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Глава 1

Введение в теорию множеств

Принадлежность x ∈ X, объединение X ∪ Y , пересечение X ∩ Y , разность X\Y , задание свой-
ством X\Y = {x ∈ X|x /∈ Y }, дополнение (до унивёрсума) (пример: дополнение до множества
целых чисел Z) A∁ = Z\A, A∁∁ = A.

1.1 Некоторые формулы

1.1.1 Формулы де Моргана

(A ∪B)∁ = A∁ ∩B∁, (A ∩B)∁ = A∁ ∪B∁

Доказательство.

x ∈ (A ∪B)∁ ⇐⇒ x /∈ A ∪B ⇐⇒ x /∈ A ∧ x /∈ B ⇐⇒ x ∈ A∁ ∧ x ∈ B∁ ⇐⇒ x ∈ A∁ ∩B∁.

Доказательство второй формулы де Моргана получается аналогично, или же из первой, заменой A
на A∁ и B на B∁, и применением A∁∁ = A.

1.1.2 Связь пересечения и объединения

(A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C) и двойственная ей (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C).

1.2 Примеры множеств

Множество всех целых чисел Z, его подмножества Z+ = {n ∈ Z|n ⩾ 0} = N0 всех неотрицательных
целых чисел и N = {n ∈ Z|n > 0} всех натуральных чисел.

Множество рациональных чисел Q.

Множество вещественных чисел R.

1.2.1 Отрезки

Пускай a, b ∈ R.

Определение 1.2.1 (Отрезки).

• [a; b]
def
= {x ∈ R|a ⩽ x ⩽ b} — отрезок (сегмент);

• (a; b)
def
= {x ∈ R|a < x < b} — интервал;

• [a; b)
def
= {x ∈ R|a ⩽ x < b} — полуинтервал;
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• (a; b]
def
= {x ∈ R|a < x ⩽ b} — ещё полуинтервал.

На лекциях будут использоваться термин интервал для всех четырёх типов отрезков. Иногда
будут накладываться дополнительные требования a ⩽ b. Вообще говоря, все отрезки определены
при a > b и совпадают с пустым множеством ∅.

1.3 Отображения

Понятие отображения f : X → Y не имеет чёткого определения и, насколько я понял, задаётся
околоаксиоматически.

Пусть даны множества X,Y и некое правило, по которому каждому элементу множества X со-
поставляется однозначно определённый элемент Y . Для таких элементов x ∈ X, y ∈ Y пишут
y = f(x).

X является областью определения отображения f , а Y — множество значений f . Необязательно
каждый элемент Y является значением f в некой точке. Отображение характеризуется двумя
данными множествами и «правилом».

Например,

f : R → R, f(x) = 2x+ 1

g : R → R, g(x) = x2

1.3.1 Образ множества

Примечание: Знак ⊂ ниже используется в качестве ⊆.

Пускай F : X → Y — отображение. Для A ⊂ X образ множества A при отображении F : F (A)
def
=

{y ∈ Y |y = F (x), x ∈ A}. Очевидно, F (A) ⊂ Y .

Например, для выше определённого f : R → R, x 7→ 2x+ 1 образом [0; 1] является f([0; 1]) = [1; 3].

1.3.2 Виды отображений

Пусть f(X) = Y ; тогда говорят, что f — отображение X на Y (сюръекция). А именно, для
f : X → Y — сюръекция ⇐⇒ f(X) = Y .

Определение 1.3.1 (Инъекция или взаимно-однозначное отображение). f является инъекцией,
если для ∀x1 ̸= x2 : f(x1) ̸= f(x2).

Определение 1.3.2 (Обратное отображение). Для инъективного отображения f : X → Y это
f−1 : f(X) → X. f−1(y) определяется как тот единственный элемент x ∈ X, для которого f(x) = y.

Для определённого выше f : f−1(y) = y−1
2 .

Для g и прочих неинъективных отображений обратного отображения не существует, чтобы его
создать, надо сузить область определения. Так, для g′ : R+ → R, для всех x ∈ R+ равного g (g′ :
R → R, x 7→ x2) обратное отображение уже существует, это функция извлечения арифметического
квадратного корня.

Определение 1.3.3 (Сужение). Для f : X → Y сужение f на X1 ⊂ X — отображение f1 из X1 в
Y , действующее по тому же правилу, что и f . Обозначают f1 = f

∣∣
X1

Определение 1.3.4 (Биекция). Одновременно инъекция и сюръекция.

1.3.3 Прообраз

Пускай дано отображение f : X → Y ; B ⊂ Y .
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Определение 1.3.5 (Прообраз B при отображении f). f−1(B)
def
= {x ∈ X|f(x) ∈ B}.

Замечание. f−1(x) для одного элемента множества x ∈ X может быть не определено, если f не
является инъекцией.

Пример: g−1([−2;−1]) = ∅; g−1([1; 4]) = [−2;−1] ∪ [1; 2].

1.3.4 Функции

Определение 1.3.6 (Функция). Отображение из X ⊂ R в Y ⊂ R.

Позже надмножества X и Y будут расширены))

Примеры:

• Линейная функция f(x) = ax+ b.

• Многочлен h(x) = anx
n + an−1x

n−1 + · · ·+ a0, ai ∈ R, ∀i = 0, 1, . . . , n.

• ϕ(x) =
1

x
,X = R\{0};Y = R.

• Показательная функция, логарифмическая, тригонометрические.

• Рациональная функция ψ(x) =
p(x)

q(x)
.

• Показательная функция.

• Знак числа s(x) =


1, x > 0

0, x = 0

−1, x < 0

• Функция Дирихле D : R → R: D(x) =

{
0, x ∈ I
1, x ∈ Q

(I = R\Q)

• Функция Римана (определение 3.1.5)

Лекция II
5 сентября 2022 г.

1.4 Упорядоченные пары

Два элемента любой природы; указано, кто первый, а кто — второй. Обозначается (a, b), где a —
первый элемент, а b — второй элемент. Позволена пара двух равных элементов a = b.

1.4.1 Декартово произведение

Пусть X,Y — 2 множества.

Определение 1.4.1 (Декартово произведение). X × Y
def
= {(x, y)|x ∈ X ∧ y ∈ Y }. Например, R×R

— евклидова плоскость.

Позволив себе некую неформальность, можно сказать, что (X×Y )×Z — множество упорядоченных
троек, трёхмерное евклидово пространство.

Обозначим Rn =
n∏

i=1

R = {(x1, . . . , xn)|xi ∈ R}
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1.5 Прочие определения

Определение 1.5.1 (Равномощность (реже эквивалентность)). Два множества X,Y равномощны,
если ∃ биекция f : X → Y .

Определение 1.5.2 (Конечное множество). Множество A называется конечным, если оно рав-
номощно некоему множеству {1, 2, . . . , n} для некоего n ∈ N. В противном случае A называется
бесконечным.

Например, N бесконечно.

Теорема 1.5.1 (Кантор). N не равномощно R.

f : X → Y — произвольное отображение. Обозначим f(x) — тот элемент из Y , который ставится
в соответствие x ∈ X.

Семейство — другой способ записи отображения. Пишут {fx}x∈X и подразумевают fx = f(x).

Определение 1.5.3 (Последовательность). Отображение a : N → Y для произвольного множества
Y .

Запись последовательности в виде семейства: {an}n∈N. an ∈ Y .

Определение 1.5.4 (Конечная последовательность). Отображение a : {1, 2, . . . , n} → Y для произ-
вольного множества Y и некоего n ∈ N.

Запись конечной последовательности в виде семейства: {ai}ni=1 = {ai}1⩽i⩽n. an ∈ Y .

Замечание. Конечная последовательность не является последовательностью.

Пусть {Aγ}γ∈Г – семейство множеств. Тогда объединение и пересечение соответственно:⋃
γ∈Г

Aγ = {x|∃y ∈ Г : x ∈ Ay}⋂
γ∈Г

Aγ = {x|∀y ∈ Г : x ∈ Ay}

f : X → Y . Гf
def
= {(x, y) ∈ X × Y |y = f(x)} = {(x, f(x)}x∈X

Пусть X,Y — множества, B ⊂ X × Y .

B — график некоего отображения из X в Y ⇐⇒ ∀x ∈ X : ∃!y ∈ Y : (x, y) ∈ B.

Доказательство. Очевидно.
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Глава 2

Вещественные числа

Множество вещественных чисел R.

2.1 Аксиомы вещественных чисел

1. Сложение: + : R×R → R, результат называется суммой и обозначается a+b для (a, b) ∈ R×R.

Свойства сложения:

• Коммутативность x+ y = y + x

• Ассоциативность x+ (y + z) = (x+ y) + z

• Нулевой элемент: ∃! 0 ∈ R : ∀x ∈ R : x+ 0 = x.

Замечание: единственность нуля выводима: в самом деле, пусть 0, 0′ — нули.

• Тогда по определению нуля 0 + 0′ = 0 = 0′.

• Противоположный элемент: ∀x ∈ R : ∃!y ∈ R : x+ y = 0. y обозначают −x.

Замечание: Единственность противоположного элемента тоже выводима: в самом деле,
пусть x+ y = 0 ∧ x+ y′ = 0. Тогда y = y + (x+ y′) = (y + x) + y′ = y′.

2. Умножение: · : R×R → R, результат называется произведением и обозначается a · b = ab для
(a, b) ∈ R× R. Свойства умножения:

• Коммутативность x · y = y · x

• Ассоциативность x · (y · z) = (x · y) · z

• Элемент единица: ∃! 1 ∈ R : ∀x ∈ R : x · 1 = x.

Замечание: единственность единицы выводима абсолютно аналогично единственности
нуля.

• Обратный элемент: ∀x ̸= 0 ∈ R : ∃!y ∈ R : x · y = 1. y обозначают x−1 или 1
x .

Замечание: Единственность обратного элемента тоже выводима абсолютно аналогично.

• Дистрибутивность умножения относительно сложения: x · (y + z) = x · y + x · z.

Следствие: 0 · x = 0. В самом деле, 0 = 0 + 0 и отсюда 0 · x = 0 · x + 0 · x, а добавив
противоположное к 0 · x получим 0 · x = 0

Следствие: −x = (−1) · x. В самом деле, 1 + (−1) = 0 ⇒ 1 · x + (−1) · x = 0 · x, откуда
всё видно.

• 0 ̸= 1.
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3. Порядок. Отношение «<» между вещественными числами. Формально, для множества X
отношение между его элементами — это подмножество L ⊂ X ×X и x < y ⇐⇒ (x, y) ∈ L.

• Асимметричность ∀x :!(x < x).

• ∀x, y ∈ R : x = y ∨ x < y ∨ y < x.

• Транзитивность для трёх попарно различных x, y, z ∈ R: x < y ∧ y < z ⇒ x < z.

• x < y ∧ a ∈ R ⇒ x+ a < y + a.

