть в качестве базы шары
радиусом 1

n с рациональными центрами.

Отсюда следует, что второй аксиоме счётности удовлетворяют и все подпространства Rn.

Теорема 2.8.2 (Линделёф). Если X удовлетворяет второй аксиоме счётности, то из любого по-
крытия можно выделить счётное подпокрытие.

Доказательство.

Рассмотрим покрытие U :
⋃

α∈Λ

Uα = X.

Обозначим в качестве S := {v ∈ Σ | ∃α ∈ Λ : v ⊂ Uα}.

S — покрытие, так как всякая точка лежит в Uα вместе с неким множеством из базы.

Теперь для каждого s ∈ S сопоставим один любой элемент из U , содержащий s. Таким образом
мы выделим счётное подпокрытие.

2.8.2 Сепарабельные пространства

Определение 2.8.7 (A ⊂ X всюду плотно). ClA = X

Замечание. Это значит, что всякая точка пространства — точка прикосновения A, то есть ∀U ∈
ΩX \ {∅} : U ∩A ̸= ∅.

Определение 2.8.8 (Сепарабельное пространство). Пространство, в котором есть всюду плотное
счётное множество.

Пример. R сепарабельно: Q — всюду плотное счётное подмножество.

Теорема 2.8.3. 1. Из второй аксиомы счётности следует сепарабельность.

2. В метрических пространствах из сепарабельности следует вторая аксиома счётности.

Доказательство.

1. Сопоставим всякой v ∈ Σ одну из её точек. Это всюду плотное множество.

2. Рассмотрим Σ =
{
B 1

n
(x) | x ∈ A;n ∈ N

}
, где A — всюду плотное счётное множество.

Проверим, что Σ — база. Для этого рассмотрим любую точку и любое открытое множество,
её содержащее b ∈ U ∈ Ω.

Проверим, что существует шар B из базы, такой, что b ∈ B ⊂ U . Пространство метрическое,
есть достаточно большое k ∈ N : шар B 1

k
(b), содержащийся в U .

Тогда ∃a ∈ B 1
k
∩A : d(a, b) < 1

2k , так как A — всюду плотно.

Теперь понятно, что шар b ∈ B 1
2k
(a), и что этот шар — из базы.
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2.8.3 Аксиомы отделимости

Первая аксиома отделимости

Определение 2.8.9 (Пространство удовлетворяет первой аксиоме отделимости, T1). ∀x, y ∈ X :
∃Ux ∈ Ω : x ∈ Ux ̸∋ y.

Теорема 2.8.4. Пространство удовлетворяет первой аксиоме отделимости ⇐⇒ все одноточечные
множества замкнуты.

Доказательство.

⇒. Рассмотрим x ∈ X. Проверим, что X \ {x} открыто. Рассмотрим ∀y ∈ X \ {x}. Для всякого
y он лежит в X \ {x} вместе с некоторой окрестностью по отделимости от x. Значит, {x}
замкнуто.

⇐. В качестве отделяющего множества для x и y можно взять X \ {y}.

Вторая аксиома отделимости

Определение 2.8.10 (Пространство удовлетворяет второй аксиоме отделимости, T2). ∀x, y ∈ X :
∃Ux ∋ x, Uu ∋ y : Ux ∩ Uy = ∅. Разумеется, Ux, Uy ∈ Ω.

По-другому такие пространства называются хаусдорфовыми.

Факт 2.8.2. Любое метрическое пространство Хаусдорфово — для точек x и y можно рас-
смотреть шары радиусом d(x, y)/2.

Теорема 2.8.5. Пространство Хаусдорфово ⇐⇒ диагональ {(a, a) | a ∈ X} замкнута в X ×X.

Доказательство.

⇒. Пусть ∆ — диагональ. Докажем, что дополнение к ∆ открыто. Рассмотрим (a, b) ∈ (X×X)\∆.
Из определения Хаусдорфовости ∃Ua, Ub ∈ Ω, отделяющие a и b. Но тогда Ua × Ub с одной
стороны открыто, а с другой — не пересекается с диагональю.

⇐. Диагональ замкнута, значит, (X×X)\∆ открыто. Рассмотрим a, b ∈ X. (X×X)\ δ открыто,
значит, ∃Ua×Ub, открытое в произведении — элемент базы произведения, содержащий (a, b).
Получается, Ua и Ub отделяют a и b.

Третья аксиома отделимости

Определение 2.8.11 (X удовлетворяет третьей аксиоме отделимости, T3). ∀F — замкнутого мно-
жества, и ∀x /∈ F : существуют окрестности Ux ∋ x и UF ⊃ F , их отделяющие.

Теорема 2.8.6. Пространство удовлетворяет T3 ⇐⇒ ∀x ∈ X,∀Ux ∈ Ω : ∃Vx ∈ Ω — подокрест-
ность, такая, что ClVx ⊂ Ux.

Доказательство.

⇒. Найдём для точки x и окрестности Ux ∋ x подходящую Vx. Для этого применим третью
аксиому отделимости для {x} и X \ Ux.

Пусть нашлись окрестности Vx и W ⊃ X \ Ux. Таким образом, ClVx ⊂ X \W ⇒ ClVx ⊂ Ux.

⇐. Пусть x ∈ X и F ⊂ X — точка из замкнутого множества. Рассмотрим U = X \ F . Согласно
посылке теоремы, существует Vx ⊂ U : ClVx ⊂ U .

Легко проверить, что T3 выполняется, можно рассмотреть Vx ∋ x и X \ ClVx ⊃ F .

Определение 2.8.12 (Пространство регулярно). Удовлетворяет T1 и T3.
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Четвёртая аксиома отделимости

Определение 2.8.13 (X удовлетворяет четвёртой аксиоме отделимости T4). ∀F1,F2 — замкнутые
— ∃U1 ⊃ F1 и U2 ⊃ F2 — непересекающиеся открытые множества.

Определение 2.8.14 (Пространство нормально). Удовлетворяет T1 и T4.

Теорема 2.8.7. Верна цепочка следствий:

{нормальность = T1 + T4} ⇒ {регулярность = T1 + T3} ⇒ {Хаусдорфовость = T2} ⇒ T1

Доказательство. Оставляется, как упражнение читателю.

Теорема 2.8.8. Метрическое пространство нормально.

Доказательство.

Проверим T4 (T2 проверено выше (факт 2.8.2)).

Заметим, что расстояние от точки до замкнутого множества (не содержащего её) больше нуля:
d(x,F) > 0. В случае расстояния — нуля — точка бы принадлежала множестве из-за замкнутости.

Пусть F1,F2 — два замкнутых непересекающихся множества. В качестве U1 и U2 рассмотрим
точки, находящиеся ближе к одному множеству, нежели к другому.

U1 =
{
x ∈ X

∣∣∣d(x,F1) < d(x,F2)
}

U2 =
{
x ∈ X

∣∣∣d(x,F2) < d(x,F1)
}

Эти множества открыты, так как функция расстояния 1-липшицева: всякая точка x ∈ U1 содер-
жится в U1 вместе с шаром радиуса 1

2 (d(x,F2)− d(x,F1)).

Лемма и теорема Урысона

Определение 2.8.15 (Функция Урысона). Пусть A,B — два замкнутых непересекающихся мно-
жества. Всякая функция ϕ : X → [0; 1], такая. что ϕ

∣∣
A
≡ 0 и ϕ

∣∣
B
≡ 1.

Замечание. Такую функцию легко построить в метрическом пространстве:

f(x) = min

(
1,

d(x,A)

d(x,B)

)

Интересный факт (Лемма Урысона). Топологическое пространство нормально ⇐⇒ для любых
двух замкнутых непересекающихся множеств существует функция Урысона.

Замечание. Обратно это очевидно: в качестве открытых множеств, содержащих A и B можно
взять ϕ−1([0; 1/3)) и ϕ−1((2/3; 1]).

Интересный факт (Теорема Урысона о метризации). Всякое нормальное пространство со счётной
базой метризуемо.

2.8.4 Связность

Определение 2.8.16 (Топологическое пространство связно). Его нельзя разбить на два непустых
открытых множества.

Примеры.

• Антидискретное пространства связно

• Дискретное пространство мощности хотя бы 2 не связно.

• R \ {0} не связна.

• [a, b] ∪ [c, d] не связно (a < b < c < d).
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Теорема 2.8.9. Следующие условия эквивалентны:

1. X связно.

2. X нельзя разбить на 2 непересекающихся замкнутых множеств.

3. A ⊂ X одновременно и открытое, и замкнутое ⇒ A = ∅ или A = X.

4. ∄f : X → {0, 1}, где f — сюръективное непрерывное отображение, а на {0; 1} введена
дискретная топология.

Доказательство.

• (1) ⇐⇒ (2). Дополнение открытого замкнуто и наоборот.

• (1) ⇐⇒ (3). ∃A ̸= ∅, X, одновременно открытое и замкнутое ⇐⇒ A⊔ (X \A) = X, где оба
открыты.

• (1) ⇐⇒ (4). ∃f ⇐⇒ f−1({0}) и f−1({1}) открыты.

Теорема 2.8.10. Отрезок [0; 1] связен в стандартной топологии.

Доказательство.

Предположим противное: [0; 1] = U ⊔ V , где U, V ∈ Ω[0;1].

Без потери общности считаем, что 0 ∈ U . Из открытости ∃ε > 0 : [0; ε) ⊂ U .

Пусть a = sup
{
ε ∈ [0; 1]

∣∣∣[0; ε) ⊂ U
}
.

Если a ∈ V , то из открытости V получаем, что a — не точная верхняя грань (в районе некоторой
δ : (a− δ; a+ δ) ⊂ V все точки в V , грань можно уменьшить).

Если a ∈ U , то из открытости U получаем, что a — не точная верхняя грань (есть больше). Здесь
может так случиться, что a = 1, но в таком случае U = [0; 1] и V = ∅, опять же противоречие.

Теорема 2.8.11. Для подмножества прямой X ⊂ R следующие условия эквивалентны:

1. X связно.

2. X выпукло (∀a, b ∈ X : (a, b) ⊂ X).

3. X — интервал в обобщённом смысле (⟨a, b⟩, где a ⩽ b, a ∈ [−∞; +∞), b ∈ (−∞; +∞]).

Доказательство.

• (1) ⇒ (2). Предположим, что это не так: возьмём отрезок (a, b) такой, что точка x внутри не
принадлежит отрезку. Тогда нашлось разбиение X = (X ∩ (−∞;x)) ⊔ (X ∩ (x; +∞)).

• (2) ⇒ (1). Предположим, что это не так: X = U ⊔ V . Но тогда возьмём две точки a ∈ U ,
b ∈ V , без потери общности a < b, тогда из выпуклости X: [a, b] = (U ∩ [a, b]) ⊔ (V ∩ [a, b]) —
противоречие со связностью отрезка.

• (2) ⇒ (3). X = ⟨infX, supX⟩.

• (3) ⇒ (2). Очевидно.

Связность и непрерывность

Теорема 2.8.12. Непрерывный образ связного пространства связен: ∀f : X → Y : f — непрерывно
и X — связно, значит, Y связно.

Доказательство. Пусть U ⊔ V = f(X), где U, V ∈ Ωf(X).

Тогда f−1(U) ⊔ f−1(V ) = X, противоречие со связностью X.

25



Следствие 2.8.1. Связность — топологическое свойство.

Теорема 2.8.13 (О промежуточном значении). Пусть f : X → R — непрерывное отображение.

Если X связно, то ∀a, b ∈ f(X) : f(X) ⊃ [a, b].

Доказательство. X связно ⇒ f(X) связно ⇒ f(X) выпукло.

Определение 2.8.17 (Компонента связности пространства X). Связное подмножество, не содер-
жащееся ни в каком, строго большем по включению, связном подмножестве.