• x < y ∧ a > 0 ⇒ ax < ay.

Замечание: Пусть x < y ∧ a < 0. Тогда a+ (−a) < −a ⇒ −a > 0. (−a)x < (−a)y ⇒ 0 <
−ay + ax⇒ ay < ax.

Замечание: Пусть x < y ∧ a < b. Тогда x+ a < y+ a, но из a < b⇒ y+ a < y+ b, откуда
по транзитивности x+ a < y + b.

Факт: Пусть x ∈ R ∧ ∀t > 0 : x ⩽ t. Тогда x = 0 ∨ x < 0.

Доказательство. От противного. Пусть x > 0. Тогда ∃t = 1
2x > 0 ⇒ 1

2x + 1
2x >

1
2x ⇒ x > 1

2x.
Противоречие.

Лекция III
9 сентября 2022 г.

2.2 Неравенства

a, b ∈ R; a < b. Тогда ещё пишут так: b > a.

Ещё a ⩽ b ⇐⇒ a < b ∨ a = b; a ⩾ b ⇐⇒ a > b ∨ a = b.

Факт 2.2.1. a ⩽ b ∧ b ⩽ a ⇐⇒ a = b.

Доказательство. От противного.

2.2.1 Модуль числа

x ∈ R → |x| def=


x, x > 0

−x, x < 0

0, x = 0

.

Свойства модуля

−|x| ⩽ x ⩽ |x|
a > 0 ∧ −a ⩽ x ⩽ a⇒ |x| ⩽ a

Доказательство.
−|x| ⩽ x ⩽ |x|
−|y| ⩽ y ⩽ |y|

}
⇒ |x| − |y| ⩽ x+ y ⩽ |x|+ |y|.

Неравенство треугольника для суммы: |x+ y| ⩽ |x|+ |y| или для разности: |x| − |y| ⩽ |x− y|.

Доказательство. |x| = |x− y + y| ⩽ |x− y|+ |y| ⇒ |x| − |y| ⩽ |x− y|

9



Заметим, что из этого факта следует |y| − |x| ⩽ |x− y| ⇒ ||y| − |x|| ⩽ |x− y|.

2.2.2 Ещё о подмножествах прямой

Длина любого из отрезков [a, b], (a, b), [a, b), (a, b] при условии a ⩽ b равна b− a.

Лучи

a ∈ R создаёт следующие лучи:

• [a; +∞)
def
= {x ∈ R|x ⩾ a};

• (a; +∞)
def
= {x ∈ R|x > a};

• (−∞; a)
def
= {x ∈ R|x ⩽ a};

• (−∞; a]
def
= {x ∈ R|x < a}.

a называется началом луча.

Определение 2.2.1 (Ограниченность). Для подмножества прямой E ⊂ R : E ограничено сверху
(снизу), если ∃a ∈ R : ∀x ∈ E : x ⩽ a(x ⩾ a). Любое такое число a для множества E называется
верхней (нижней) границей.

2.3 Ещё три аксиомы вещественных чисел

Ниже приведены аксиомы, отличающие R от произвольного упорядоченного поля.

2.3.1 Аксиома Архимеда

Множество N натуральных чисел не ограничено сверху.

Следствие 2.3.1. ∀x ∈ R : ∃n ∈ N : x ⩽ n.

Доказательство. От противного.

Следствие 2.3.2. Пусть x ∈ R : ∀n ∈ N : x ⩽
1

n
. Тогда x ⩽ 0.

Доказательство. От противного.

2.3.2 Аксиома индукции

Для ∅ ̸= E ⊂ N : ∃ наименьший элемент n : ∀m ∈ E : m ⩾ n.

Замечание. Пусть E ⊂ Z. Если E — ограничено снизу, то в E есть наименьший элемент.

Доказательство. Пусть a — нижняя граница. Тогда ∃k ∈ N : k > −a. Несложно видеть, что −k
— тоже нижняя граница множества E. Тогда {k + n|n ∈ E} ⊂ N, дальше понятно.

Замечание. Пусть I = ⟨a; b⟩, где каждая граница может быть как включена, так и нет. b > a.
s ∈ R+. Тогда ∃r ∈ Q : rs ∈ I. Заметим, что для s = 1 это равносильно тому, что в любом
невырожденном отрезке есть рациональное число.
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Доказательство. d := b − a — длина отрезка. Найдём q ∈ N :
s

q
<

d

2
. Оно есть из аксиомы

Архимеда. Назовём E :=

{
m ∈ Z | ms

q
⩾ b

}
. Так как m ⩾

bq

s
, то в E есть наименьший элемент

m0. Рассмотрим тогда (m0 − 1)
s

q
Тогда с одной стороны (m0 − 1)

s

q
< b, а с другой — (m0 − 1)

s

q
⩾

b− s

q
> b− d

2
> a.

Замечание. Отсюда любое утверждение можно доказать по индукции, по следующей схеме:

Пусть S1, S2, . . . — утверждения. Предположим, что

1. S1 истинно

2. Для n > 1 : Sn следует из Sn−1.

Тогда все утверждения верны.

Доказательство. От противного. ПустьW = {n ∈ N|¬Sn}. ЕслиW ̸= ∅, то вW есть наименьший
элемент, для которого можно показать, что это не так. Противоречие.

Факт 2.3.1 (Неравенство Бернулли). ∀a ⩾ −1, n ∈ N : (1 + a)n ⩾ 1 + an

Доказательство. По индукции. А именно, Sn := (1 + a)n ⩾ (1 + an). Проверим, что S1 верно.
В самом деле, S1 = (1 + a)1 ⩾ (1 + a · 1). Это верно. Дальше, проверим переход Sn ⇒ Sn+1 для
n ⩾ 1. (1 + a)n ⩾ (1 + an) ⇒ (1 + an) · (1 + a) = 1 + a(n+ 1) + a2n ⩾ 1 + a(n+ 1).

Следствие 2.3.3. Для данного a > 0 множество {(1 + a)n|n ∈ N} не ограничено.

2.3.3 Аксиома Кантора — Дедекинда

Определение 2.3.1 (Щель). Два множества ∅ ̸= A,B ⊂ R образуют щель, если ∀x ∈ A, y ∈ B :
x ⩽ y.

Факт 2.3.2. Любое число из одного множества — граница другого множества.

Говорят, что щель содержит число x, если ∀a ∈ A, b ∈ B : a ⩽ x ⩽ b.
Формулировка аксиомы: Любая щель содержит по крайней мере одно вещественное число.

Замечание. Q — множество рациональных чисел; Q =
{m
n

| m ∈ Z, n ∈ N
}
. Несложно видеть, что

лишь последняя аксиома позволяет различить Q и R.

Факт 2.3.3. ∄r ∈ Q : r2 = 2

Доказательство. Предположим, что есть. НУО r > 0, так как для r = 0 утверждение неверно, а
из r2 = 2 ⇒ (−r)2 = 2. Тогда r ∈ Q : ∃p, q ∈ Z : p

q = r ∧ (p; q) = 1. Круглыми скобками обозначен

наибольший общий делитель двух данных чисел. Тогда p2

q2 = 2 ⇒ p2 = 2q2. Справа чётное число,
откуда p чётно, но тогда обе части уравнения делятся на 4 и q чётно. Значит, наибольший общий
делитель p и q делится на 2 и не равен 1. Противоречие.

Лекция IV
12 сентября 2022 г.

Теорема 2.3.1. ∃!r ∈ R>0 : r2 = 2
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Доказательство. Воспользуемся аксиомой Кантора — Дедекинда.

Пусть A := {x ∈ R|x > 0 ∧ x2 < 2}; B := {x ∈ R|x > 0 ∧ x2 > 2}. Они образуют щель, так
как ∀x ∈ A, y ∈ B : x ⩽ y. От противного: пусть ∃x ∈ A, y ∈ B : x > y. Но так как x, y > 0, то
неравенство можно возвести в квадрат и получить противоречие — из транзитивности с 2 : x2 < y2.

Замечание. Возведение в квадрат возможно из транзитивности: x < y ⇒

{
·x x2 < xy

·y xy < y2

Рассмотрим вещественное число c ∈ R, лежащее в этой щели.

Лемма 2.3.1. В множестве A нет наибольшего числа, в множестве B — нет наи-
меньшего.

Доказательство леммы.

• Пусть y ∈ B. Докажем, что ∃ε ∈ (0; 1) : y − ε ∈ B. Надо выбрать ε так, чтобы

(y − ε)2 > 2 ⇐⇒ y2 − 2yε+ ε2 > 2. Тогда подойдёт любое ε < min

(
y2 − 2

2y
, 1

)
.

• Пусть x ∈ A. Найдём ε ∈ (0; 1) : (x+ ε)2 < 2 ⇐⇒ x2 + 2xε+ ε2 < 2. Но — чудесное

дело — ε2 < ε. Тогда подойдут все ε < min

(
2− x2

2x+ 1
, 1

)
. Возьмём любой такой.

Отлично, а почему c2 = 2? От противного. Тогда c2 < 2∨ c2 > 2. Тогда — из c > 0 — c ∈ A∨ c ∈ B.
Но заметим, что в любом случае оно не окажется наибольшим (наименьшим) элементом — потому
что таких нет. Значит, c не лежит в щели. Противоречие. Отсюда c2 = 2.

Теперь докажем, что положительное число, при возведении в квадрат дающее 2 единственно. От

противного: пусть c1, c2 > 0 :

{
c21 = 2

c22 = 2
⇒ (c1 − c2)(c1 + c2) = 0 ⇒ c1 = c2.

Обозначим данное число
√
2

Следствие 2.3.4. На любом невырожденном отрезке ⟨a; b⟩ есть иррациональное число. Для
этого рассмотрим рациональное кратное

√
2, попадающее в этот отрезок — применение

леммы с предыдущей лекции.
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Глава 3

Грани, замкнутость, предельные
точки, пределы

Пускай ∅ ̸= A ∈ R — ограниченное сверху множество. По определению ∃x ∈ R : ∀a ∈ A : a ⩽ x.
Пусть B — множество всех верхних границ для A.

Теорема 3.0.1. В множестве B существует наименьший элемент.

Доказательство.

Замечание. Несложно убедиться, что для пустого множества это неправда, а для A = (0; 1) или
же A = [0; 1] это верно.

Заметим, что (A;B) — щель по определению. Тогда ∃c ∈ R, лежащее в этой щели.

∀a ∈ A, x ∈ B : a ⩽ c ⩽ x. Из левого знака c — верхняя граница для A, т. е. c ∈ B. Из правого
знака c — наименьший элемент в B.

Факт 3.0.1. Теорема эквивалентна аксиоме Кантора — Дедекинда, и можно постулировать
любую из них.

Определение 3.0.1 ((Точная) верхняя) грань). Это число c называется (точной) верхней гранью
множества A, иначе говоря супремум (supremum). c = supA.

Аналогичная теорема верна для непустого множества A, ограниченного снизу. Здесь точная ниж-
няя грань называется инфимум (infimum). c = inf A.

Теорема 3.0.2 (Об описании граней). Пускай A ⊂ R — множество, ограниченное сверху (внизу).
Следующие условия эквивалентны:

1. c — супремум (инфимум) множества A.

2. c — верхняя (нижняя) граница для A и ∀ε > 0 : ∃y ∈ A : c− ε < y (y < c+ ε).

Доказательство.

• (1) ⇒ (2)

Так как c — наименьший (наибольший) элемент множества границ, то c− ε
2 или (c+ ε

2 ) уже
не является границей. Значит, есть элемент из A, больший c− ε (меньший c+ ε).

• (2) ⇒ (1)

Пусть c удовлетворяет условию (2). Докажем, что c — наименьшая (наибольшая) верхняя гра-
ница. Если не так, то есть число меньше (больше) c, всё ещё являющееся верхней (нижней)
границей. Тогда получаем противоречие с (2).
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3.0.1 Небольшая серия определений и теорем из топологии

Определение 3.0.2 (Окрестность). Пусть x ∈ R. Окрестностью точки x называется любой интер-
вал вида (x− ε;x+ ε) для ε > 0. Для данного ε окрестность называется «ε-окрестность». Число x
называется центром окрестности, и ε — радиусом. Обозначают Uε(x) = Vε(x).

Определение 3.0.3 (Проколотая окрестность). Окрестность за вычетом точки x. Обозначается
o

Uε(x) =
o

V ε(x).
o

Uε(x) = (x− ε;x) ∪ (x;x+ ε).

Определение 3.0.4 (Предельная точка). Точка x называется предельной точкой для A ⊂ R, если
∀

o

Uε(x) :
o

Uε(x) ∩A ̸= ∅. Предельные точки множества A обозначаются A′.

Факт 3.0.2. Предельными точками (0; 1) являются все точки отрезка [0; 1]. Ровно такие же
предельные точки есть у множества (0; 1) ∪ {2}. Здесь 2 — изолированная точка.

Определение 3.0.5 (Изолированные точки). Точка x называется изолированной для A, если x ∈ A
и x не является предельной точкой множества A.

Лекция V
16 сентября 2022 г.

Предложение 3.0.1. Пусть A ⊂ R, A — ограничено сверху (внизу). Пусть supA /∈ A (inf A /∈ A).
Тогда supA (inf A) — предельная точка множества A.

Доказательство для supA. Пусть x = supA;x /∈ A. Рассмотрим любую
o

Uε(x). По теореме об
описании супремума ∃y ∈ A : y > x − ε. Так как x /∈ A, то y ̸= x. Тогда по определению x —
предельная точка A.

Определение 3.0.6 (Замкнутое множество). Множество, содержащее все свои предельные точки.

Примеры:
Замкнутые множества {x} [a; b] {0} ∪

{
1

n
| n ∈ N

}
∅

Не замкнутые множества: [a; b) (a; b)

{
1

n
| n ∈ N

}
Теорема 3.0.3 (О связности отрезка). Пусть a < b, тогда отрезок [a; b] нельзя представить в виде
объединения двух непустых непересекающихся замкнутых множеств

Доказательство. От противного: пусть E1, E2 ∈ [a; b], E1∩E2 ̸= ∅, E1∪E2 = [a; b]. ∃E ∈ {E1, E2} :
supE ̸= b.

Лемма 3.0.1. Замкнутое (непустое) множество содержит свои грани, каждую —
если она есть.

Доказательство леммы.

Пусть x = supC. Если x /∈ C, то x — предельная точка C, откуда из замкнутости всё же
x ∈ C.

В самом деле, если у обоих supE = b, то E1∩E2 ̸= ∅. Без потери общности b ∈ E1 ⇒ supE1 =
b; supE2 < b. Тогда (supE2; b] ∈ E1, откуда supE2 ∈ E′

1 = E1, противоречие.

Теорема 3.0.4 (Об описании чисел в щели). Пусть (A;B) — щель. Тогда множество чисел, лежа-
щих в щели — [supA; inf B].

Доказательство. Так как A,B ̸= ∅, то ∃ supA,∃ inf B.

⇒. Рассмотрим z в щели. Тогда z — верхняя граница A и нижняя граница B, откуда z ⩾
supA; z ⩽ inf B.
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⇐. Если z ∈ [supA; inf B], то z ⩾ supA и z — верхняя граница A. Аналогично z — нижняя
граница B, откуда z лежит в щели.

Определение 3.0.7 (Узкая щель). Щель, в которой лежит ровно одно число. Щель (A;B) — узкая
⇐⇒ supA = inf B.

Предложение 3.0.2. Пусть (A;B) — щель. Следующие условия эквивалентны:

1. Щель (A;B) – узкая.

2. ∀ε > 0 : ∃x ∈ A, y ∈ B : y − x < ε

Доказательство. (2) ⇒ (1). От противного: ∃x, y ∈ (A;B) : x < y. Тогда x — верхняя граница A,
y — нижняя граница B, и для ε = y − x получаем противоречие.

(1) ⇒ (2): Из (1): supA = inf B = p. Так как супремум и инфимум — точные грани, то ∀ε > 0 :
A ∩

[
p− ε

3 ; p
]
̸= ∅ ∧B ∩

[
p; p+ ε

3

]
̸= ∅ (если не так, то существует более точная грань).

Теорема 3.0.5 (Теорема о вложенных отрезках). Рассмотрим последовательность непустых отрез-
ков {[an; bn]}n∈N. Говорят, что это последовательность вложенных отрезков, если [an+1; bn+1] ⊂
[an; bn].

Такая последовательность имеет непустое пересечение
( ⋂

i∈N
[ai; bi]

)
̸= ∅;

∃x : ∀i ∈ N : x ∈ [ai; bi].

Это пересечение состоит из одной точки ⇐⇒ среди этих отрезков встречаются отрезки со сколь
угодно малой длиной.

Доказательство. Благодаря вложенности, an ⩽ an+1 ∧ bn ⩾ bn+1. Благодаря транзитивности ∀n ⩽
m ∈ N : an ⩽ am ∧ bn ⩾ bm.

Покажем, что ∀n,m ∈ N : an < bm. Для n ⩽ m : an ⩽ am ⩽ bm. Для n > m : an ⩽ bn ⩽ bm. Отсюда
({an}n∈N, {bn}n∈N) — щель. Тогда число в данной щели z : ∀i ∈ N : ai ⩽ z ⩽ bi.

Про единственность пересечения: пересечение
( ⋂

i∈N
[ai; bi]

)
одноточечно ⇐⇒ щель (A;B) —

узкая.

Пусть щель узкая, докажем, что есть сколь угодно маленький отрезок: ∀ε > 0 : ∃x ∈ A, y ∈ B :
y − x < ε. Пусть x = ai, y = bj для неких i, j ∈ N. Тогда для n = max(i, j) : |bn − an| < ε.

Факт 3.0.3. Теорема эквивалентна аксиоме Кантора — Дедекинда

Лекция VI
17 сентября 2022 г.

Теорема 3.0.6 (О компактности (первая форма)). Вторая форма приведена здесь: (теорема 3.1.18).

Всякое непустое ограниченное бесконечное множество A ⊂ R имеет предельную точку.

Доказательство. Раз A ограничено, то ∃a0, b0 ∈ R : a0 < b0 ∧A ⊂ [a0; b0].

Обозначим ci =
ai+bi

2 . На i-м шаге рассмотрим два отрезка [ai; ci] и [ci; bi] и выберем среди них
тот, который при пересечении с множеством A остаётся бесконечным множеством. Формульно,

[ai+1, bi+1] =

{
[ai, ci], |A ∩ [ai; ci]| = ∞
[ci, bi], otherwise∗

* — от противного легко получить, что здесь |[ci; bi] ∩A| = ∞, так как |[ai; bi] ∩A| = ∞.

Так как bi+1 − ai+1 = bi−ai

2 , то из индукции bi − ai = (b0 − a0) · 2−i. Например, из неравенства
Бернулли и аксиомы Архимеда, эта последовательность длин содержит сколь угодно малые числа.
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Таким образом, в данной последовательности отрезков каждый следующий вложен в предыдущий,

и применима теорема о вложенных отрезках. ∃!P ∈

( ⋂
i∈N0

[ai; bi]

)
.

Факт 3.0.4. P является искомой предельной точкой.

Для доказательства достаточно убедиться, что ∀ε > 0 : A∩
o

V ε(P ) ̸= ∅. И в самом деле, найдём n ∈
N : bn−an < ε. По построению отрезков |[an; bn]∩A| = ∞. Так как [an; bn]∩

o

V ε(P ) = [an; bn]\{P},
то |

o

V ε(P ) ∩A| = ∞, откуда непусто.

Определение 3.0.8 (Замыкание множества A). Обозначается A, или ClA, или ClosA. ClosA
def
=

A ∪A′ — объединение множества и его предельных точек.

Предложение 3.0.3. ClosA — замкнутое множество, то есть (ClosA)′ ⊂ ClosA.

Доказательство. Пусть X ∈ (ClosA)′.

Покажем, что X ∈ ClosA. Для этого убедимся, что ∀ε > 0 :
o

V ε(X) ∩A ̸= ∅, то есть X ∈ A′.

Поскольку X ∈ (ClosA)′, то ∃Y ∈ ClosA ∩
o

V ε(X).

1. Если Y ∈ A, то Y содержится в искомом пересечении
o

V ε(X) ∩A

2. Иначе Y ∈ A′. Заметим, что |XY | < ε. Тогда по определению ∃Z ∈
o

V ε−|XY |(Y ) ∩A. В таком
случае Z лежит в искомом пересечении.

3.0.2 Десятичная запись вещественного числа

Рассмотрим x ∈ R⩾0. Для такого ∃!n ∈ N0 : n ⩽ x < n+ 1. n = [x]. Назовём десятичной записью
неотрицательного числа x конкатенацию десятичной записи целого числа ⌊x⌋, запятой, и некоего
остатка, идентичного для всех чисел, эквивалентных отношением ≃: x ≃ y ⇐⇒ (x− y) ∈ Z. Для
отрицательных чисел x запись является записью −x с минусом в начале.

Рассмотрим десятичную запись чисел x ∈ [0; 1). Разобьём отрезок на 10 подотрезков Ii =
[

i
10 ;

i+1
10

)
, i ∈

{0, . . . , 9}. Это разбиение, поэтому ∃!j1 ∈ [0; 10)∩N0 : x ∈ Ij1 . Допишем j1 в конец числа. Разобьём
аналогично полуинтервал Ij1 на 10 равных частей

[
j1
10 + i

102 ;
j1
10 + i+1

102

)
, i ∈ {0, . . . , 9}.

Факт 3.0.5. Десятичная запись числа однозначно определяет число.