Лекция VI
3 декабря 2022 г.

Лемма 2.8.1. Объединение любого семейства попарно пересекающихся связных множеств
связно.

Доказательство.

Пусть данное семейство {Aα}α∈Λ. ∀α ∈ Λ : Aα связно и ∀α, β ∈ Λ : Aα ∩Aβ ̸= ∅.

Положим Y =
⋃

α∈Λ

Aα.

От противного: пусть Y = U ⊔ V , где U, V — открыты. Рассмотрим произвольное Aα0
. Так как оно

связно, то он содержится либо полностью в U , либо полностью в V . Не умаляя общности, в U .

Так как ∀β ∈ Λ : Aβ ∩Aα0
̸= ∅, то ∀β ∈ Λ : Aβ ⊂ U .

Но тогда из-за связности все Aβ ⊂ U , откуда V = ∅.

Теорема 2.8.14.

• Всякая точка лежит в некоторой компоненте связности.

• Причём различные компоненты связности не пересекаются.

Доказательство. Всякая точка x ∈ X содержится в объединении всех связных множеств,
её содержащих (эти множества есть, например, {x} связно). Нетрудно видеть, что эти объ-
единения связны, максимальны по включению и дизъюнктны.

Следствие 2.8.2. Компоненты связности дают разбиения топологического пространства.

Свойства связности

1. Любое связное подмножество подпространства содержится в некоторой компоненте связно-
сти.

2. Пространство несвязно ⇐⇒ в нём есть хотя бы две компоненты связности.

3. Замыкание связного множества связно.

Доказательство. Пусть замыкание несвязно. Тогда оно представимо в виде объединения
двух замкнутых множеств ClA = F1 ⊔ F2. Так как исходное множество A связно, то оно
содержится полностью в одном из них, пусть в F1.

Согласно свойству замыкания, ClA ⊂ F1, значит, F2 = ∅.

Следствие 2.8.3. Компоненты связности замкнуты.

Замечание. Число компонент связности — топологический инвариант.
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2.8.5 Линейная связность

Пусть X — топологическое пространство.

Определение 2.8.18 (Путь в X). Непрерывное отображение α : [0; 1]
станд.

→ X.

α(0) называют началом пути, а α(1) — концом пути.

Определение 2.8.19 (Линейно связное топологическое пространство X). Любые две точки X
можно соединить путём.

Говорят, что A ⊂ X линейно связно, если A связно в индуцированной топологии; это значит, что
между всякой парой точек a, b ∈ A существует путь, полностью лежащий в A.

Пример. Отрезок евклидового пространства — путь. Таким образом, Rn линейно связно, как и его
выпуклые подмножества.

Линейная связность и непрерывность

Пусть X,Y — топологические пространства, причём X — линейно связно.

Теорема 2.8.15. Если есть непрерывная функция f : X → Y , то f(X) линейно связно.

Доказательство. Пусть x, y ∈ f(X). Тогда есть путь, соединяющий a, b — какие-то два прообраза
x и y соответственно, между ними есть путь α.

Композиция непрерывных функций непрерывна, значит, f ◦ α — путь между x и y.

Лемма 2.8.2. Способность быть соединёнными путём — отношение эквивалетности.

Доказательство.

• Рефлексивность. Постоянное отображение непрерывно.

• Симметричность. Если α : [0; 1] → X — путь, то α ◦ (1− x) — тоже путь.

• Транзитивность. Если α — путь между x, y, а β — путь между y, z, то γ : [0; 1] → X

γ(t) =

{
α(2t), t ∈

[
0; 1

2

]
β(2t− 1), t ∈

[
1
2 ; 1
]

γ непрерывна, так как α([0; 1]) и β([0; 1]) — фундаментальное покрытие γ([0; 1]) (определе-
ние 2.5.1).

Определение 2.8.20 (Компоненты линейной связности). Классы эквивалентности по отношению
способности быть соединёнными путём.

Замечание. Число компонент линейной связности — топологический инвариант.

2.8.6 Связность и линейная связность

Теорема 2.8.16. Из линейной связности следует связность.

Доказательство. ∀x, y ∈ X : ∃α — путь между x и y. Так как отрезок связен, то образ пути
α([0; 1]) тоже связен.

Таким образом, α([0; 1]) ⊂ C, где C — компонента связности точки x.

Получаем, что ∀y ∈ X : y ∈ C, откуда C = X

Следствие 2.8.4. Компоненты линейной связности содержатся в компонентах связности.
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Контрпример (Связное, но не линейно связное множество).

• Рассмотрим пространство R2.

В нём график y = cos
(
1
x

)
A :=

{
(x, y) ∈ R2 | y = cos

(
1

x

)
, x > 0

}
линейно связен, значит, связен.

Рассмотрим X := A ∪ {(0, 0)}. Так как ClR2 A = A ∪ {(0, y) | y ∈ [−1; 1]}, то ClX A = X, то
есть X связно.

• В то же время точка (0, 0) образуют одноточечную компоненту линейной связности. От
противного: пусть есть путь α : [0, 1] → X с началом в (0, 0). Обозначим T = α−1((0, 0)).

– Докажем, что T открыто. Пусть t0 ∈ T — произвольный элемент. Рассмотрим единичный
шар B1((0, 0)). Из непрерывности пути ∃δ > 0 : α(Bδ(t0)) ⊂ B1((0, 0)).

Пусть ∃t1 ∈ Bδ(t0) : α(t1) ̸= (0, 0). Запишем путь покомпонентно: α(t) = (x(t), y(t)). Оба
отображения x, y непрерывны, по теореме о промежуточном значении все значения из
(x(t0), x(t1)) достигаются.

В частности, достигается 1
2πn∗

= x(t∗) для достаточно большого n∗ и t∗ между t0 и t1.
Тогда заключаем, что y(t∗) = 1 и приходим к противоречию — α(t∗) /∈ B1((0, 0)).

Таким образом ∀t1 ∈ Bδ((0, 0)): α(t1) = (0, 0) и T открыто.

– T замкнуто, как прообраз замкнутого. Значит, T и замкнуто, и открыто, но так как
это — непустое подмножество [0, 1], то T = [0, 1], откуда все пути с началом в (0, 0)
постоянны.

Пространства, в которых всякая точка имеет некоторую линейно связную окрестность

Примеры.

• Какое-то открытое евклидово подмножество U ⊂ Rn.

• Определение 2.8.21 (Топологическое многообразие размерности n). Хаусдорфовое простран-
ство X со счётной базой, такое, что ∀x ∈ X : ∃Ux ∈ ΩX : Ux ∼ Rn.

Так, примером многообразия размерности n является Sn — стандартная сфера в Rn+1.

Теорема 2.8.17. Для пространств, в которых всякая точка имеет некоторую линейно связную
окрестность, линейная связность совпадает со связностью, причём компоненты связности открыты.

Доказательство. Пусть W — компонента линейной связности. Рассмотрим произвольную a ∈ W
и её линейно связную окрестность Ua. Из-за линейной связности Ua ⊂ W , значит, W открыто.

Если какая-то компонента связности состоит из некоторых компонент линейной связности, то она
бьётся на некоторые открытые множества, противоречие.

2.8.7 Негомеоморфность

Теорема 2.8.18. Следующие множества попарно негомеоморфны:

[0; 1] [0; 1) R S1 R2

Доказательство.

• В [0; 1] есть две точки (0 и 1), такие, что [0; 1] \ {0, 1} по-прежнему связно.

• В [0; 1) есть одна точка (0), но нету двух, таких, что при выкидывании их вместе простран-
ство останется связным.
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• В R нет ни одной точки, при выкидывании которой пространство останется связным.

• В S1 есть одна точка, при выкидывании которой пространство останется связным, причём
это любая точка, а в полуинтервале — не любая.

• В R2 есть как минимум 3 точки, при выкидывании которых пространство не потеряет связ-
ность — например, (0, 0), (0, 1), (0, 2).

Замечание. R2 не потеряет связность при выкидывании конечного числа точек, так как оно
останется линейно связным.

2.8.8 Компактные пространства и множества

Определение 2.8.22 (Компактное топологическое пространство). Из любого открытого покрытия
пространства можно выделить конечное подпокрытие.

Примеры.

• Конечное пространство компактно.

• Бесконечное дискретное пространство некомпактно — из покрытия одноточечными множе-
ствами не выделить конечное подпокрытие.

• Полуинтервал (0, 1] некомпактен — можно рассмотреть бесконечное покрытие (0; 1] =
∞⋃

n=1
( 1n ; 1].

• Пусть A ⊂ X.

Замечание. Следующие условия равносильны:

– A компактно в индуцированной топологии.

– Для любого Γ ⊂ ΩX , такого, что
⋃

Γ ⊃ A можно выделить конечное подмножество Γ с
тем же свойством.

• Лемма 2.8.3 (Лемма Гейне — Бореля). Отрезок [0, 1] компактен.

Доказательство. От противного. Зафиксируем покрытие отрезка [0, 1], из которого не выде-
лить конечное подпокрытие.

Положим [a0, b0] := [0, 1].

Построим по индукцию систему вложенных отрезков со сколь угодно малыми длинами [ai, bi],
такую, что из покрытия [ai, bi] не выделить конечное. В самом деле, если из покрытия [ai, bi]
не выделить конечное, то это же верно и либо для

[
ai,

ai+bi
2

]
, либо для

[
ai+bi

2 , bi
]
.

Рассмотрим {c} =
∞⋂
i=1

[ai, bi]. По определению покрытия найдётся открытое множество Uc ∋ c,

значит, есть открытый шар Br(c) ⊂ Uc.

Значит, найдётся отрезок, лежащий внутри данного шара. Для него получилось неверно, что
из его покрытия не выделить конечное, противоречие.

Теорема 2.8.19. X компактно, A ⊂ X замкнуто ⇒ A компактно.

Доказательство. Рассмотрим произвольное открытое покрытие A, назовём его Γ. Заметим, что
Γ ∪ (X \ A) — открытое покрытие X, получается, из него можно выделить конечное подпокрытие
Γ̃.

Значит, Γ̃ \ (X \A) — конечное подпокрытие A, так как A ∩ (X \A) = ∅.

Теорема 2.8.20. Произведение двух компактов — компакт.
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Доказательство.

Лемма 2.8.4. Заметим, что для проверки на компактность достаточно проверять
только покрытия элементами из базы Σ = {Vβ1

, . . . , Vβn
}.

Доказательство леммы.

Рассмотрим произвольное покрытие Γ, ∀U ∈ Γ : U =
⋃

какие-то β

Vβ , где Vβ ∈ Σ.

Из покрытия всеми такими Vβ можно выделить конечное подпокрытие Σ̃. Тогда сопоста-
вим всякому Vβ ∈ Σ̃ одно любое U ∈ Γ : Vβ ⊂ U . Это искомое конечное подпокрытие.

Рассмотрим произвольное Γ — покрытие X × Y множествами из базы — они имеют вид Uα × Vβ ,
где Uα ∈ ΩX , Uβ ∈ ΩY .

Посмотрим на произвольный x ∈ X. Множество {x} × Y компактно, так как оно гомеоморфно
Y . Значит, можно выделить конечное подпокрытие, покрывающее {x} × Y , назовём это покрытие
{Ux

i × V x
i }i=1..Nx

⊂ Γ.

Сопоставим всякому x : Wx =
Nx⋂
i=1

Ux
i . Это пересечение конечного числа открытых множеств, оно

открыто.

Так как X компактно, то можно выбрать некоторое конечное множество X̃ ⊂ X, такое, что⋃
x̃∈X̃

Wx̃ = X.