Доказательство. От противного. Пусть запись x и y совпадают. Но заметим, что на k-м шагу

длина рассматриваемых интервалов
1

10k
, поэтому рано или поздно встретится интервал длиной

меньше |y − x|, и они попадут в разные интервалы. Тогда на первой такой позиции, что x и y
попадут в разные интервалы, цифры не совпадут.

Факт 3.0.6. Десятичная запись, оканчивающаяся на бесконечную последовательность 9, не
соответствует ни одному числу.

Вопрос. Являются ли десятичной записью все остальные подходящие по формату строки?

Рассмотрим вложенную последовательность полуинтервалов [ai; bi), каждый из которых содержит
данное число. bi − ai =

1
10i . Заметим, что для доказательства, что ответ на проблему утвердитель-

ный, необходимо и достаточно доказать, что пересечение
( ⋂

i∈N
[ai; bi)

)
̸= ∅.
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Факт 3.0.7. Пусть задана последовательность вложенных полуинтервалов [li, ri) ̸= ∅. Среди
них есть сколь угодно малые. Пересечение этих полуинтервалов пусто ⇐⇒ ∃n ∈ N : ∀i > n :
ri = rn.

Доказательство. Пусть {X} =

( ⋂
i∈N

[li; ri]

)
— по теореме о вложенных отрезках это множество

действительно состоит из одной точки. Тогда ∀i ∈ N : X ∈ [li; ri].

Что означает, что X /∈
( ⋂

i∈N
[li; ri)

)
? Это означает, что ∃k ∈ N : X /∈ [lk; rk). Но это эквивалентно

тому, что X /∈ [lj , rj) ∀j ⩾ k. Однако X ∈ [lj ; rj ] ∀j ⩾ k. Отсюда X = rj ∀j ⩾ k.

Лекция VII
24 сентября 2022 г.

3.1 Пределы

Функция: f : A→ R : A ⊂ R. На доске во время лекций были приведены графики функций ниже.

1. f(x) =

{
1, x ̸= 0

0, x = 0
.

Определение 3.1.1 (Характеристическая функция B ⊂ R). χB(x) =

{
1, x ∈ B

0, x /∈ B
.

2. f(x) = χ[0;1).

3. f(x) = x.

4. Функция Дирихле D = χQ.

5. f(x) = χ{0}∪[1;2].

6. f(x) =

{
sin
(
1
x

)
, x ̸= 0

10, x = 0
.

Поведение функции вблизи в точке 0 — нас интересуют проколотые окрестности точки 0. Пове-
дение функций 1 и 2 вблизи нуля разное — слева от нуля в любой окрестности f1(x) = 1, но
f2(x) = 0.

Поведение функций 1, 3, 5 вблизи нуля схожи — в проколотой окрестности нуля они близки к
какому-то одному значению.

Функции 2, 4, 6 в этом отношении плохие.

7. Рассмотрим f(x) = χ(0;1), определённую на A = (0;+∞). Поведение функции в точке 0 тоже
является хорошим — для маленькой окрестности нуля там, где она задана, там она равна 1.

8. f(x) = x; domf = A =
{

1
n | n ∈ N

}
. Опять похожая на первую, хорошая, функция.

Хорошая функция — есть предел.

3.1.1 Определение предела

Предел последовательности — предел функции, определённой на натуральных числах.

Пусть дана функция, определённая на множестве A ⊂ R. О пределе в точке x0 можно говорить,
только если x0 ∈ A′ — предельная точка A. x0 может не лежать в A. Формально, A = N не
содержит предельных точек. Однако нам будет удобно считать бесконечность предельной точкой
N.
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Определение 3.1.2 (Окрестность точки +∞). Любой луч вида (a; +∞) = {x ∈ R|x > a}.

Определение 3.1.3 (Окрестность точки −∞). Любой луч вида (−∞; a) = {x ∈ R|x < a}.

Эти же окрестности будем считать проколотыми, так как они не содержат саму бесконечность.

Говорят, что +∞ есть предельная точка A, если в любой (проколотой) окрестности точки +∞ есть
точки множества A. Это определение показывает схожесть конечных и бесконечных предельных
точек. Говоря же более простым языком — A не ограничено сверху. В частности +∞ — предельная
точка N.

Определение 3.1.4 (Конечный предел). Число c ∈ R называется пределом функции f : A → R в

точке x0, если ∀ U(c) : ∃
o

V ε(x0) : f

(
o

V ε(x0) ∩A
)

⊂ U(c).

3.1.2 Примеры

Так, предел функции f(x) = |x| в нуле равен нулю, так как для окрестности U(c) можно взять

окрестность
o

V (0) такого же радиуса.

По тем же самым причинам предел функции f(x) =

{
−(x− 1), x ⩾ 1

0, x < 1
в x0 = 1 тоже 0 — опять

подойдёт окрестность такого же радиуса.

Факт 3.1.1. Функция Дирихле D = χQ не имеет предела ни в одной точке. domD = R.

Доказательство. Предельными точками R являются R ∪ {+∞;−∞}.

От противного: пусть c ∈ R: предел функции D в некой точке x0. Но рассмотрим тогда окрест-

ность U(c) =
(
c− 1

10 ; c+
1
10

)
. По определению предела ∃

o

V (x0) : D(
o

V (x0)) ⊂ U . Но D(
o

V (x0))
одновременно содержит и 0 и 1, а U имеет диаметр всего 1

5 . Значит, предела нет.

f(n) =
(−1)n

n
для n ∈ N. Предельной точкой N является только +∞. В ней предел равен 0.

Вот, почему: Рассмотрим некую окрестность нуля Uε(0) = (−ε; +ε). Надо найти a ∈ R : ∀n > a :
f(n) ∈ U , то есть |f(n)| < ε. Получается, необходимо 1

n < ε, или же n > 1
ε . Окрестность нашлась,

предел существует и равен 0.

f(n) = (−1)n для n ∈ N. Предела на бесконечности нет, показывается от противного аналогично
функции Дирихле.

Определение 3.1.5 (Функция Римана). Пусть r ∈ Q. Тогда ∃! q ∈ N, p ∈ Z : r = p
q и дробь

несократима. Тогда функция Римана r(x) =

{
0, x ∈ (R\Q) = I
1
q , x ∈ Q

.

Факт 3.1.2. В любой конечной точке предел функции Римана равен 0.

Доказательство. Очевидно, что никакого предела, кроме 0 не бывает, так как сужение функции
Римана на I имеет предел 0 в любой точке. Проверим, что 0 — предел в x0 ∈ R. Рассмотрим U(0) =

(−ε; +ε). Найдём для каждой такой подходящую окрестность точки x0, найти
o

V δ(x0) : r(
o

V δ(x0)) ∈
U . Если t ∈

o

V δ(x0) ∧ t ∈ I, то r(t) ∈ U .

Таким образом, нас интересуют точки t ∈ Q. Заметим, что любые два числа со знаменателем q
отстоят друг от друга по крайней мере на 1

q . Но выберем тогда δ настолько маленькой, чтобы все

числа со знаменателем q > 10
ε не попадали в

o

V δ(x0).

Почему так можно сделать? Если x0 — рациональное число с маленьким знаменателем q ⩽ 10
ε , то

выберем окрестность, чтобы не захватить других чисел такого вида. Иначе в окрестность может
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попасть число с маленьким знаменателем, но мы уменьшим окрестность, чтобы данное число было
не ближе, чем на границе окрестности.

Так можно сделать всегда, так как в окрестности фиксированного радиуса есть конечное количе-
ство чисел со знаменателем q ⩽ 10

ε , можно найти ближайшие к x0.

3.1.3 Свойства

Теорема 3.1.1 (Единственность предела). Если предел функции f : A → R (A ⊂ R) в точке
x0 ∈ (R ∪ {±∞}) — предельной точке A — существует, то он единственный. Не может быть двух
разных.

Доказательство. Предположим противное: c1 ̸= c2 — пределы для f в точке x0. Тогда ∃U1(c1), U2(c2) :
U1(c1) ∩ U2(c2) = ∅ — непересекающиеся окрестности точек c1 и c2 соответственно. Такие можно

найти, взяв их радиусом 0 < ε < |c1−c2|
2 . Из определения предела: ∃

o

V 1(x0) : f(
o

V 1(x0)) ⊂ U1. Кроме

того, ∃
o

V 2(x0) : f

(
o

V 2(x0)

)
⊂ U2. Но тогда внутри

o

V 1∩2(x0) :=
o

V 1(x0) ∩
o

V 2(x0) — одной из этих

двух окрестностей — функция f не может существовать: f
(

o

V 1∩2(x0) ∩A
)

⊂ (U1 ∩ U2) = ∅. Но

x0 — предельная точка, откуда пересечение
o

V 1∩2(x0) ∩A непусто, противоречие.

3.1.4 Обозначения предела

Предел функции f в точке x0 обозначается limx0
f = c, или lim

x→x0

f(x) = c, или f(x) →
x→x0

c. Запись

limx0
f = c значит, что предел у f в точке x0 существует и равен c.

Лекция VIII
26 сентября 2022 г.

Замечание. A ⊂ R;x0 ∈ A′, f : A→ R,∀x ∈ A : f(x) = c. Тогда limx0 f = c — предел существует и
равен c.

Доказательство. Рассмотрим U(c). Для произвольной
o

V (x0) : f

(
o

V (x0) ∩A
)

⊂ U — верно, так

как f(A) = {c}.

Замечание. A ⊂ R;x0 ∈ A′, f : A → R,∀x ∈ A : f(x) = x. Тогда limx0 f = x0 для произвольной
конечной точки x0.

Доказательство. Рассмотрим Uε(x0). Для
o

V ε(x0) такого же радиуса, что и Uε(x0):

f

(
o

V ε(x0) ∩A
)

⊂ Uε(x0) — верно, так как f = id.

3.1.5 Предел в терминах неравенств

Пусть x ∈ R. Любая её окрестность имеет вид (x− ε;x+ ε).
y ∈ Uε(x0) ⇐⇒ |y − x| < ε.

Пусть α ∈ R. Проколотая окрестность
o

V δ(α) имеет вид (α− δ;α+ δ)\{α}.
y ∈

o

V ε(α) ⇐⇒ y ̸= α ∧ |y − α| < δ.

limx0
f = c ⇐⇒ ∀U(c) : ∃

o

V ε(x0) : f

(
o

V ε(x0) ∩A
)

⊂ U .
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x0 ∈ R : lim
x0

f = c ⇐⇒ ∀ε > 0 : ∃δ > 0 : ((x ∈ A ∧ |x− x0| < δ ∧ x ̸= x0) ⇒|f(x)− c| < ε).

x0 = +∞ : lim
+∞

f = c ⇐⇒ ∀ε > 0 : ∃a : ((x ∈ A ∧ x > a) ⇒|f(x)− c| < ε).

x0 = −∞ : lim
+∞

f = c ⇐⇒ ∀ε > 0 : ∃a : ((x ∈ A ∧ x < a) ⇒|f(x)− c| < ε).

Пусть P — свойство функции; пусть f : A→ R — функция: пусть x0 ∈ A′.

Говорят, что функция f обладает свойством P вблизи точки x0, если ∃
o

V ε(x0) : f
∣∣ o
V ε(x0)∩A

—

сужение f на
o

V ε(x0) ∩A — обладает свойством P .

Теорема 3.1.2. Пусть f, g : A → R. x0 ∈ A′. Если limx0
f = c и limx0

g = d, при чём c < d, то
f(x) < g(x) вблизи x0.

Доказательство. Рассмотрим ε < d−c
2 . Для такого ε существуют окрестности

o

V ε(x0) и
o

Uε(x0)
такие, что функции f и g в этих окрестностях принимают значения, близкие к c и d соответственно.

Тогда ∀x ∈
(

o

V ε(x0) ∩
o

Uε(x0) ∩A
)
неравенство верно.

Замечание. Отсюда ещё раз следует единственность предела: если limx0
f = c и limx0

f = d, c < d,
то в некой окрестности x0: f(x) < f(x).

Теорема 3.1.3 (Предельный переход в неравенствах). u, v : A → R, x0 ∈ A′, u(x) ⩽ v(x) вблизи
x0. Если limx0

u = α и limx0
v = β, то α ⩽ β.

Доказательство. От противного.

Замечание. Если в окрестности x0: u(x) < v(x), то это не значит, что limx0 u < limx0 v даже
в случае существования этих пределов. Так, можно взять вблизи x0 = 0 функции u(x) = 0 и
v(x) = x, определённые на (0;+∞).

Теорема 3.1.4 (Теорема о двух полицейских). A ⊂ R, x0 ∈ A′; f, g, h : A → R. Предположим, что
f(x) ⩽ g(x) ⩽ h(x) вблизи x0. Также положим, что limx0

f = c = limx0
h. Тогда limx0

g = c

Доказательство.

Рассмотрим
o

V 1(x0) такую, что на ней выполняется неравенство.

∀U(c) : ∃
o

V 2(x0) такая, что f
(

o

U2(x0)

)
⊂ U(c) и g

(
o

V 2(x0)

)
⊂ U(c).

Тогда ∀U(c) :
o

V 3(x0) =
o

V 1(x0)∩
o

V 2(x0) такова, что f
(

o

V 3(x0)

)
⊂ U(c) и по определению limx0

f =

c.

Замечание. lim
x→x0

f(x) = c ⇐⇒ lim
x→x0

(f(x)− c) = 0 ⇐⇒ lim
x→x0

|f(x)− c| = 0

Доказательство.

Если расписать по определению любое из трёх выражений, то получим одно и то же:

∀ε > 0 : ∃
o

V ε(x0) : ∀x ∈
(

o

V ε(x0) ∩A
)

⇒ |f(x)− c| < ε
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Замечание. Функция имеет (конечный (другие пока не определяли)) предел вблизи x0, значит,
она ограничена вблизи x0.

Определение 3.1.6 (Ограниченная функция). Функция h : B → R ограничена (снизу,
сверху, без уточнений), если h(B) ограничено (снизу, сверху, без уточнений).
h ограничена сверху: ∃M : ∀x ∈ B : h(x) ⩽M
h ограничена снизу: ∃M : ∀x ∈ B : h(x) ⩾M
h ограничена: (∃M,N : ∀x ∈ B : h ⩽ h(x) ⩽ N) ⇐⇒ (∃K : ∀x ∈ B : |h(x)−K| ⩽ K)

Доказательство.

Пусть limx0
f = c. Рассмотрим любую окрестность точки c, например, радиусом 1 : U1(c). Для такой

окрестности c существует окрестность
o

V ε(x0) такая, что f
(

o

V ε(x0) ∩ dom f

)
⊂ U1(c). Значит, f

ограничена на
o

V ε(x0).

3.1.6 Арифметические действия с пределами

Теорема 3.1.5 (Предел суммы). f, g : A → R, x0 ∈ A′ ⇒ limx0(f + g) = limx0 f + limx0 g. Если
правая часть существует, то существует и левая, причём выполняется равенство.

(f + g)(x)
def
= f(x) + g(x)

Доказательство.

Пусть limx0 f = a, limx0 g = b.

∃
o

V ε(x0) : ∀x ∈
o

V ε(x0) ∩A : |f(x)− a| < ε
2 ∧ |g(x)− b| < ε

2 .

Тогда |f(x) + g(x)− (a+ b)| ⩽ |f(x)− a|+ |g(x)− b| < ε.

Теорема 3.1.6 (Предел произведения числа и функции). α ∈ R; f : A→ R, x0 ∈ A′ ⇒ limx0
(αf) =

α limx0 f . Если правая часть существует, то существует и левая, причём выполняется равенство.

(αf)(x)
def
= (α · f(x))

Доказательство.

α = 0 — ясно.

α ̸= 0 — применим определение предела для f с радиусом
ε

|α|
:

∃
o

V ε(x0) : ∀x ∈
o

V ε(x0)∩A : |f(x)−c| < ε

|α|
. Тогда для такой же окрестности |(αf)(x)−αc| < ε

Лекция IX
30 сентября 2022 г.

A ⊂ R;x0 ∈ A′; f : A→ R. Для B ⊂ A определено сужение f
∣∣
B
.

Теорема 3.1.7 (Предел сужения). Если x0 ∈ B′ и ∃ limx0 f , то limx0

(
f
∣∣
B

)
= limx0

f .

Так, для f : [0; 1] ∪ [2; 3] → R; x 7→

{
x, x ∈ [0; 1]

3, x ∈ [2; 3]
, в x0 существует предел в x0 = 1: lim1 f = 1.

Он сохраняется при сужении на [0; 1), но не при сужении на [2; 3] — в таком случае 1 перестаёт
быть предельной точкой.
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Замечание. При сужении может появиться предел, если его раньше не было. Так, для f = χ[0;1] :

∄ lim1 f , но ∃ lim1 f
∣∣
[0;1]

= 1.

Доказательство. Пусть c = limx0 f . Тогда ∀U(c) : ∃
o

V ε(x0) : ∀x ∈
o

V ε(x0) ∩ A : f(x) ∈ U(c). Тогда
для сужения это тоже верно.

Теорема 3.1.8 (Частичное обращение). Если f : A→ R, где B имеет вид A∩W для некой окрест-

ности W =
o

V ε(x0), и ∃ limx0
f
∣∣
B
, то ∃ limx0

f . Можно даже сказать точнее: limx0
f = limx0

f
∣∣
B
.

Доказательство. Запишем условие существования предела для сужения:

∀U(c) : ∃
o

V ε(x0) : f

(
o

V ε(x0) ∩B
)

= f

(
o

V ε(x0) ∩A ∩W
)

⊂ U(c)

Отсюда f
((

o

V ε(x0) ∩W
)
∩A

)
⊂ U(c), а

o

V ε(x0) ∩W — некая окрестность x0.

Теорема 3.1.9. Пусть f, g : A → R, x0 ∈ A′. Если limx0
f = 0 и g ограничена вблизи x0, то

limx0
(f · g) = 0.

Доказательство. Можно считать, что g определена только на той окрестности, на которой она
ограничена. Тогда ∃M ∈ R : |g(x)| ⩽ M . Отсюда 0 ⩽ |(f · g)(x)| ⩽ M |f(x)|. По теореме о двух
блюстителях закона (f · g) стремится к 0 вблизи x0.

Теорема 3.1.10 (Предел произведения). f, g : A→ R;x0 ∈ A′. Тогда limx0
(f · g) = limx0

f · limx0
g.

Как и прежде, запись читается так: если существует правая часть, то левая тоже существует и
равна ей.

Доказательство. Положим a = limx0
f ; b = limx0

g. Утверждение теоремы эквивалентно следую-
щему: limx0

|fg − ab| = 0. Но заметим, что

f(x)g(x)− ab = (f(x)− a︸ ︷︷ ︸
−→

x→x0
0

) g(x)︸︷︷︸
ограничена

+ a︸︷︷︸
константа

(g(x)− b︸ ︷︷ ︸
−→

x→x0
0

)

Несложно видеть, что данная сумма стремится к нулю, так как в каждой паре один из множителей
ограничен, а другой — стремится к нулю.

В отличие от предела произведения, предел частного может не существовать, равно если частное
ограничено ( |x|x ) или неограничено ( 1x )

Теорема 3.1.11 (Предел частного). f, g : A → R, x0 ∈ A′. Если ∃ limx0 g : limx0 g ̸= 0, то формула
h(x) = f(x)

g(x) задаёт функцию, определённую вблизи x0 и(
lim
x0

h = lim
x0

(
f

g

))
=

limx0
f

limx0 g

Здесь левая часть существует, если существует правая, то есть пределы limx0
f, limx0

g существу-
ют, и limx0

g ̸= 0. В случае выполнения всех условий левая часть равна правой.

Доказательство.

Положим a = limx0
f ; b = limx0

g.

Лемма 3.1.1. Функция g отделена от нуля вблизи x0, то есть ∃
o

V ε(x0) :

∀x ∈
o

V ε(x0) ∩A : ∥g(x)∥ ⩾ |b|
2 .
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Доказательство леммы.

Для ε = |b|
10 : ∃

o

V ε(x0) : ∀x ∈
o

V ε(x0) ∩ A : |g(x) − b| < ε. Тогда для ∀x ∈
o

V ε(x0) ∩ A :

|g(x)| ⩾ ∥b∥ − |b|
10 ⩾ |b|

2 .

Докажем, что f(x)
g(x)−

a
b стремится к нулю:

f(x)

g(x)
−a
b
=
bf(x)− ag(x)

b · g(x)
= (bf(x)− ag(x)︸ ︷︷ ︸

−→
x→x0

ba−ab=0

)· 1

b · g(x)︸ ︷︷ ︸
ограничена, |...|⩽ 2

|b|2

Так, рассмотрим f ≡ c⇒ limx0
f = c и g(x) = x⇒ limx0

g = x0.

Следствие 3.1.1. Пусть P — многочлен: P (x) = anx
n + · · ·+ a1x+ a0. Тогда ∀x0 ∈ R : limx0 P =

P (x0).

Следствие 3.1.2. Пусть Q — другой многочлен; введём рациональную функцию U(x) = P (x)
Q(x) ,

заданную на множестве {x ∈ R | Q(x) ̸= 0}. Тогда для x0 ∈ domU :

(
limx0 U = lim

x→x0

P (x)
Q(x)

)
=(

U(x0) =
P (x0)

Q(x0)

)
.

Определение 3.1.7 (Непрерывная функция). Пусть f : A → R. Для x ∈ A ∩ A′ говорят, что f
непрерывна в точке x0, если ∃ limx0

f и limx0
f = f(x0).