Получаем конечное подпокрытие X × Y , оно равно⋃
x̃∈X̃

{
U x̃
i × V x̃

i

}
i=1..Nx̃

Интересный факт (Теорема Тихонова). Тихоновское произведение любого числа компактных про-
странств компактно.

Теорема 2.8.21. Пусть X — хаусдорфово пространство, а A ⊂ X — компактно. Тогда A замкнуто.

Доказательство. Докажем, что X \A открыто. Рассмотрим y ∈ X \A.

Согласно хаусдорфовости, ∀a ∈ A : ∃Ua ∋ a, Uy ∋ y : Ua ∩ Uy = ∅.

Получили покрытие множества A открытыми множествами; выделим из них конечное подпокрытие
{Uai}i=1..N .

Каждой такой окрестности Uai соответствует своя окрестность точки y. Пересечение конечного
числа открытых множеств открыто, получили, что y содержится в X \A вместе с некоторой своей
окрестностью.

Лекция VII
6 декабря 2022 г.

Теорема 2.8.22. X — хаусдорфово и компактно ⇒ X — нормально.

Доказательство.

• T1. Очевидно из хаусдорфовости.

30



• T4. Рассмотрим A,B ⊂ X — замкнутые множества. Они компактны, как замкнутые подмно-
жества компакта.

Зафиксируем a ∈ A.

Из хаусдорфовости ∀b ∈ B найдутся непересекающиеся окрестности ∃Va,b ∋ a, Ua,b ∋ b,
обозначим Ua :=

⋃
b∈B

Ua,b.

Ua ⊃ B, значит, можно выделить конечное подпокрытие Ũa :=
N⋃
i=1

Ua,bi ⊃ B.

Обозначим Va :=
N⋂
i=1

Va,bi . Заметим, что a ∈ V, причём Va ∩Ua = ∅, а Va ∩ Ũa = ∅ и подавно.

Теперь аналогично переберём все a ∈ A. Здесь уже из покрытия A ⊂
⋃

a∈A

Va выберем конечное

подпокрытие A ⊂
M⋃
j=1

Vaj
. Соответствующее пересечение B ⊂

M⋂
j=1

Ũaj
открыто.

Теорема 2.8.23. Компактное метрическое пространство (X, d) ограничено.

Доказательство. Пусть a ∈ X — произвольная точка. Так как ∀x ∈ X : d(a, x) ∈ R, то
∞⋃

n=1
Bn(a) = X.

Выделив из покрытия конечное подпокрытие, найдём такое n ∈ N : Bn(a) = X. Тогда, согласно
неравенству треугольника, расстояние между любыми двумя точками не превышает 2n.

Следствие 2.8.5. Компактное множество в метрическом пространстве замкнуто и ограниче-
но.

Доказательство. Из (теорема 2.8.23) ограничено, из (теорема 2.8.21) — замкнуто.

Теорема 2.8.24. A ⊂ R — компактно ⇐⇒ A замкнуто и ограничено.

Доказательство.

⇒. См. следствие.

⇐. Так как A ограничено, то ∃R ∈ R : A ⊂ [−R;R]n. Заметим, что [−R;R]n — компактно,
как произведение компактов. Тогда A — замкнутое подмножество компакта, откуда A —
компактно.

Компактность на языке замкнутых множеств:

Определение 2.8.23 (Центрированный набор подмножеств {Aα}α∈Λ). Такой набор, что любое его
конечное подмножество имеет непустое пересечение.

Пример. A1 ⊃ A2 ⊃ A3 . . . центрирован.

Теорема 2.8.25. X компактно ⇐⇒ любой центрированный набор замкнутых подмножеств X
имеет непустое пересечение.

Доказательство.

Факт 2.8.3. {X \Bα}α∈Λ — покрытие ⇐⇒
⋂

α∈Λ

Bα = ∅.

⇒. От противного: пусть есть центрированный набор замкнутых множеств с пустым пересече-
нием. Тогда {X \Aα} — открытое покрытие, из него можно выделить конечное подпокрытие.
Тогда мы нашли конечное подмножество с пустым пересечением ⇒ набор не центрирован.
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⇐. От противного: пусть Uα — открытое покрытие, из которого не выделить конечное подпокрытие.
Это значит, что

⋂
(X \ Uαi) ̸= ∅ для любого конечного подмножества индексов {αi}.

Но тогда получается, что {X \ Uα}α∈Λ центрирован по определению, значит, Uα — не покрытие.
Противоречие.

Следствие 2.8.6. Пусть {Aα}α∈Λ — центрированный набор замкнутых множеств.

Если ∃α0 ∈ Λ: Aα0 компактно, то
⋂

α∈Λ

Aα ̸= ∅.

Доказательство. Сузим набор на Aα0 : рассмотрим {Bα}α∈Λ = {Aα ∩Aα0 | α ∈ Λ}. Получили
центрированный набор замкнутых подмножеств компакта Aα0

. Значит, пересечение непусто.

Теорема 2.8.26. Непрерывный образ компакта — компакт.

Доказательство. Рассмотрим непрерывное отображение f : X → Y , где X — компакт. Докажем,
что f(X) — компакт. Рассмотрим произвольное открытое покрытие f(X) =

⋃
α∈Λ

Uα. Но ∀α ∈ Λ : Uα

открыто в f(X), значит, f−1(Uα) открыто в X. Объединение прообразов — прообраз объединения,
значит, {f−1(Uα)} — покрытие X. Из него можно выделить открытое подпокрытие.

Следствие 2.8.7. Компактность — топологическое свойство.

Теорема 2.8.27 (Вейерштрасс). Непрерывная функция f : X → R на компакте достигает свои
наибольшее и наименьшее значения.

Доказательство. f(X) — образ компакта — компакт, значит, содержит свои предельные точки.
f(X) ∋ inf f, sup f .

Теорема 2.8.28. Пусть f : X → Y — непрерывная биекция, где X — компактно, а Y — хаусдор-
фово. Тогда f — гомеоморфизм.

Доказательство. Фактически, достаточно доказать, что f−1 непрерывно.

Пусть F ⊂ X — произвольное замкнутое подмножество X (откуда F — компакт).

f(F) — образ компакта, компакт, в хаусдорфовом пространстве компакт замкнут ⇒ f(F) — за-
мкнут.

Определение 2.8.24 (Топологическое вложение). Такое отображение f : X → Y , что f — гомео-
морфизм между X и f(X).

Контрпример (Пример инъективного неперывного отображения — не вложения). Улитка — откры-
тый интервал сворачивается в букву ρ. Обратное не непрерывно, так как интервал не компактен.

Следствие 2.8.8. Непрерывная инъекция f : X︸︷︷︸
компакт

→ Y︸︷︷︸
хасудорфово

— непременно вложение.

Теорема 2.8.29 (Лемма Лебега). Пусть X — компактное метрическое пространство, {Uα}α∈Λ —
открытое покрытие.

Тогда ∃r > 0 : ∀a ∈ X : ∃Uα : Br(a) ⊂ Uα.

Определение 2.8.25 (Число Лебега). Такой радиус r.

Доказательство. Сопоставим каждой точке a ∈ X радиус r(a), такой, что ∃Uα : Br(a)(a) ⊂ Uα.

Тогда {B 1
2 r(a)

(a)} — тоже открытое покрытие, выделим из него конечное подпокрытие {B 1
2 r(ai)(ai)}

n
i=1.

Тогда числом Лебега является, например, r :=
n

min
i=1

1
2r(ai).

В самом деле, ∀a ∈ X : ∃B 1
2 r(ai)(ai) ∋ a ⇒ |a− ai| < 1

2r(ai) ⇒ Br(a) ⊂ Uαa
.
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Следствие 2.8.9 (Лемма Лебега для отображений). Пусть (X, d) — компактно, дано открытое
покрытие {Uα}α∈Λ. Для непрерывного отображения f : X → Y найдётся радиус r > 0 : ∀x ∈
X : ∃Uα : f(Br(x)) ⊂ Uα.

Доказательство. Рассмотреть {f−1(Uα)}α∈Λ.

Пусть (X, dx) и (Y, dy) — два метрических пространства.

Определение 2.8.26 (Равномерно неперрывное отображение). Такое отображение f : X → Y ,
такое, что ∀ε > 0 : ∃δ > 0 : ∀x, y ∈ X : dx(x, y) < δ ⇒ dy(f(x), f(y)) < ε.

Теорема 2.8.30. Любое непрерывное отображение f : X︸︷︷︸
компакт

→ Y — равномерно непрерывно.

Доказательство. Рассмотрим покрытие {B 1
2 ε
(y)}y∈Y . В качестве δ подойдёт число Лебега для

покрытия {f−1
(
B 1

2 ε

)
}.

Определение 2.8.27 (Предел последовательности {ai}i∈N ⊂ X). Такая точка b ∈ X, что

∀Ub ∈ ΩX : ∃M ∈ N : ∀n > M : an ∈ Ub

Примеры.

• Постоянная последовательность всегда сходится к своему образу.

• Если последовательность сходится к пределу b, то любая подпоследовательность тоже схо-
дится к b.

• В антидискретном пространстве любая последовательность сходится к любому пределу.

• В дискретном пространстве последовательность сходится ⇐⇒ стабилизируется.

Теорема 2.8.31. В хаусдорфовом пространстве всякая последовательность имеет не более одного
предела.

Доказательство. От противного.

Определение 2.8.28 (Секвенциальное замыкание A ⊂ X). Совокупность пределов последователь-
ностей, имеющих все точки в A. Обозначается SClA.

Контрпример. Не всегда секвенциальное замыкание — множество предельных точек. Можно рас-
смотреть прямую с топологией не более, чем счётных дополнений:

SCl(0, 1) = (0, 1), в то время как Cl(0, 1) = R

Теорема 2.8.32. SClA ⊂ ClA.

Доказательство. Предел всякой последовательности — точка прикосновения для A, поэтому оче-
видно.

Теорема 2.8.33. В пространстве X, удовлетворяющем первой аксиоме счётности, ∀A ⊂ X :
SClA = ClA.

Доказательство. Пусть b ∈ ClA. Рассмотрим счётную базу Σb = {Vi}i∈N. Построим убывающую

счётную базу

{
Ui =

i⋂
j=1

Vj

}
i∈N

Построим последовательность {ai}i∈N так, чтобы выполнялось ai ∈ Ui ∩A. Она сходится к b.
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2.9 Полные метрические пространства

Пусть (X, d) — метрическое пространство.

Определение 2.9.1 (Фундаментальная последовательность). {ai}i∈N. Для любого ε > 0 : ∃M ∈
N : ∀n,m > M : dx(an, am) < ε. Их также называют последовательность Коши или сходящаяся
в себе последовательность.

Свойства:

• Сходится ⇒ фундаментальна.

• Фундаментальна ⇒ ограничена (лежит в неком шаре).

• Фундаментальна, и содержит сходящуюся подпоследовательность ⇒ сходится туда же.

Определение 2.9.2 (Полное метрическое пространство). В нём всякая фундаментальная последо-
вательность имеет предел.

Примеры.

• R полно.

• R \ {0} не полно.

• Теорема 2.9.1. Rn полно.

Доказательство. Рассмотрим фундаментальную последовательность {ak}k∈N = {(a1k, a2k, . . . , ank )}k∈N.
По каждой координате последовательность фундаментальна, из полноты R всякая имеет пре-
дел bi, значит, вся последовательность сходится к (b1, . . . , bn).

Теорема 2.9.2. Замкнутое подмножество Y полного пространства X полно.

Доказательство. an −→
n→∞

b ∈ X, b — точка прикосновения для Y , значит, b ∈ Y .

Примеры.

• Отрезок — замкнутое подмножество прямой.

• Интервал не является полным, так как не замкнут, хотя и подмножество прямой.

Предостережение. Полнота — не топологическое свойство, например, (0, 1) ∼ R.