Видим, что многочлен непрерывен везде на R, а рациональная функция — везде на своей области
определения.

Рассмотрим h : N → R. Пусть q ∈ R. Определим h(n) = hn = q + q + · · ·+ qn.

Что можно сказать о существовании предела lim
n→+∞

hn?

Заметим, что (1 + · · ·+ qn)(1− q) = 1− qn+1.

1. Для q = 1 : hn = n + 1 — функция не ограничена ни в какой окрестности +∞, значит,
предела нет.

Иначе q ̸= 1 : hn =
1− qn

1− q
.

2. q = −1 и hn =

{
1, 2|n
0, 2̸ |n

. Значения чередуются, предела нет.

3. |q| > 1. Предела нет, |hn| ⩾
∣∣∣∣ 1

1− q

∣∣∣∣ · (|q|n − 1) неограничена
(
hn =

1− qn

1− q
по-прежнему

)
.

4. |q| < 1 и lim+∞ h = lim
n→+∞

1− qn

1− q
=

1

1− q
. В самом деле, qn −→

n→∞
0, что можно получить,

например, применяя неравенство Бернулли для
1

|q|
.

Лекция X
3 октября 2022 г.

3.1.7 Теорема Вейерштрасса об ограниченной возрастающей функции

Определение 3.1.8 (Возрастающая функция f : B → R). ∀x1, x2 ∈ B : x1 ⩽ x2 ⇒ f(x1) ⩽ f(x2).
Говорят о строгом возрастании, если ∀x1, x2 ∈ B : x1 < x2 ⇒ f(x1) < f(x2).

Аналогично для (строгого) убывания.
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Пусть A ⊂ R.

1. A ограничено сверху и (x0 = supA) /∈ A. Тогда x0 ∈ A′.

2. A не ограничено сверху, x0 = +∞.

Теорема 3.1.12 (Вейерштрасс). Пусть f : A→ R, возрастает, ограничена сверху. Тогда ∃ limx0 f .

Доказательство.

C := f(A). f ограничена ⇒ ∃c = supC. Докажем, что c = limx0
f .

Рассмотрим ∀ε > 0. По теореме об описании супремума ∃d ∈ C : d > c−ε; ∃y ∈ A : f(y) = d > c−ε.
Тогда для окрестности

o

V δ(x0) = {u ∈ A | y < u < x0} : ∀u ∈
o

V δ(x0) : d = f(y) ⩽ f(u) ⩽ c. Таким

образом, при ∀ε > 0 : ∃
o

V δ(x0) : c− ε ⩽ f(u) ⩽ c и c — предел по определению.

Теорема 3.1.13 (Дополнение предыдущей). Пусть A ⊂ R; предельная (необязательно конечная)
точка x0 ∈ A′, причём A ⊂ (x0; +∞). Тогда

• Если f ограничена снизу и возрастает, то ∃ limx0
f = inf

x∈A
f(x)

• Если f ограничена сверху и убывает, то ∃ limx0 f = sup
x∈A

f(x)

Для x0, определённого выше, и монотонной ограниченной функции:

Замечание. limx0 f =

{
sup f(A), f возрастает

inf f(A), f убывает
.

Для a > 0 и 0 < b < 1 : f(n) = a+ ab+ · · ·+ abn −→
n→+∞

a
1−b . Так как f возрастает, то число a

1−b —

не только lim+∞ f , но и sup f : ∀n ∈ N : f(n) ⩽ a
1−b .

Рассмотрим g(n) =

(
n∑

i=0

1
i!

)
= 1

0! +
1
1! + · · · + 1

n! , где n! =

({
1, n = 0

(n− 1)! · n, n > 0

)
=

(
n∏

i=1

i

)
=

1 · 2 · . . . · n.

Факт 3.1.3. ∃ lim+∞ g(n). e
def
= lim+∞ g(n).

Доказательство.

Достаточно проверить, что g(N) ограничено сверху.

Заметим, что g(n) = 1 + 1
2! +

1
3!

(
1 + 1

4 + 1
4·5 + · · ·+ 1

4·5·...·n
)
для n ⩾ 3. Отсюда

g(n) ⩽ 1 +
1

2!
+

1

3!

(
1 +

1

4
+

1

42
+ . . .

)
⩽ 1 +

1

2!
+

1

3!

(
1

1− 1
4

)
= 2

1

2
+

1

6
· 4
3
= 2

13

18

Отсюда (g возрастает) видно, что lim+∞ g(n) существует, и lim+∞ g(n) < 3. Несложно вычислить
первые несколько десятичных знаков числа e = 2, 71828 . . . .

Теорема 3.1.14. Число e иррационально

Доказательство.

Пусть e = p
q для некоторых p, q ∈ N. Оценками на e получаем, что q ⩾ 2. Рассмотрим число

q!e = q!

(
1 + · · ·+ 1

q!

)
+ lim

n→∞

(
1

q + 1
+

1

(q + 1)(q + 2)
+ · · ·+ 1

(q + 1)(q + 2) · . . . · n

)
Однако

(
1

q+1 + 1
(q+1)(q+2) + · · ·+ 1

(q+1)(q+2)·...·n

)
⩽
(

1
q+1 + · · ·+ 1

(q+1)n−q

)
<
(
1
3 + 1

32 + . . .
)
⩽ 1

2 ,

откуда q!e никак не может быть целым. Противоречие.
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3.1.8 Гармонические ряды

Пусть a > 0. Когда h(n) = 1 + 1
2a + · · ·+ 1

na ограничена сверху? При каких a : ∃ lim+∞ h?

Замечание. Понятие степени na будет определено позже, предполагается, что все с ним знакомы.

Теорема 3.1.15. Пусть b1 ⩾ b2 ⩾ · · · — убывающая последовательность неотрицательных чисел.
Следующие условия эквивалентны:

1.
n∑

j=1

bj ограничена сверху.

2.
n∑

k=1

2kb2k ограничена сверху.

Доказательство.

(1) ⇒ (2). Рассмотрим ∀n ∈ N. ∃! l ∈ N : 2l ⩽ n < 2l+1.

n∑
j=1

bj ⩽ b1 + (b2 + b3) + (b4 + · · ·+ b7) + · · ·+ (b2l + · · ·+ b2l+1−1) ⩽ b1 +

l∑
k=1

2kb2k

(2) ⇒ (1). Рассмотрим ∀l ∈ N.

l∑
k=1

2kb2k = 2

b2 + (b4 + b4) + · · ·+ (b2l + · · ·+ b2l︸ ︷︷ ︸
2l−1

)

 ⩽ 2
(
b1 + (b2 + b3) + · · ·

)
⩽ 2

2l∑
j=1

bj

Из этих двух неравенств несложно видеть, что неограниченность одной последовательности
непременно влечёт неограниченность другой.

Следствие 3.1.3. Пусть bj = 1
ja . Тогда 2jb2j = 2j

1

2ja
=
(
21−a

)j . Но сумма n∑
j=1

(
21−a

)j ограничена
если и только если 21−a < 1. Частный случай равенства единице: a = 1 : 1 + 1

2 + · · · + 1
n не

ограничена.

Следствие 3.1.4. Для a = 2 : ∃ lim
n→∞

(
1 + 1

22 + · · ·+ 1
n2

)
.

Эйлер показал, что lim
n→∞

(
1 + 1

22 + · · ·+ 1
n2

)
= π2

6 .

Следствие 3.1.5. ∃ lim
n→+∞

n∑
k=1

1

k(log k)α
⇐⇒ ∃ lim

n→∞

n∑
j=1

2j
1

2j(log 2j)α
= lim

n→∞

n∑
j=1

1

jα
⇐⇒ α > 1

Лекция XI
7 октября 2022 г.

3.1.9 Предел последовательности

Последовательность {an}n∈N или {a(n)}n∈N. ∃!x0 ∈ N′ = {+∞}.

Определение: c = lim
n→+∞

an ⇐⇒ ∀ε > 0 : ∃N : ∀n ∈ N : (n > N ⇒ |an − c| < ε). Очевидно, что

можно считать, что N ∈ N.

Теорема 3.1.16. Последовательность an сходится к c ⇐⇒ ∀ε > 0 :
{
n ∈ N

∣∣∣|an − c| > ε
}
конечно.

Доказательство.

⇒. Если последовательность сходится, то обратное неравенство выполняется начиная с некото-
рого места, тогда |an − c| > ε может выполняться только в некоторых точках до данного
места; этих точек конечное количество.
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⇐. Если
{
n ∈ N

∣∣∣|an − c| > ε
2

}
конечно, то в нём существует максимальный элемент N . Тогда

∀n > N : |an − c| ⩽ ε
2 < ε.

Определение 3.1.9 (Перестановка множества N). Биекция ϕ : N → N.

Определение 3.1.10 (Перестановка последовательности {an}n∈N). Любая последовательность ви-
да {aϕ(n)}n∈N, где ϕ — перестановка N.

Следствие 3.1.6. Если последовательность an −→
n→+∞

c, то любая перестановка aϕ(n) −→
n→+∞

c. Верно и обратное — если какая-то перестановка имеет предел, то такой же имеет и
исходная последовательность (рассмотреть обратную перестановку).

Определение 3.1.11 (Подпоследовательность {an}n∈N). Любая последовательность вида akn , где
последовательность натуральных чисел {kn}n∈N возрастает: k1 < k2 < · · · .

Теорема 3.1.17. Если последовательность {an}n∈N сходится к c, то любая подпоследовательность
{akn}n∈N тоже сходится к c.

Доказательство. Верно по теореме о сужении функций.

Теорема 3.1.18 (О компактности (вторая форма)). Первая форма приведена здесь: (теорема 3.0.6).

Любая ограниченная последовательность имеет сходящуюся подпоследовательность.

Доказательство. Рассмотрим E = {an | n ∈ N}.

• E конечно.

Утверждается, что существует подпоследовательность {abn}, у которой все значения одина-
ковы: abn = abm . Ну, в самом деле: от противного, если каждое значение из E последова-
тельность принимает конечное количество раз, то её прообраз оказывается конечным.

• E бесконечно.

Согласно первой форме теоремы о компактности ∃c ∈ R, являющаяся предельной для E :
∀ε > 0 : ∃x ∈ E : 0 < |x− c| < ε.

Найдём последовательность kn так, чтобы {akn} сходилась к c по индукции. А именно,
найдём такую последовательность индексов {kn}n∈N, чтобы выполнялось |akn

− c| < 1
n . По

определению предельной точки в любой окрестности c есть точка. Тогда возьмём такую
окрестность, чтобы её радиус был меньше 1

n , да ещё и все ранее выбранные точки не попа-
дали в неё. Так можно будет выбрать точку akn

для любого n.