Теорема 2.9.3 (О вложенных шарах). Метрическое пространство полно ⇐⇒ любая последова-
тельность вложенных замкнутых шаров с радиусом, стремящимся к 0, обладает непустым пересе-
чением.

Замечание. Более общая формулировка говорит о последовательности вложенных замкнутых мно-
жеств, с диаметрами, стремящимися к 0. Доказательство не меняется.

Доказательство.

⇒. Dr1(a1) ⊃ Dr2(a2) ⊃. . . выберем в каждом шаре по точке. Последовательность фундамен-
тальна, ∃a — предел. Покажем, что ∀i ∈ N : a ∈ Dri(ai):

Например, от противного: ∃i : d(ai, a) > ri, значит, для ε := d(ai, a)−ri, согласно неравенству
треугольника, ∀j > i : Bε(a) ∩Drj (aj) = ∅.

⇐. Используя данное свойство, построим точку, являющуюся пределом последовательности {ai}i∈N.

Для этого рассмотрим последовательность шаров радиусами 1/2n.

Согласно фундаментальности, для ε = 1/2n найдётся Mn : ∀n,m ⩾ Mn : d(an, am) < ε.

Определим последовательность вложенных шаров D 1

2n−1
(aMn

). Несложно проверить, что ша-
ры вложены, а точка в их пересечении является пределом некоторой подпоследовательности
{ai}.
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2.9.1 Нигде не плотные множества

Определение 2.9.3 (Нигде не плотное множество A). Множество, внутренность замыкания кото-
рого пуста.

Определение 2.9.4 (Внешность A). Внутренность дополнения. Обозначается
◦
A или Ext(A).

X = IntA ⊔ FrA ⊔
◦
A.

Лекция VIII
13 декабря 2022 г.

Теорема 2.9.4. Следующие условия равносильны:

1. Множество A нигде не плотно.

2. Ext(A) всюду плотно.

3. ∀U ∈ Ω : ∃V ∋ Ω : V ⊂ U ∧ V ∩A = ∅.

Доказательство.

• (1) ⇐⇒ (2). IntClA = ∅ ⇐⇒ ∀x ∈ X : ∀Ux ∈ Ω : Ux ∩ (X \ ClA) ̸= ∅ ⇐⇒ Ux ∩ ExtA ̸=
∅ ⇐⇒ ExtA всюду плотно.

• (2) ⇐⇒ (3). V ∩A = ∅ ⇐⇒ V ⊂ Ext(A).

Теорема 2.9.5 (Бэр). Полное метрическое пространство нельзя покрыть счётным набором нигде
не плотных множеств.

Доказательство. От противного: пусть {Ai}i∈N покрывают полное пространство X.

Рассмотрим произвольный открытый шар B0. Будем поддерживать инвариант: Bn ∩
n⋃

i=1

Ai = ∅,

причём радиус шара Bn меньше 1
n .

При переходе от Bn к Bn+1 заметим, что так как Bn∩
n⋃

i=1

Ai = ∅, то Bn∩
n+1⋃
i=1

Ai = Bn∩An+1. Так

как An+1 нигде не плотно, то найдётся внутри Bn открытое множество U , такое, что U∩An+1 = ∅.
Внутри U найдётся шар достаточно маленького радиуса, положим его за Bn+1.

Внутри каждого шара Bi возьмём замкнутый шар меньшего радиуса Di, так, чтобы последова-
тельность получилась вложенной. Из полноты пространства у них есть общая точка; эта точка не
покрыта последовательностью {Ai}i∈N.

Контрпример (Неполное метрическое пространство, которое можно покрыть счётным набором
нигде не плотных множеств). Q =

⋃
r∈Q

{r}.

Следствие 2.9.1. Полное (метрическое) пространство без изолированных точек несчётно.

(b ∈ X — изолированная точка пространства X ⇐⇒ {b} открыто в X.)

Доказательство. От противного: множество счётно. Так как внутренность замыкания {b} пуста,
то {b} нигде не плотно. Отсюда множество покрывается одноточечными множествами, противоре-
чие.

Определение 2.9.5 (Пополнение метрического пространства X). Метрическое пространство X,
такое, что

• X полное.

• X ⊂ X.
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• X всюду плотно в X.

Интересный факт. У любого метрического пространства есть пополнение.

План доказательства: Сказать, что последовательности Коши u и v эквивалентны u ∼ v, если
lim

n→∞
d(un, vn) = 0. Ввести X = {последовательности Коши}/ ∼. Доказать, что X всюду плотно, и

распространить на него метрику из X.

2.10 Секвенциальная компактность

Определение 2.10.1 (X секвенциально компактно). Любая последовательность содержит сходя-
щуюся подпоследовательность.

Определение 2.10.2 (b — точка накопления для A). ∀Ub ∈ Ω : |Ub ∩A| = ∞.

Теорема 2.10.1. В компактном пространстве любое бесконечное множество содержит точку на-
копления.

Доказательство. От противного: всякая точка x имеет окрестность U(x), пересекающуюся с
A лишь по конечному множеству точек. Тогда X =

⋃
x∈X

U(x). Выберем конечное подпокрытие,

получим противоречие с бесконечностью A.

Теорема 2.10.2. Метрическое пространство X компактно ⇒ X секвенциально компактно.

Доказательство. Рассмотрим произвольную последовательность {ui}i∈N, выберем в ней сходящу-
юся подпоследовательность.

Если множество {ui | i ∈ N} конечно, то ∃v : ui = v бесконечно часто. Тогда выделим постоянную
подпоследовательность, сходящуюся к v.

Иначе {ui | i ∈ N} бесконечно. Рассмотрим в X b — точку накопления для {ui | i ∈ N}.

Введём последовательность шаров B1/n(b), в шаре B1/n выберем n-ю точку для подпоследователь-
ности. Так как внутри всякого шара бесконечно много точек, то процесс обречён на успех.

2.11 Вполне ограниченные метрические пространства

Пусть X — метрическое пространство.

Определение 2.11.1 (ε-сеть). Такое A ⊂ X, что ∀x ∈ X : ∃a ∈ A : d(x, a) < ε.

Определение 2.11.2 (X вполне ограничено). ∀ε > 0 существует конечная ε-сеть.

Пример (Не компактное, но вполне ограниченное пространство). Интервал, например, (0, 1).

Теорема 2.11.1. Если X — метрическое пространство, то следующие условия эквивалентны:

• X компактно.

• X секвенциально компактно.

• X полно и вполне ограничено.

Доказательство.

• (1) ⇒ (2). (теорема 2.10.2)

• (2) ⇒ (3).
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– Вполне ограниченность. От противного: ∃ε > 0, такое, что нет конечной ε-сети. По-
строим последовательность без сходящейся подпоследовательности. Пусть на очередном
шаге последовательность {ai}i=1..n. Это не ε-сеть (так как конечна), возьмём an+1 так,
чтобы выполнялось min

i=1..n
d(an+1, ai) ⩾ ε.

Попарное расстояние между любой парой точек не меньше ε.

– Полнота. Во всякой фундаментальной последовательности есть подпоследовательность,
сходящаяся к v. Тогда вся последовательность тоже сходится к v.

• (3) ⇒ (1). От противного: пусть {Uα}α∈Λ — покрытие, из которого не выделить конечное
подпокрытие. Построим последовательность вложенных замкнутых множеств {Ci}i∈N.

– Рассмотрим конечную 1-сеть A1. Шары {D1(a) | a ∈ A1} покрывают всё пространство;
из отсутствия конечного подпокрытия найдётся шар C1 := Di, который не покрыть
конечным числом элементов из Uα.

– На n-м шаге возьмём 1
n -сеть для шара Dn−1. Найдётся шар Dj радиуса 1

n , такой, что
его не покрыть конечным числом элементов {Uα}. Положим Cn := Cn−1 ∩Dj .

Согласно теореме о вложенных шарах (точнее замечания к ней), пересечение
n⋂

i=1

Ci состоит

из одной точки, назовём её c.

c ∈ Uα для некоего α ∈ Λ, причём лежит вместе с некоторым шаром. Тогда начиная с неко-
торого места Cn ⊂ Uα, откуда противоречие с тем, что шары Cn нельзя покрыть конечным
числом элементов покрытия.

Теорема 2.11.2. Метрическое пространство X компактно ⇒ выполняется вторая аксиома счётно-
сти.

Доказательство.

Лемма 2.11.1. Метрическое пространство X вполне ограничено ⇒ выполняется вто-
рая аксиома счётности.

Доказательство леммы.

Возьмём A — объединение по n ∈ N всех 1
n -сетей.

A всюду плотно, так как пересекается с любым шаром — с шаром радиуса r A имеет
общую точку в

⌈
1
r

⌉
сети.

Отсюда X сепарабельно (A счётно).

Теорема 2.11.3. В пространстве со второй аксиомой счётности компактность равносильна секвен-
циальной компактности.

Доказательство.

⇒. Из компактности и первой аксиомы счётности (следует из второй) следует секвенциальная
компактность. Доказательство аналогично частному случаю (теорема 2.10.2).

⇐. Выделим из покрытия
⋃
Uα = X конечное подпокрытие.

По теореме Линделёфа (теорема 2.8.2) в пространстве с 2AC найдётся счётное подпокрытие
∞⋃
i=1

Ui = X. Положим Fi := X \ Ui, обозначим Wn =
n⋂

i=1

Fi.
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От противного: для всякого конечного n ∈ N : Wn ̸= ∅. Тогда выберем в последовательности
множеств W1 ⊃ W2 . . . последовательность точек ai ∈ Wi. В ней есть подпоследовательность,

которая сходится к некой точке b ∈
∞⋂
i=1

Wi. (b ∈ SClWi ⇒ b ∈ ClWi)

Получаем, что ∀i ∈ N : b /∈ Ui, то есть, противоречие, Ui — не покрытие.

2.12 Факторпространства

Пусть (X,Ω) — топологическое пространство, ∼ — отношение эквивалентности на X.

Определение 2.12.1 (Факторпространство X по отношению ∼). Множество X/∼, такое, что
U ⊂ X/∼ открыто ⇐⇒ p−1(U) открыто в X. Здесь p : X → X/∼ — (каноническая) проекция,
x 7→ x.

Факт 2.12.1. Проекция p непрерывна.

2.12.1 Свойства

• Факторпространство связного пространства связно.

• Факторпространство линейно связного пространство линейно связно.

• Факторпространство сепарабельного пространства сепарабельно.

• Факторпространство компактного пространства компактно.

Примеры (Без доказательства).

• Отрезок со склеенными концами — окружность. [0, 1]/0∼1 ∼ S1.

• Квадрат со склеенными противоположными сторонами — тор T 2 = S1 × S1.

• Восьмиугольник, склеенный по формуле aba−1b−1cdc−1d−1 — сфера с двумя ручками; два
склеенных через дырку тора.

• Если склеим квадрат вот так, получим цилиндр.

• Если склеим квадрат по-другому, получим лист Мёбиуса.

2.12.2 Частные случаи факторизации

• Стягивание подпространства A ⊂ X в точку. x ∼ y ⇐⇒

[
x = y

x, y ∈ A
. Так, в отрезке [0, 1] при

стягивании подпространства {0, 1} в точку опять же получим окружность.

• В замкнутом круге D1(0) при стягивании окружности S1(0) получим S2.

• Проективная плоскость — отождествление диаметрально противоположных точек на окруж-
ности круга.

• Определение 2.12.2 (Дизъюнктное объединение топологических пространств). U открыто в
X ⊔ Y ⇐⇒ U ∩X открыто в X и U ∩ Y открыто в Y .

Теперь можно, например, склеить из двух отрезков AB и CD окружность, отождествив
A ∼ C и B ∼ D.

X,Y — топологические пространства. Пусть A ⊂ X, f : A → Y .

Определение 2.12.3 (Склейка X и Y по отображению f). Факторпространство X ⊔Y/∼, где ∼ —
наименьшее по включению отображение эквивалентности, такое, что x ∼ f(x).

Обозначается X ⊔f Y .

Свойства.
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• Фактортопология является топологией (проверить).

• Факторпространство связного пространства связно.

• Факторпространство линейно связного пространства связно.

• Факторпространство компактного пространства компактно.

Лекция IX
20 декабря 2022 г.

Теорема 2.12.1. Y → X ⊔f Y — топологическое вложение.

Доказательство. Проекция X ⊔ Y → X ⊔f Y непрерывна по определению фактортопологии. Зна-
чит, сужение проекции Y → X ⊔f Y непрерывно.

Обратно: рассмотрим любое открытое U ⊂ Y . Докажем, что его образ в p(U) открыт в X ⊔f Y .
По определению склейки по отображению p(U) = p(U ⊔ f−1(U)). Это множество открыто по
определению фактортопологии, и из-за непрерывности f .

Теорема 2.12.2. Пусть X,Y — топологические пространства, X склеивают по ∼, f : X/ ∼→ Y .
Утверждается, что условие непрерывности f равносильно условию непрерывности f ◦ p.

Доказательство.

⇒. Композиция непрерывных непрерывна.

⇐. Проверим по определению непрерывность f . Рассмотрим открытое U ⊂ Y . Так как f ◦ p
непрерывна, то p−1(f−1(U)) открыто. Но p можно «отменить»: p(p−1(f−1(U))) открыто по
определению фактортопологии.

Теорема 2.12.3 (О пропускании через фактор). Пусть X,Y — топологические пространства, ∼
— отношение эквивалентности на X. Рассмотрим g : X → Y , такое, что оно уважает ∼, то есть
x1 ∼ x2 ⇒ f(x1) = f(x2).

Утверждается, что найдётся непрерывная f : X/ ∼→ Y , такое, ч то g = f◦p, где p — каноническая
проекция.

Доказательство. f (x) = g(x). Определение корректно, так как g уважает ∼.

Заметим, что f непрерывна, так как f ◦ p непрерывна.

Теорема 2.12.4. Пусть f : X → Y — непрерывное сюръективное отображение.

Рассмотрим отношение эквивалентности на X: x ∼ y ⇐⇒ f(x) = f(y).

Утверждается, что X/ ∼ гомеоморфно Y .

Доказательство. Гомеоморфизм f : X/ ∼→ Y существует и непрерывен согласно предыдущей
теореме.

Он очевидно инъективен и сюръективен из-за сюръективности f .

f−1 непрерывно, так как f(U) открыто для открытого U

Лекция X
16 февраля 2022 г.
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2.13 Многообразия

Определение 2.13.1 (m-мерное многообразие). Хаусдорфово топологическое пространство со счёт-
ной базой, любая точка которого имеет окрестность, гомеоморфную Rm.

Контрпример. Две прямые, склеенные везде, кроме пары точек. Не хаусдорфово.

Интересный факт (Теорема об инварианте размерности). Никакие два непустые открытые под-
множества U ⊂ Rn и V ⊂ Rn не совпадают.

Примеры.

• Rn и всякое его открытое подмножество.

• Для n = 0 : R0 = {pt}. Многообразием является всякое счётное дискретное топологическое
пространство.

• Sn — сфера размерности n. В качестве окрестности точки x рассмотрим Sn \ {y}, где y —
произвольная точка сферы, y ̸= x.

• Rpn. Рассмотрим Sn ⊂ Rn. Введём на сфере отношение эквивалентности: x = −x, где x —
точки сферы. Rpn ∼= Sn/∼. Образы координат при проекции на «координатную полусферу».

В частности Rp1 ∼= Rp.

Определение 2.13.2 (m-мерное многообразие с краем). Хаусдорфово топологическое простран-
ство со счётной базой, любая точка которого имеет окрестность, гомеоморфную Rm или Rm

+ :=
{(x1, . . . , xm) | x1 ⩾ 0} ⊂ Rm.

Определение 2.13.3 (Край многообразия). Множество точек, для которых не существует окрест-
ности, гомеоморфной Rm.

Интересный факт. Rm
+ негомеоморфно никакому открытому подмножеству Rn для любого n.

Интересный факт. Край многообразия размерности n — многообразие размерности n− 1.

Определение 2.13.4 (Замкнутое многообразие). Компактное многообразие без края.

Пример. Например, сфера Sn.

Контрпример. Полупространство.

Интересный факт. Всякое замкнутое связное многообразие размерности 1 гомеоморфно окруж-
ности S1.

Примеры (Примеры двумерных многообразий).

•

Примеры (Двумерные многообразия).

• Лента Мёбиуса: двумерное многообразие с краем. Склейка прямоугольника по формуле axay
или треугольника — по формуле aax. Край ленты Мёбиуса — окружность

• Тор: склейка прямоугольника по формуле aba−1b−1.

• Бутылка Клейна: склейка прямоугольника по формуле aba−1b.

• Rp2 ∼= S2/∼ эквивалентно склейке aa. (теорема 2.12.4)

2.13.1 Модельные поверхности

• Сфера с n (открытыми) дырками.

• Сфера с p ручками: к сфере с p дырками приклеить по ручке (тор с дыркой) каждой дырке.

• Сфера с q плёнками к сфере с q дырками приклеить по плёнке (ленте Мёбиуса) каждой
дырке.
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Утверждается, что если у дырки отождествить противоположные точки, то получится закле-
ивание дырки плёнкой.

• Сфера с n дырками, p ручками и q плёнками.

Утверждается, что если есть хотя бы одна плёнка, то p ручек и q плёнок гомеоморфны 2p+ q
плёнкам.

Определение 2.13.5 (Развёртка). Конечное множество непересекающихся многоугольников плос-
кости, у которых стороны разбиты на паре, и выбран линейный гомеоморфизм между сторонами
одной пары. Соответствующее факторпространство называется замкнутой 2-мерная поверхность.

Факт 2.13.1. Замкнутая 2-мерная поверхность является замкнутым двумерным многообра-
зием.

Доказательство. Компактность очевидна; проверим, что у каждой точки (внутренности много-
угольника, середины ребра, вершины) есть окрестность, гомеоморфная R2.

Замечание. Если поверхность связна, то у неё есть развёртка, состоящая из одного многоуголь-
ника.

Определение 2.13.6 (Ориентируемая развёртка). Всегда ребро a склеивается с ребром a−1.

Определение 2.13.7 (Каноническая развёртка первого типа). 4p-угольник, в котором стороны
склеены по правилу a1b1a

−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . Для данного p каноническая развёртка фиксирована.
Для p = 1 это тор; для p = 2 поверхность развёртки называется крендель. В общем случае это
сфера с p ручками.

Определение 2.13.8 (Каноническая развёртка второго типа). 2q-угольник, в котором стороны
склеены по правилу a1a1a2a2 . . . Для q = 1 поверхность развёртки — Rp1. В общем виде — сфера
с q плёнками.

После хитрого склеивания видно, что бутылка Клейна имеет формулу a−1a−1cc, то есть изоморфна
развёртке второго типа для q = 2.

Факт 2.13.2. Развёртка первого типа для фиксированного p изоморфна сфере с p ручками.

Доказательство. Будем приклеивать ручки по индукции. Заметим, что склейка пятиугольника
по формуле aba−1b−1x даёт тор с дыркой. Ну, дальше как-нибудь приклеим.

Факт 2.13.3. Аналогично доказываем, что развёртка второго типа изоморфна сфере с q
плёнками.

Теорема 2.13.1. • Любая связная замкнутая двумерная поверхность с ориентируемой развёрт-
кой изоморфна сфере с p ручками для некоего p.

• Любая связная замкнутая двумерная поверхность с неориентируемой развёрткой изоморфна
сфере с q плёнками для некоего q.

Лекция XI
2 марта 2022 г.

Пусть F — замкнутое двумерное многообразие

Определение 2.13.9 (Топологический треугольник). Пара (T, ϕ), где T ⊂ F — подпространство,
а ϕ : △

⊂R2

→ T — гомеоморфизм из произвольного треугольника плоскости (треугольник берётся

вместе со внутренностью) на T . Образы рёбер треугольника называются рёбрами топологического
треугольника, образы вершин — вершинами.

Определение 2.13.10 (Триангуляция замкнутого двумерного многообразия). Конечный набор то-
пологических треугольников K = {Ti, ϕi}i=1..n, такой, что выполняются условия:
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• Треугольники покрывают всё пространство:
n⋃

i=1

Ti = F .

• Пересечение любых двух треугольников — их общее ребро, общая вершина, либо пустое.

Определение 2.13.11 (Триангулируемая поверхность). Поверхность, у которой существует триан-
гуляция.

Интересный факт. У любого замкнутого компактного двумерного многообразия есть триангуля-
ция.

Hint: доказательство использует сильный вариант теоремы Жордана: замкнутая несамопересекаю-
щаяся кривая бьёт плоскость на две компоненты, такие, что одна из них — диск.

Предложение 2.13.1. Всякое компактное двумерное многообразие можно представить, как
факторпространство некоторой развёртки.

Доказательство. Рассмотрим произвольную триангуляцию, это частный случай развёртки: тре-
угольников — прообразов ϕi в триангуляции — конечное число; их можно расположить на одной
плоскости гомеоморфизмом из многих плоскостей в одну.

Совместим два треугольника в один, если их два ребра — общий прообраз какого-то ребра топо-
логического треугольника многообразия.

Надо аккуратно проследить за тем, чтобы гомеоморфизм был линейным, и, видимо, всё получится.

Утверждение: факторпространство объединения треугольников по условию развёртки — исходное
многообразие.

В общем, я не понимаю, какого уровня строгости ожидать, и не очень въезжаю вообще в то, что
рассказывается.

Интересный факт. Пространства, задаваемые различными каноническими развёртками негомео-
морфны. Доказательство в конце семестра будет использовать фундаментальную группу.

Теорема 2.13.2. Если развёртка ориентируемая, то она гомеоморфна поверхности, задаваемой
развёрткой I типа. Если развёртка неориентируемая, то она гомеоморфна поверхности, задаваемой
развёрткой II типа.

Доказательство. Приведём произвольную развёртку к каноническому виду, используя следующие
операции над развёртками:

1. Подразделение многоугольника на два. Плюс один многоугольник, плюс одно правило склей-
ки.

2. Обратная предыдущей: склеивание.

3. Свёртывание aa−1 = ничего (свёртка разрешается, если в многоугольнике хотя бы 3 ребра).

Займёмся комбинаторикой.

1. Так как факторпространство развёртки — поверхность — связна, то можно считать, что
развёртка — один многоугольник (склеим, если их несколько). Теперь все правила склейки
— одно циклическое слово типа abca−1deb−1d−1c−1 . . .

2. Убираем вхождения подстрок типа aa−1. Если в какой-то момент осталась строка aa−1, то
наша поверхность — сфера.

3. Приводим к развёртке, в которой все вершины эквивалентны. Как? Пусть есть две неэквива-
лентные вершины A ̸∼ B. Если такие нашлись, то можно считать, что они — соседние.

Пусть A − a − B − b − C, где a, b — правила склейки. Заметим, что b ̸= a−1, иначе бы мы
свернули B, а ещё b ̸= a, так как B ̸∼ A. Проведём ребро d = AC, разрежем по нему, склеим
по b.
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Заметим, что вершин, эквивалентных A стало на одну меньше, эквивалентных B — на одну
меньше, остальных количество не поменялось.