После данного действа у нас есть {akn
}, которая сходится к c (kn — какая-то последова-

тельность индексов). Заметим, что та перестановка, в которой {kn} возрастает, тогда тоже
сходится к c, но она уже является подпоследовательностью {an}.

Теорема 3.1.19. Сходящаяся последовательность {an}n∈N ограничена

Доказательство. По теореме для функций, имеющих предел, ∃
o

V ε(+∞) такая, что a
(

o

V ε(+∞)

)
ограничена. В нашем случае

o

V ε(+∞) = (N ; +∞) для некоего n ∈ N. Но множество {a1, . . . , aN}
конечно, поэтому тоже ограничено.

Теорема 3.1.20 (Предельные точки в терминах последовательностей). A ⊂ R;x0 ∈ R. Следующие
условия эквивалентны:

(x0 ∈ A′) ⇐⇒
(
∃{xn}n∈N ⊂ (A\{x0}) : xn −→

n→+∞
x0

)
Доказательство.
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⇒. ∀n : ∃xn ∈
o

V 1
n
(x0) ⇐⇒ ∃xn : |xn − x0| < 1

n . Тогда по теореме о двух полицейских
xn −→

n→+∞
x0.

⇐. Рассмотрим окрестность
o

V ε(x0). Тогда ∃N : ∀n > N : xn ∈
o

V ε(x0).

Предложение 3.1.1. A ⊂ R; x0 ∈
(
A

def
= A ∪A′

)
⇐⇒ ∃{xn} ⊂ A : xn −→

n→+∞
x0.

Доказательство.

⇒. Если x0 ∈ A, то либо x0 ∈ A — тогда рассмотрим последовательность N → {x0}, либо x0 ∈ A′

— тогда см. предыдущую теорему.

⇐. Рассмотрим данную последовательность. Если её предел x0 = xn для некоего n, то x0 ∈ A.
Иначе ∀n ∈ N : x0 ̸= xn, тогда x0 ∈ A′.

Предложение 3.1.2 (Бесконечная предельная точка (x0 = ±∞)). +∞ (−∞) — предельная точка
для A ⇐⇒ ∀n ∈ N : ∃xn ∈ A : xn > n (xn < −n).

Теорема 3.1.21 (Предел функции в терминах последовательностей). f : A→ R, x0 ∈ A′ и x0 ∈ R.
Следующие условия эквивалентны:(

∃ lim
x0

f = c

)
⇐⇒

(
∀{xn}n∈N ⊂ A\{x0} : (xn −→

n→+∞
x0 ⇒ lim

n→+∞
f(xn) = c)

)
Доказательство.

⇒. Дано: ∀ε > 0 : ∃δ > 0 : ∀x ∈ A : (0 < |x − x0| < δ ⇒ |f(x) − c| < ε). Пусть {xn} ⊂
A\{x0};xn −→

n→+∞
x0. Тогда ∃N : ∀n > N : |xn − x0| < δ ⇒ |f(xn)− c| < ε.

⇐. Дано: ∀{xn} : (xn −→
n→+∞

x0 ⇒ ∀ε > 0 : ∃N : (n > N ⇒ |f(xn)− c| < ε)).

Лекция XII
10 октября 2022 г.

Пойдём от противного: пусть c не есть предел функции f в точке x0. То есть

∃ε > 0 : ∀δ > 0 : ∃x ∈
(

o

V δ(x0) ∩A
)

: |f(x)− c| ⩾ ε

Зафиксируем ε > 0; возьмём последовательность δn = 1
n . Тогда

∀δn : ∃xn ∈ A : 0 < |x− x0| < δn ∧ |f(xn)− c| ⩾ ε

Противоречие, мы построили последовательность.

Определение 3.1.12 (Колебание функции на множестве). Рассмотрим g : B → R, где B ⊂ R. Для
b ⊂ B, такой что g ограничена на b, колебания oscb g

def
= sup {|f(x)− f(y)| | x, y ∈ b}.

Определение корректно, так как из ограниченности функции ∃M ∈ R : ∀x ∈ b : |f(x)| < M , откуда
{|f(x)− f(y)| | x, y ∈ b} ограничено сверху числом 2M , а значит, имеет супремум.

Лемма 3.1.2.

oscb g = sup {g(x)− g(y) | x, y ∈ b} = sup
x∈b

g(x)− inf
x∈b

g(x)

Доказательство леммы.
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• X = {|g(x)− g(y)| | x, y ∈ b}; Y = {g(x)− g(y) | x, y ∈ b}. Тогда понятно, что X = {y | y ∈ Y } ∪ {−y | y ∈ Y },
откуда supX = supY .

Для произвольного ограниченного значением M отображения f : V ×W → R верно
следующее:

Пусть X := sup
(v,w)∈V×W

f(v, w). Выполняется X = sup
v∈V

sup
w∈W

f(v, w)

В самом деле, с одной стороны ∀(v, w) ∈ (V ×W ) : X ⩾ f(v, w) ⇒ X ⩾ sup
w∈W

f(v, w) ⇒

X ⩾ sup
v∈V

sup
w∈W

f(v, w).

С другой стороны, ∀ρ > 0 : ∃(v, w) ∈ (V ×W ) : f(v, w) > X−ρ. Тогда sup
v∈V

sup
w∈W

f(v, w) ⩾

X − ρ.

Из этих двух неравенств получаем равенство.

• sup
x,y∈b

(g(x)− g(y)) = sup
x∈b

sup
y∈b

(g(x)− g(y)) = sup
x∈b

g(x) + sup
y∈b

(−g(y)) = sup
x∈b

g(x)− inf
y∈b

g(y)

Здесь пользовались тем, что sup
x∈X

(f(x) + c) = (sup
x∈X

f(x)) + c и sup
x∈X

f(x) = − inf
x∈X

(−f(x)).

Теорема 3.1.22 (Критерий Коши существования предела). Для f : A→ R и произвольной x0 ∈ A′:

1. f имеет предел в x0.

2. ∀ε > 0 : ∃
o

V ε(x0) : ∀x, y ∈
o

V ε(x0) : |f(x)− f(y)| < ε.

Доказательство.

⇒. ∀ε > 0 : ∃
o

V ε(x0) : ∀z ∈
o

V ε(x0) : |f(z) − c| < ε
2 Но тогда ∀x, y ∈

o

V ε(x0) : |f(x) − c| <
ε
2 ∧ |f(y)− c| < ε

2 , откуда |f(x)− f(y)| ⩽ |f(x)− c|+ |f(y)− c| < ε
2 + ε

2 = ε.

⇐. Дано: ∀ε > 0 : ∃
o

V ε(x0) : osc( o
V ε(x0)∩A

) f ⩽ ε. Функция f ограничена вблизи x0: применим

условие для ε = 1, найдём
o

V ε(x0) : ∀x, y ∈
(

o

V ε(x0) ∩A
)

: |f(x) − f(y)| < 1. Тогда для

фиксированного y ∈
(

o

V ε(x0) ∩A
)

: ∀x ∈
(

o

V ε(x0) ∩A
)

: |f(x) − f(y)| < 1 ⇐⇒ f(x) ∈

[f(y)− 1; f(y) + 1]. Тогда рассмотрим сужение f на окрестность, в которой она ограничена и
докажем существование предела у сужения.

Рассмотрим v — совокупность всех окрестностей точки x0. Пусть
o

V ε(x0) ∈ v. Обозначим

l

(
o

V ε(x0)

)
= inf

x∈
(

o
V ε(x0)∩A

) f(x); h

(
o

V ε(x0)

)
= sup

x∈
(

o
V ε(x0)∩A

) f(x)

Пусть
o

Uε(x0) ⊂
o

V ε(x0),
o

Uε(x0),
o

V ε(x0) ∈ v. Тогда верно следующее:

l

(
o

V ε(x0)

)
⩽ l

(
o

Uε(x0)

)
⩽ h

(
o

Uε(x0)

)
⩽ h

(
o

V ε(x0)

)

Введём L =
{
l
(

o
w
)
| o
w ∈ v

}
и H =

{
h
(

o
w
)
| o
w ∈ v

}
. Эти два множества образуют щель.

Более того, щель — узкая, так как ∀ε > 0 : ∃
o

V ε(x0) : sup

x∈A∩
o
V ε(x0)

f(x) − inf
y∈A∩

o
V ε(x0)

f(y) ⩽ ε.

Значит, ∃!c ∈ (L;H).
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Докажем, что c = limx0
f . Рассмотрим произвольный ε > 0, найдём

o

V ε(x0) так, чтобы

h

(
o

V ε(x0)

)
− l

(
o

V ε(x0)

)
< ε. Но так как ∀x ∈

o

V ε(x0) : c, f(x) ∈
[
l

(
o

V ε(x0)

)
, h

(
o

V ε(x0)

)]
,

то получили, что |f(x)− c| < ε

Факт 3.1.4. Теорема эквивалентна аксиоме Кантора — Дедекинда

3.2 Ряды

Рассмотрим последовательность {an}n∈N ⊂ R. Обозначим ряд символом
+∞∑
n=1

an.

Определение 3.2.1 (Частичная сумма). Sn
def
= a1 + · · ·+ an =

n∑
i=1

ai.

Определение 3.2.2 (Сходящийся ряд). Ряд, последовательность частичных сумм которого сходит-
ся. Иначе ряд расходится.

У сходящегося ряда S = limn Sn называется суммой ряда.

3.2.1 Примеры

• Геометрическая прогрессия
+∞∑
n=0

qn. При |q| < 1 сходится к 1
1−q ; при |q| ⩾ 1 расходится.

• Гармонические ряды
+∞∑
n=1

1
na . Сходится ⇐⇒ a > 1.

• e =
+∞∑
n=0

1
n! — сходится к числу e.

Пусть {an}n∈N — последовательность. Введём последовательность dn =

{
an, n = 1

an − an−1, n > 1
. Рас-

смотрим ряд
+∞∑
k=1

dk. Несложно видеть, что его частичные суммы совпадают с последовательностью

{ak}. В частности, ряд
+∞∑
k=1

dk сходится ⇐⇒ последовательность an имеет предел, причём если

это верно, то
+∞∑
k=1

dk = lim+∞ an.

Лекция XIII
14 октября 2022 г.

3.2.2 Критерий Коши для рядов

Рассмотрим ряд
∞∑

m=1
am. Его сходимость равносильна сходимости последовательности частичных

сумм {sk}. Применяя критерий Коши, получаем:

∀ε > 0 : ∃N : ∀k, n > N : |sk − sn| < ε

Считая n > k, получаем ∀ε > 0 : ∃N : ∀k > n > N : |an+1 + · · ·+ ak| < ε.

Следствие 3.2.1. Если ряд
∞∑

m=1
am сходится, то am −→

m→∞
0.

Доказательство. Рассмотреть k = n + 1 выше. Другой способ — написать am = sm − sm−1, но
при стремлении m к бесконечности sm − sm−1 −→

m→∞
s− s = 0, где s — предел последовательности

частичных сумм.
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Замечание. Ряд
∞∑

n=1

1
n расходится, хотя и выполняется условие 1

n −→
n→∞

0.