Иначе говоря, отрезали треугольник ABC, и приклеили его в другое место. Видимо, так
всегда можно сделать, хотя у меня это вызывает не очень много доверия.

Такими действиями можно переклеиваниями все вершины сделать эквивалентными.

4. Выделение лент Мёбиуса. Если где-то есть два вхождения символа c одного направления, то
есть слово имеет вид cω1cω2, то разрежем по диагонали d, склеим, получим ddω1(ω2)

−1.

Повторим этот шаг столько, сколько можно, теперь все правила склейки одного направления
идут подряд.

5. Выделение ручек. Если предыдущий шаг не привёл к канонической развёртки, то найдётся
две буквы c и c−1.

Утверждается, что найдутся ещё два символа d, d−1, такие, что в циклическом порядке d
идёт между c и c−1, а d−1 — нет. Это следует из того, что все вершины эквивалентны: если
бы таких d, d−1 не нашлось бы, то между вершинами от c до c−1 и между вершинами от c−1

до c не было бы связки эквивалентности.

Итак, слово развёртки имеет вид cω1dω2c
−1ω3d

−1ω4.

Разрежем по диагонали a, соединяющей соответствующие концы c и c−1 и склеим по d. По-
лучим слово cω1ω4aω3ω2c

−1a−1. Не, ну это нереально понять без картинок (я ещё наверняка
везде набагал при записи слов). . .

Теперь проведём диагональ b между соответствующими концами a и a−1, разрежем по нему
и склеим по c.

Получим слово ω1ω4a
−1bab−1a−1ω3ω2. Выделили ручку. Повторяем это тоже, пока можно.

6. Замена ручек лентами Мёбиуса. Пусть есть хотя бы одна ручка и хотя бы одна плёнка.
Слово имеет вид ccω1aba

−1ω2. Разрежем по центральной диагонали d (соединяющей середины
ручки и плёнки), склеим по c, получим слово abd(ω2)

−1badω1. Из a, b, d склеим три плёнки,
повторяем, пока можно.

2.13.2 Клеточные пространства

«Сейчас мы определим способ построения более страшных пространств, но всё ещё не очень пло-
хих» По-другому клеточные пространства называют CW-комплексы. C значит closure finiteness, W
значит Weak?? Возможно, раньше определение сильной и слабой топологии было противополож-
ным.

Определение 2.13.12 (Клеточное пространство размерности 0). Дискретное пространство — лю-
бой (возможно, несчётный) набор точек, каждая из которых — открытое множество.

Эти точки называют (нульмерными) клетками.

Определение 2.13.13 (Диск размерности k). Замкнутый шар в Rk. Его граница δDk — сфера
Sk−1.

Определение 2.13.14 (Клеточное пространство размерности n ∈ N). Топологическое простран-
ство, полученное из клеточного пространства размерности n−1, в него вклеили множество дисков
{Dn

α}α∈Λ, приклеивая по их границам: по отображению ϕα = δDn
α → Xn−1, где Xn−1 — предыду-

щее клеточное пространство размерности n− 1.

Внутренности вклеенных дисков называют клетками.

Промежуточные клеточные пространства называются k-мерными остовами (скелетами)

Дополнительным условием является то, что ϕα(δDα) содержится в конечном числе клеток соот-
ветствующего многообразия размерности n− 1.
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«Не запрещается что-то плохое», например, всю границу диска D2 вклеить в среднюю точку одного
из отрезков D1.

Определение 2.13.15 (Клеточное разбиение топологического пространства). Конкретное пред-
ставление топологического пространства в виде клеточного пространства.

Так, сфера S2 является клеточным пространством «точка + ничего + приклеиваем диск по точке»
= «точка + экватор + приклеиваем два диска по экватору».

Определение 2.13.16 (Клеточное пространство размерности ω). Рассмотрим цепочку клеточных
пространств

X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ Xn+1 ⊂ . . .

Можно проверить, что включение — включение подпространств в топологическом смысле, открыте
множества сохраняются.

Тогда определим предельное клеточное пространство размерности ω на множестве
∞⋃
i=0

Xi.

Топологию на данном объединении определим следующим образом: U открыто в X ⇐⇒ ∀n :
U ∩Xn открыто в Xn.

Имеют место следующие два утверждения:

• Можно показать, что определённая выше топология — самая сильная, такая, что in : Xn ↪→ X
— непрерывное отображение.

• Можно показать, что определённая выше топология — самая сильная, такая, что in : Xn ↪→ X
— вложение.

Пусть X — конечное (состоит из конечного числа клеток) клеточное пространство.

Определение 2.13.17 (Эйлерова характеристика клеточного пространства X). χ(X)
def
=

n∑
k=0

(−1)k|Ik|,

где |Ik| — число k-мерных клеток.

Используя гомологии, можно доказать, что эйлерова характеристика не зависит от разбиения
пространства на клетки.

Определение 2.13.18 (Род двумерной поверхности). Наибольшее число дизъюнктных окружно-
стей, которые можно вырезать так, чтобы она оставалась связной.

Факт 2.13.4. Род сферы с p ручками и без плёнок: род(Sp,0) = p. Род сферы с q плёнками и без
ручек: род(S0,q) = q.

В частности, род сферы 0, род тора — 1.

Вырезание дырки не меняет род.

Посчитаем эйлерову характеристику сферы с p ручками.

Рассмотрим каноническую развёртку, ей соответствует естественное клеточное разбиение из одной
нульмерной клетки (общая вершина), одной двумерной (поверхность) и 2p одномерных (так как в
развёртке 4p вершин и столько же рёбер, но каждая пара рёбер отождествлена). χ(Sp,0) = 2− 2p.

Аналогично эйлерова характеристика сферы с q плёнками равна χ(S0,q) = 2− q.

«Если считать, что всё, что мы сформулировали, мы знаем, то можно получить следующую теоре-
му»

Теорема 2.13.3. Двумерная компактная поверхность (возможно, с краем) однозначно задаётся
тройкой параметров: число компонент края, ориентируемость (наличие хотя бы одной плёнки),
эйлеровой характеристикой.

Доказательство. Сведение к случаю поверхности без края очевидно — заклеить все дырки дис-
ками.
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В зависимости от ориентируемости определяем, поверхность с ручками или плёнками, а потом
эйлерова характеристика показывает, сколько их.

Отсюда видно, что всякая такая поверхность имеет развёртку в виде многоугольника, у которого
каждая сторона либо сама по себе, либо склеена ровно с одной другой.
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Глава 3

Геометрия

Лекция XII
9 марта 2022 г.

3.1 Евклидово пространство

Пусть X — векторное пространство над R.

Определение 3.1.1 (Скалярное произведение). Отображение ⟨·, ·⟩ → R со следующими свойствами

1. Симметричное: ∀x, y ∈ X : ⟨x, y⟩ = ⟨y, x⟩.

2. Билинейное:

∀x, y, z ∈ X : ⟨x, y + z⟩ = ⟨x, y⟩+ ⟨x, z⟩∀x, y ∈ X,λ ∈ R : ⟨x, λy⟩ = λ⟨x, y⟩

3. Положительная определённость: ⟨x, x⟩ ⩾ 0. ⟨x, x⟩ = 0 ⇐⇒ x = 0.

Определение 3.1.2 (Евклидово пространство). Векторное пространство с заданным на нём ска-
лярным произведением.

Пример. Rn со стандартным скалярным произведением.

Определение 3.1.3 (Норма или длина вектора x ∈ X). |x| =
√
⟨x, x⟩.

Определение 3.1.4 (Расстояние между x, y ∈ X). d(x, y) = |x− y|

Свойства нормы и расстояния:

• |x+ y|2 = |x|2 + 2⟨x, y⟩+ |y|2.

• |x| > 0 для x ̸= 0.

• |λx| = |λ||x|, в частности, | − x| = |x|.

• d(x, y) = d(x+ z, y + z).

• Неравенство Коши — Буняковского — Шварца (далее КБШ):

|⟨x, y⟩| ⩽ |x| · |y|

причём равенство достигается тогда и только тогда, когда x и y линейно зависимы.

Доказательство. Если x = 0 или y = 0, то доказывать нечего. Пусть оба не равны нулю.

∀λ ∈ R : 0 ⩽ |x− λy| = λ2|y|2 − 2λ⟨x, y⟩+ |x|2
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Выбрав λ = ⟨x,y⟩
|y|2 — при нём правая часть принимает наименьшее значение — получаем

⟨x, y⟩2 ⩽ |x|2 · |y|2 (и равенство достигается при |x−λy| = 0), что и требовалось доказать.

Следствие 3.1.1 (Неравенство треугольника для нормы). |x+ y| ⩽ |x|+ |y|.

Доказательство. Возвести в квадрат обе части и применить КБШ.

Следствие 3.1.2 (Неравенство треугольника для расстояний). d(x, z) ⩽ d(x, y) + d(y, z).

Доказательство.

d(x, z) = |x− z| = |(x− y) + (y − z)| ⩽ |x− y|+ |y − z| = d(x, y) + d(y, z)

Определение 3.1.5 (Угол между векторами x, y ̸= 0). ∠(x, y) = arccos
(

⟨x,y⟩
|x|·|y|

)
Свойства:

• ∠ ∈ [0, π].

• Для λ ̸= 0 : ∠(x, λy) = ∠(x, y) · sgn(λ).

• Теорема 3.1.1 (Теорема косинусов). |x− y|2 = |x|2 + |y|2 − 2|x| · |y| cos∠(x, y).

Доказательство. Мы так определили угол.

• Теорема 3.1.2 (Неравенство треугольника для углов). ∠(x, z) ⩽ ∠(x, y) + ∠(y, z).

Доказательство. Положим α = ∠(x, y), β = ∠(y, z). Если α+ β ⩾ π, то доказывать нечего.

Построим на плоскости треугольник со сторонами-векторами x′, z′, такими, что |x′| = |x|, |z′| =
|z| и угол между ними равен α + β. Пусть чевиана u′ в треугольнике составляет угол α со
стороной x′ и имеет длину |u|.

Отложим вектор u длины |u| сонаправлено вектору y.

По теореме косинусов |x−u| = |x′−u′|, |u− z| = |u′− z′|, согласно неравенству треугольника
для x и z |x− z| ⩽ |x− u|+ |u− z| = |x′ − u′|+ |u′ − z′| = |x′ − z′|.

Отсюда получаем cos∠(x, z) = |x|2+|z|2−|x−z|2
|x|·|z| ⩾ |x′|2+|z′|2−|x′−z′|2

|x′|·|z′| = cos∠(x′, z′).

Таким образом, ∠(x, z) ⩽ ∠(x′, z′) = ∠(x, y) + ∠(y, z).

Следствие 3.1.3 (Угловой метод на сфере). Пусть S =
{
x ∈ X

∣∣∣|x| = 1
}
. На сфере есть

метрика dS(x, y) = ∠(x, y).

Следствие 3.1.4. ∠(x, y) + ∠(y, z) + ∠(x, z) ⩽ 2π.

Доказательство.
∠(x, z) ⩽ ∠(x,−y)︸ ︷︷ ︸

π−∠(x,y)

+∠(−y, z)︸ ︷︷ ︸
π−∠(y,z)
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3.2 Ортогональные векторы

Пусть (X, ⟨·, ·⟩) — евклидово пространство.

Определение 3.2.1 (Вектора x, y ∈ X ортогональны). ⟨x, y⟩ = 0. Записывают x ⊥ y.

Свойства ортогональности:

• 0 ⊥ x.

• y ⊥ x1, . . . , y ⊥ xn ⇒ y ⊥ (α1x1 + · · ·+ αnxn).

• Теорема 3.2.1 (Пифагор).

x ⊥ y ⇒ |x+ y|2 = |x|2 + |y|2

Определение 3.2.2 (Ортонормированный набор векторов). Множество единичных векторов {v1, . . . , vn},
попарно ортогональных.

Пусть v1, . . . , vn — ортонормированный набор векторов.

Свойства:

•

〈
n∑

i=1

αivi,

n∑
i=1

βivi

〉
=

n∑
i=1

αiβi

• Ортонормированный набор векторов линейно независим.

Доказательство. α1v1 + · · ·+ αnvn = 0 ⇐⇒
из предыдущего

α2
1 + · · ·+ α2

n = 0.

Теорема 3.2.2 (Ортогонализация по Граму — Шмидту). Для любого линейно независимого набора
векторов v1, . . . , vn ∈ X ∃!{e1, . . . , en} ⊂ X — ортонормированный набор векторов, такой, что

∀k = 1..n : Lin(v1, . . . , vk) = Lin(e1, . . . , ek) и ⟨ek, vk⟩ > 0

Доказательство. Докажем и существование, и единственность по индукции.

База: n = 1, можно принять e1 = v1
|v1| . Очевидно, других вариантов нет.

Переход: пусть для {v1, . . . , vn−1} выбран набор векторов {e1, . . . , en−1} с необходимыми свойства-
ми.

Выберем wn = vn −
n−1∑
j=1

⟨vn, ej⟩ · ej . Это ортогональная проекция vn на линейное пространство

Lin(e1, . . . , en−1).

Заметим, что ∀1 ⩽ i < n : ⟨wn, ei⟩ = ⟨vn, ei⟩ −
n∑

j=1

⟨vn, ej⟩ · ⟨ej , ei⟩ = ⟨vn, ei⟩ − ⟨vn, ei⟩ = 0.

Таким образом, en = wn

|wn| подойдёт.

Единственность: пусть в качестве ek был выбран другой вектор, ẽk. По условию теоремы ẽk ∈
Lin(e1, . . . , ek). Но тогда есть всего два варината. Либо ∃i ̸= k : ⟨ẽk, ei⟩ ≠ 0, это запрещено отро-
условием.. Либо ẽk = λek для некоего λ (откуда из нормированности следует |λ| = 1 и знак равен
1: определяется исходя из ⟨ẽk, vk⟩).

X — конечномерное пространство. Тогда в X

• Есть ортонормированный базис.

• Любой ортонормированный набор можно дополнить до базиса.

Определение 3.2.3 (Изоморфизм евклидовых пространств X и Y ). Существует изоморфизм f :
линейное отображение f : X → Y , такое, что f : X → Y — биекция, сохраняющая скалярное
произведение.
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Теорема 3.2.3. Любые два евклидовых пространства одной размерности изоморфны.

Доказательство. Определим изоморфизм на ортонормированных базисах и продолжим по линей-
ности.

Ниже X всегда конечномерно.

Определение 3.2.4 (Ортонормированное дополнение A ⊂ X). A⊥ def
= {x ∈ X | ⟨x, a⟩ = 0, a ∈ A}.

Свойства ортонормированного дополнения:

• A⊥ — линейное пространство.

• A ⊂ B ⇒ A⊥ ⊃ B⊥.

• A⊥ = Lin(A)⊥.

Теорема 3.2.4. Пусть V ⊂ X — линейное подпространство. Тогда X = V ⊕ V ⊥.

Теорема 3.2.5. Пусть V ⊂ X — линейное подпространство. Тогда верны следующие условия:

1. X = V ⊕ V ⊥.

2. (V ⊥)⊥ = V .

Доказательство. Выберем {e1, . . . , ek} — ортонормированный базис V .

Дополним его до {e1, . . . , ek, ek+1, . . . , en} — ортонормированного базиса X.

Проверим, что Lin(ek+1, . . . , en) = V ⊥. Здесь верно включение в обе стороны.

Лекция XIII
16 марта 2023 г.

Свойства (Ортогональное подпространство).

• Можно определить ортогональную проекцию PrV : X → V — ведь раз V ⊕V ⊥ = X, то всякий
вектор раскладывается в сумму элементов V и V ⊥. PrV — по определению тот вектор из
прямой суммы, который лежит в V .

• PrV непрерывна.

• ∀x ∈ X : PrV (x) — ближайшая к x точка в V . Доказательство — применение теоремы
Пифагора.

• Пусть H ⩽ X — подпространство размерности ÷X − 1, то есть гиперплоскость.

Определение 3.2.5 (Нормаль к гиперплоскости H). Вектор, перпендикулярный всем векторам
гиперплоскости H.

Нормаль существует и единственна с точностью до домножения на скаляр: это вектор, по-
рождающий H⊥. ⟨n⟩ = H⊥.

Лемма 3.2.1 (Конечномерная лемма Рисса). Пусть L : X → R — линейное отображение, где X
— евклидово пространство. ∃!v ∈ V : L(u) ≡ ⟨u, v⟩.

Доказательство. Выберем базис (e1, . . . , en) ⊂ X. Тогда линейное отображение однозначно зада-
ётся вот так:

L(u := e1u1 + · · ·+ enun) = L(e1)u1 + · · ·+ L(en)un

L(u) =
〈(
L(e1) . . . L(en)

)
, u
〉
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Факт 3.2.1. Для любого линейное отображение L : X → R, не равное нулю ̸≡ 0: Ker(L) —
гиперплоскость. Любая гиперплоскость — ядро некой скалярной функции.

Доказательство.

• Теорема о размерности ядра и образа.

• Для v — нормали к гиперплоскости — L(x) ≡ ⟨v, x⟩ подойдёт.

Факт 3.2.2. Расстояние от точки x ∈ X до гиперплоскости H ⩽ X равно ⟨x,v⟩
|v| ≡

〈
x, v

|v|

〉
, где

⟨v⟩ = H⊥.

В самом деле, x раскладывается в сумму x = x⊥ + x∥, а d(x,H) =
〈
x⊥ + x∥, v

|v|

〉
= |x⊥|.

3.3 Ортогональные преобразования

Пусть X,Y — евклидовые пространства (не обязательно одной размерности).

Определение 3.3.1 (Изометричное отображение). Такое линейное отображение f : X → Y , что
⟨x1, x2⟩ = ⟨f(x1), f(x2)⟩. В случае равенства пространств X = Y f называется ортогональным
преобразованием X.

Свойства (Изометричные преобразования).

• Для всякого линейного отображения f : изометричность равносильна тому, что f сохраняет
длины векторов.

• Изометричные преобразования инъективны (если f(x) = f(y), то ∥f(x) − f(y)∥ = 0, то есть
∥x− y∥ = 0).

Группа ортогональных преобразований для пространства Rn называется O(n).

Доказательство.

Задача 3.3.1. Как выглядят ортогональные преобразования в R2?

Посмотрим, куда перешёл один из ортогональных векторов: матрица перехода имеет вид(
cosα ∗
sinα ∗

)
. Второй столбец должен быть нормирован и ортогонален первому, поэтому

матрица перехода имеет вид
(

cosα sinα
− sinα cosα

)
(поворот на угол α), либо

(
cosα sinα
sinα − cosα

)
(какие-то поворот и отражение; главное, что раскладывается в прямую сумму id и − id).

Положим X+ := {x ∈ X | f(x) = x}, X− := {x ∈ X | f(x) = −x}. Очевидно, X+ ∩X− = {0}.

Найдём в (X+ ⊕X−)
⊥ плоскость поворота; тогда по индукции всё получится.

Формальнее, положим изначально V = X+⊕X− Рассмотрим единичную сферу S в подпространстве
V ⊥, проверим, что происходит при отображении f с точками сферы.

f ортогонально, поэтому f(S) = S, откуда для всякой точки x0 ∈ S можно рассмотреть ∠(x0, f(x0)).
Это функция от x0, она достигает минимума на компактной сфере. Пусть z0 ∈ S — точка минимума
∠(x0, f(x0)).

Так как S ∩ X+ = {0}, то ∠(z0, f(z0)) > 0. Проверим, что вектора z0 и f(z0) действительно
образуют плоскость, которая f -инвариантна. Это достаточно проверить на базовых векторах z0 и
f(z0).

От противного: f(f(z0)) /∈ ⟨z0, f(z0)⟩. Рассмотрим середины сторон z0 − f(z0) и f(z0) − f(f(z0)),
если f(f(z0)) не лежит в плоскости ⟨z0, f(z0)⟩, то угол между серединами строго меньше угла
∠(z0, f(z0)) = ∠(f(z0), f(f(z0))).
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Таким образом, плоскость f инвариантна, она не бьётся на рямую сумму id и − id, значит, в ней
поворот, её можно прямо приплюсовать к V и продолжить по индукции.

3.3.1 Ориентация векторного пространства

Определение 3.3.2 (Два базиса одинаково ориентированы). Матрица перехода между ними имеет
положительный определитель.

Теорема 3.3.1. Одинаковая ориентируемость базисов — отношение эквивалентности на множестве
базисов данного пространства.

Доказательство. Детерминант мультипликативен.

Определение 3.3.3 (Ориентированное векторное пространство). Векторное пространство, в кото-
ром один выделен один из классов эквивалентности ориентации базисов.

В таком случае базисы из данного класса эквивалентности называются положительно ориентиро-
ванными, остальные — отрицательно ориентированными.

В пространстве Rn стандартная ориентация базиса совпадает с ориентацией стандартного базиса(
1 0 . . . 0

)
, . . . ,

(
0 0 . . . 1

)
Определение 3.3.4 (Смешанное произведение). Пусть (X, ⟨·, ·⟩) — ориентируемое векторное про-
странство размерности n. Рассмотрим вектора v1, . . . , vn ∈ X.

Смешанное произведение [v1, v2, . . . , vn]
def
= detA, где A — матрица разложения векторов v1, . . . , vn

по произвольному ортонормированному базису.

Так как определитель матрицы перехода между двумя ортонормированными базисами равен 1, то
определение корректно. Из свойств определителя сразу получаем следующее:

Свойства (Смешанное произведение).

• Линейность по каждому аргументу.

• Кососимметричность (транспозиция меняет знак).

• Равенство нулю эквивалентно линейной зависимости.

• [v1, . . . , vn] > 0 ⇐⇒ (v1, . . . , vn) — положительный базис.

Определение 3.3.5 (Векторное произведение). Пусть (X, ⟨·, ·⟩) — трёхмерное ориентируемое век-
торное пространство. Рассмотрим вектора u, v ∈ X.

Их векторное произведение u× v — такой вектор h ∈ X, что ∀x ∈ X : ⟨h, x⟩ = [u, v, x].

Существование и единственность такого h следует из леммы Рисса.

Свойства (Векторное произведение).

• По определению ⟨u× v, w⟩ = [u, v, w].

• Из кососимметричности смешанного произведения u× v = −v × u.

• Билинейность.

• u× v = 0 ⇐⇒ u и v линейно зависимы.

Доказательство. u и v линейно зависимы ⇐⇒ [u, v, x] = 0 всегда.

• Для положительного ортонормированного базиса (e1, e2, e3):

e1 × e2 = e3

e2 × e3 = e1

e3 × e1 = e2
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Теорема 3.3.2 (Геометрический смысл векторного произведения).

• Векторное произведение w := u× v ортогонально каждому из векторов u, v.

• (u, v, w) образуют положительный базис.

• |w| — площадь параллелограмма, натянутого на u и v.

Доказательство.

• По определению ⟨u× v, v⟩ = [u, v, v] = 0.

• Применим ортогонализацию Грама — Шмидта для u, v, получим вектора e1 = a · u, e2 =
b · u+ c · v, где a, c > 0. Введём e3 так, что (e1, e2, e3) — положительный ортонормированный
базис. По определению u× v = ace3, откуда

Лекция XIV
23 марта 2023 г.

3.3.2 Формула в координатах

Пусть (e1, e2, e3) — положительный ортонормированный базис, разложим по базису x = x1e1 +
x2e2 + x3e3 и y = y1e1 + y2e2 + y3e3. Тогда

x× y =

∣∣∣∣ x2 x3

y2 y3

∣∣∣∣ e1 − ∣∣∣∣ x1 x3

y1 y3

∣∣∣∣ e2 + ∣∣∣∣ x1 x2

y1 y2

∣∣∣∣ e3
Иногда формально пишут

x× y =

∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3
e1 e2 e3

∣∣∣∣∣∣
3.4 Матрицы Грама

Пусть (V, ⟨·, ·⟩) — евклидово пространство.

Матрица Грама G(v1, . . . , vk) — это матрица (⟨vi, vj⟩)ni,j=1.

Свойства.

• xixjgi,j — это что?

• detG = [v1, . . . , vk] или что-то типа

• detG = 0 ⇐⇒ v1, . . . , vk линейно зависимы.
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Глава 4

Аффинные пространства

Определение 4.0.1 (Аффинное пространство). Тройка (X,−→,+), где X — непустое множество,
−→
X — векторное пространство (его называют ассоциированное или присоединённое), а операция
откладывания вектора + : X ×

−→
X → X, удовлетворяет свойствам:

• ∀x, y ∈ X : ∃!u ∈
−→
X : y = x+ u. Такой u обозначают −→xy.

• Выполнена следующая ассоциативность: ∀x ∈ X,u, v ∈
−→
X : (x+ u) + v = x+ (u+ v)

Пример (Основной, и в некотором смысле единственный). Пусть X — векторное пространство.
Выберем

−→
X = X, операция сложения наследуется из X.

На самом деле всё сводится к этому примеру, в дальнейшем будем аффинные пространства
(X,

−→
X,+) обозначать X.

Свойства.

• x+−→xy = y по определению.

• Правило треугольника: −→xy +−→yz = −→xz.

• −→xx =
−→
0 : в самом деле, −→xx+−→xx = −→xx.

• x+
−→
0 = x: в самом деле, x+−→xx = x.

• −→yx = −−→xy.

• Если так получилось, что x+−→u = y +−→u , то (x+−→u )−−→u = (y +−→u )−−→u ⇒ x = y.

• Если так получилось, что −→xy =
−→
0 , то y = x+−→xy = x+

−→
0 = x.

Рассмотрим аффинное пространство (X,
−→
X,+), выберем произвольный элемент O ∈ X — начало

отсчёта. Утверждается, что начало отсчёта создаёт биекцию между X и
−→
X .

ϕO : X ↔
−→
X x ↔

−→
Ox

Проверка инъективности и сюръективности остаются, как упражнение читателю.

Отображение ϕO : X →
−→
X называется векторизацией аффинного пространства X.

Определение 4.0.2 (Линейная комбинация относительно начала отсчёта O). Для коэффициентов
ti ∈ R,−→pi ∈ X — вектор −→v =

∑
i

ti
−→pi или точка O +−→v .

• Барицентрические (аффинные) линейные комбинации — такие комбинации, что
∑
i

ti = 1.

• Сбалансированные — такие комбинации, что
∑
i

ti = 1.
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Теорема 4.0.1. Барицентрическая линейная комбинация точек — точка, не зависящая от начала
отсчёта.

Сбалансированная линейная комбинация векторов — вектор, не зависящий от начала отсчёта.

Доказательство. Запишем две барицентрические координаты с началами отсчёта в O и в O′:

−→v =
∑
i

ti ·
−−→
Opi;

−→
v′ =

∑
i

ti ·
−−→
O′pi =

∑
i

ti ·
(−−→
O′O +

−−→
Opi

)
=

(∑
i

ti

)
−−→
O′O︸ ︷︷ ︸

0 для сбалансированной

+
∑
i

ti
−−→
Opi

O +−→v = O′ +
−→
v′ =

для барицентрической
O′ +

−−→
O′O +−→v = O +−→v

Пусть X — аффинное пространство.

Определение 4.0.3 (Y ⊂ X — аффинное подпространство). ∃V ⩽
−→
X, p ∈ Y : Y = p+ V . Подпро-

странство V называется направление Y .

Свойства.

• Если Y = p+ V — аффинное подпространство X, то ∀q ∈ Y : Y = q + V .

• Y — аффинное пространство с ассоциированным V .

• ∀q ∈ Y : для отображения векторизации ϕq : ϕq(Y ) = V .

Определение 4.0.4 (Размерность ассоциированного пространства). Размерность соответствующего

ассоциированного векторного пространства. dimX
def
= dim

−→
X .

Определение 4.0.5 (Параллельный перенос на вектор v ∈
−→
X ). Отображение T−→v : X → X; x 7→

z +−→v .

Свойства.

• T−→v +−→u = T−→v + T−→u .

• T−→
0
= id.

• T(−−→v ) = (T−→v )
−1

Следствие 4.0.1. Параллельные переносы — подгруппа группы биекций множества X.

Определение 4.0.6 (Аффинные подпространства параллельны). Их направления совпадают.

Определение 4.0.7 (Прямая). Аффинное подпространство размерности 1.

Определение 4.0.8 (Гиперплоскость в конечномерном пространстве X). Аффинное подпростран-
ство размерности dimX − 1.

Теорема 4.0.2. Пересечение любого множества аффинных подпространств — либо пустое множе-
ство, либо аффинное подпространство.

Доказательство. Обозначим пересекаемые подпространства за (Yi,
−→
Vi ,+).

Пусть пересечение непусто, рассмотрим p ∈
⋂
i

Yi. Всякое подпространство Yi имеет вид Yi = p+
−→
Vi .

Пересечение имеет вид p+
⋂
i

−→
Vi .

Определение 4.0.9 (Аффинная оболочка точек A ⊂ X). Пересечение всех аффинных подпро-
странств, содержащих A. Иначе говоря, наименьшее аффинное подпространство, содержащее A.
Обозначается Aff(A).
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Обозначим за Bp(A) образ A при векторизации с началом отсчёта в произвольной точке p ∈ A:

Bp(A) := ϕp(A) = {−→pa | a ∈ A}

Предложение 4.0.1. A ⊂ Y для некоего аффинного подпространства Y = p+ V ⇐⇒ Bp(A) ⊂ V .

Предложение 4.0.2. ϕp(Aff A) = Lin(Bp(A)).

Замечание. Мне откровенно лень писать доказательства здесь.

Теорема 4.0.3. Аффинная оболочка множества A совпадает с множеством барицентрических ком-
бинаций точек множества A.

Доказательство. //todo

Определение 4.0.10 (Множество точек {p1, . . . , pn} ⊂ X аффинно независимо). Существует
нетривиальная сбалансированная комбинация:

∑
i

ti︸ ︷︷ ︸
не все 0

= 0, причём
∑
i

ti
−→pi =

−→
0 . Ранее было по-

казано, что начало отсчёта можно выбрать произвольно.

Теорема 4.0.4. Для множества точек A ⊂ X следующие условия равносильны:

• Аффинно независимы

• Векторы p1pk независимы

• dimAff = n− 1.

• Всякая точка из Aff представима в барицентрическом виде единственным образом.

Лекция XV
30 марта 2023 г.

Доказательство.

1 ⇐⇒ 2
∑
i

tipi = 0 ⇐⇒
∑
i

ti
−−→p1pi

2 ⇐⇒ 3 . . .

1 ⇒ 4 От противного: две барицентрические комбинации быть не могут, ноль — тоже по предыду-
щей теореме.

4 ⇒ 1 Пусть аффинно зависимы, найдём два барицентрических представления какой-то точки.

Рассмотрим аффинное пространство (X,
−→
X,+) размерности n.

Определение 4.0.11 (Аффинный точечный базис). Линейно независимое множество {p1, . . . , pn+1} ∈
X

Определение 4.0.12 (Аффинный базис). Фиксированный нуль O ∈ X, линейно независимое мно-
жество векторов e1, . . . , en ∈

−→
X .

В аффинном точечном базисе любая точка представима единственным образом, как барицентриче-
ская комбинация базиса. Коэффициенты в разложении точки по этому базису называют барицен-
трическими координатами.

Если же рассматривается разложение по аффинному базису, то коэффициенты — аффинные коор-
динаты.
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4.1 Аффинные отображения

(X,
−→
X,+), (Y,

−→
Y ,+) — аффинные пространства.

∀F : X → Y определим соответствующее отображение F̃p :
−→
X →

−→
Y ; F̃p(

−→v ) =
−−−−−−−−−−→
F(p)F(p+−→v ).

Определение 4.1.1 (Аффинное отображение F : X → Y ). Для некоторой точки p ∈ X: отображе-
ние F̃p линейно.

Лемма 4.1.1. Если для некоторой точки p : F̃p аддитивно, то ∀q ∈ X : F̃q ≡ F̃p.

Замечание. Получили переформулировку: F аффинное, если ∃L :
−→
X →

−→
Y , такое, что

−−−−−−→
F(p)F(q) =

L(−→pq).

Факт 4.1.1. Для фиксированных точек x ∈ X, y ∈ Y и линейного отображения L :
−→
X →

−→
Y

существует и линейное аффинное отображение F : X → Y , такое, что F(x) = y, F̃ = L.

Определение 4.1.2 (Коллинеарные точки). Точки, лежащие на одной прямой; аффинное зависи-
мые точки.

Теорема 4.1.1. Пусть X,Y — аффинные пространства, F — инъективное отображение, переводя-
щее прямые l ⊂ X в прямые F(l) ⊂ Y .

Доказательство. Назовём отображение R2 → R2 хорошим, если это биекция, переводящая пря-
мые в прямые.

Лемма 4.1.2. Хорошее f переводит неколлинеарные точки в неколлинеарные.

Доказательство. От противного: три неколлинеарные точки A,B,C перешли в прямую l. Тогда
AB, BC, AC как прямые, тоже перешли в l.

Дальше любая прямая плоскости пересекает хотя бы 2 из трёх прямых среди AB,BC,AC, значит,
вся плоскость перешла в l. Противоречие с биективностью.

Лемма 4.1.3. Хорошее отображение переводит параллельные прямые в параллельные прямые.

Доказательство. Параллельные ≡ непересекающиеся.

56


	База топологии
	Метрические пространства
	Примеры метрических пространств

	Топологические пространства
	Примеры топологических пространств
	Примеры замкнутых множеств

	Метрики и топологии
	Сравнение метрик и топологий
	Специальные точки множеств в топологии
	Внутренность множества. Внутренние точки
	Замыкание множества. Точки прикосновения
	Граница множества, граничные точки
	Предельные, изолированные точки

	База топологии
	Подпространства
	Свойства подпространства

	Произведение метрических пространств
	Тихоновская топология прямого произведения бесконечного числа пространств


	Непрерывные отображения
	Свойства образа и прообраза
	Непрерывность отображения
	Локальная непрерывность
	Гомеоморфизмы
	Фундаментальные покрытия
	Непрерывность и произведение пространств
	Арифметические операции над непрерывными функциями
	Топологические свойства
	Аксиомы счётности
	Сепарабельные пространства
	Аксиомы отделимости
	Связность
	Линейная связность
	Связность и линейная связность
	Негомеоморфность
	Компактные пространства и множества

	Полные метрические пространства
	Нигде не плотные множества

	Секвенциальная компактность
	Вполне ограниченные метрические пространства
	Факторпространства
	Свойства
	Частные случаи факторизации

	Многообразия
	Модельные поверхности
	Клеточные пространства


	Геометрия
	Евклидово пространство
	Ортогональные векторы
	Ортогональные преобразования
	Ориентация векторного пространства
	Формула в координатах

	Матрицы Грама

	Аффинные пространства
	Аффинные отображения