Теорема 3.2.1 (О сравнении рядов). Если ряды
∞∑

n=1
an и

∞∑
n=1

bn таковы, что |an| ⩽ bn, то из

сходимости bn следует сходимость an.

Доказательство. Запишем критерий Коши для ряда b: ∀ε > 0 : ∃N : ∀k > n > N : bn+1 + · · ·+ bk < ε.
Но тогда |an+1 + · · ·+ ak| ⩽ |an+1|+ · · ·+ |ak| ⩽ bn+1 + · · ·+ bk < ε и ряд an сходится по критерию
Коши.

Как известно, e
def
=

∞∑
n=0

1
n! . Рассмотрим ряд

∞∑
n=1

dn

n! для ограниченной последовательности {dn} ⊂ R.

Пусть последовательность ограничена числом M . Тогда
∣∣dn

n!

∣∣ ⩽ M · 1
n! , и по теореме о сравнении

рядов ряд
∞∑

n=1

dn

n! сходится.

Определение 3.2.3 (Абсолютная сходимость). Ряд
∞∑

n=1
an сходится абсолютно, если ряд

∞∑
n=1

|an|
сходится.

Замечание. По теореме о сравнении рядов, из абсолютной сходимости следует сходимость.

Доказательство. Рассмотреть bn = |an| в теореме о сходимости.

Замечание. Обратное в общем случае неверно: так, ряд
∞∑

n=1

(−1)n

n сходится, но не абсолютно.

Чтобы проверить это утверждение, применим преобразование Абеля.

3.2.3 Преобразование Абеля

Рассмотрим ряд
∞∑

n=1
βiai, где ai ⩾ ai+1 ⩾ 0. Обозначим σn :=

n∑
i=1

βi. Тогда если {σi} ограничена,

то ряд сходится.

Доказательство.

β1a1 + β2a2 + β3a3 + · · ·+ βnan = σ1a1 + (σ2 − σ1)a2 + (σ3 − σ2)a3 + · · ·+ (σn − σn−1)an.

Перегруппируем слагаемые, чтобы за скобками стояли не ai, а σi:

σ1(a1 − a2) + σ2(a2 − a3) + · · ·+ σnan.

Применив ограниченность последовательности {σi}, получим |σj(aj − aj+1)| ⩽ |σj |(aj − aj+1) ⩽
M(aj − aj+1). Но тогда по теореме о сравнении ряд сходится, так как сходится ряд

tk =

∞∑
j=1

M(aj − aj+1)

В самом деле, M(a1 − a2) +M(a2 − a3) + · · ·+M(an − an+1) =M(a1 − an), то есть сумма ряда не
больше Ma1.

Замечание. Здесь у меня небольшой обман, надо ещё сказать, что σnan −→
n→∞

0 или (что то же са-

мое, так как {σi} ограничена) an −→
n→∞

0. Иначе остаётся слагаемое σnan, вносящее существенный

вклад.
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Применив преобразование Абеля к ряду
∞∑

n=1

(−1)n

n для βi = (−1)n и an = 1
n действительно получим

его сходимость. То, что он не сходится абсолютно, следует из того, что ряд
∞∑

n=1

1
n расходится.

Замечание. Через преобразование Абеля можно доказать сходимость ряда
∞∑

n=1

sin(nt)
n .

Замечание. Рассмотрим ряд
∞∑

n=1
an; пусть an ⩾ 0. Ряд сходится ⇐⇒ частичные суммы ограничены

сверху.

Доказательство. Частичные суммы нестрого возрастают и ограничены.

В связи с этим, если для an ⩾ 0 ряд
∞∑

n=0
сходится, то часто записывают

∞∑
n=0

an <∞.

3.3 Верхние и нижние пределы

Рассмотрим функцию f : A→ R, x0 ∈ A′.

Считаем, что функция f ограничена (достаточно считать вблизи x0, после чего сузить область

определения). Рассмотрим некую окрестность
o

Uε(x0). Пусть U =
o

Uε(x0) ∩ A. Тогда oscU f =

sup
x∈U

f(x) − inf
y∈U

f(y). Обозначим h

(
o

Uε(x0)

)
= sup

x∈U
f(x); l

(
o

Uε(x0)

)
= inf

x∈U
f(x). Кроме того, v —

множество окрестностей точки x0.

Тогда множества L =
{
l
(

o
w
)
| o
ω ∈ v

}
и H =

{
h
(

o
w
)
| o
ω ∈ v

}
образуют щель, причём числа в этой

щели — отрезок [supL; infH].

Определение 3.3.1 (Верхний предел). Число infH называется верхним пределом функции f в
точке x0. Обозначают lim

x→x0

f(x) или lim sup
x→x0

f(x).

Определение 3.3.2 (Нижний предел). Число supL называется нижним пределом функции f в
точке x0. Обозначают lim

x→x0

f(x) или lim inf
x→x0

f(x).

3.3.1 Свойства

1. lim
x→x0

f(x) = − lim
x→x0

(−f(x)).

2. Теорема 3.3.1 (Об описании верхнего предела). Следующие условия эквивалентны:

a) d = lim
x→x0

f(x)

b)

∀ε > 0 : ∃
o

Uδ(x0) : ∀x ∈
o

Uδ(x0) ∩A : f(x) < d+ ε

∀ε > 0,∀
o

Uδ(x0) : ∃x ∈
o

U δ(x0) ∩A : f(x) > d− ε

Доказательство.

⇒. d = inf
o
Uε(x0)∈v

h

(
o

Uε(x0)

)
. Тогда по свойству инфимума ∀ε > 0 : ∃

o

V δ(x0) : h

(
o

V δ(x0)

)
<

d+ ε, то есть sup

x∈
o
V δ(x0)∩A

h(x) < d+ ε, откуда следует первое условие в конъюнкции.
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А ещё ∀ε > 0,∀
o

V δ(x0) : d ⩽ h

(
o

V δ(x0)

)
= sup

x∈
o
V δ(x0)∩A

f(x) ⇒ ∃y ∈
o

V δ(x0) : f(y) >

h

(
o

V δ(x0)

)
− ε ⩾ d− ε.

⇐. Лекция здесь внезапно кончилась.

Лекция XIV
17 октября 2022 г.

Рассмотрим произвольный ε > 0. Согласно первому условию из (b), для него есть окрест-

ность
o

U δ(x0) : ∀x ∈
o

Uδ(x0) : f(x) ⩽ d + ε, то есть h

(
o

Uδ(x0)

)
⩽ d + ε. Но тогда

limx0
f = inf

o
w

h
(

o
w
)
⩽ d+ ε ⇒ limx0

⩽ d.

Рассмотрим произвольный ε > 0. Согласно второму условию из (b), для любой его

окрестности
o

V δ(x0) : ∃x ∈
o

V δ(x0) : f(x) > d − ε, то есть h
(

o

V δ(x0)

)
⩾ d − ε. Но тогда

limx0
f = inf

o
w

h
(

o
w
)
⩾ d− ε, откуда limx0

f ⩾ d.

3. Аналогичная теорема верна для нижнего предела:

Теорема 3.3.2 (Об описании нижнего предела). Следующие условия эквивалентны:

a) d = lim
x→x0

f(x)

b)

∀ε > 0 : ∃
o

Uδ(x0) : ∀x ∈
o

Uδ(x0) ∩A : f(x) > d− ε

∀ε > 0,∀
o

Uδ(x0) : ∃x ∈
o

U δ(x0) ∩A : f(x) < d+ ε

Доказательство. Домножить f на −1 и применить lim
x→x0

f(x) = − lim
x→x0

(−f)(x).

Здесь интересно рассмотреть в качестве примеров функции sin
(
1
x

)
или даже sin

(
1
x

)
+ x

вблизи нуля.

4. Теорема 3.3.3. Пусть f : A→ R; x0 ∈ A′. Тогда следующие условия эквивалентны:

(a) ∃ limx0
f = d.

(b) lim
x→x0

f(x) = lim
x→x0

f(x) = d.

Доказательство.

⇒. ∀ε > 0 : ∃
o

Uδ(x0) : ∀x ∈
o

Uδ(x0) ∩A : f(x) ∈ (c− ε; c+ ε).

Тогда h
(

o

U δ(x0)

)
⩽ d + ε и l

(
o

Uδ(x0)

)
⩾ d − ε, а навесив супремумы и инфимумы:

lim
x→x0

f(x) = inf
o
w

h
(

o
w
)

⩽ d + ε и lim
x→x0

f(x) = sup
o
w

h
(

o
w
)

⩾ d − ε. Так как lim
x→x0

f(x) ⩾

lim
x→x0

f(x), то они оба равны d.

⇐. По теореме об описании верхнего предела ∀ε > 0 : ∃
o

Uδ1(x0) : ∀x ∈ A ∩
o

Uδ1(x0) : f(x) <

d + ε. С другой стороны, по теореме об описании нижнего предела ∀ε > 0 : ∃
o

V δ2(x0) :

∀x ∈ A ∩
o

V δ2(x0) : f(x) > d− ε. Но тогда ∀ε > 0 : ∃
o

V min(δ1,δ2)(x0) : ∀x ∈
o

V min(δ1,δ2)(x0) :
f(x) ∈ (d− ε; d+ ε).
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5. lim
x→x0

(af)(x) =


a · lim

x→x0

f(x), a > 0

0, a = 0

a · lim
x→x0

f(x), a < 0

.

Так, для верхнего предела lim
x→x0

(af)(x) = inf
o
w

sup
x∈ o

w∩A

(af)(x) = inf
o
w

a sup
x∈ o

w∩A

f(x) = a inf
o
w

sup
x∈ o

w∩A

f(x).

6. Теорема 3.3.4. Пусть f, g : A→ R — две ограниченные функции на A ⊂ R, x0 ∈ A′. Тогда

lim
x→x0

(f(x) + g(x)) ⩽ lim
x→x0

f(x) + lim
x→x0

g(x)

Доказательство. Обозначим F = lim
x→x0

f(x) и G = lim
x→x0

g(x).

Для ∀ε > 0 : ∃
o

Uδ(x0) — минимальная из подходящих для f и g окрестностей: ∀x ∈
o

Uδ(x0) :

f(x) < F+ε∧g(x) < G+ε. Тогда ∀x ∈
o

Uδ(x0) : f(x)+g(x) < F+G+2ε, то есть h
(

o

U δ(x0)

)
=

sup

x∈
o
Uδ(x0)∩A

(f(x) + g(x)) ⩽ F +G+ 2ε, откуда lim
x→x0

(f + g)(x) = inf
o
w

sup
(

o
w
)
⩽ F +G+ 2ε.

В теореме не наблюдается равенства, так как, например, для f(x) = sin
(
1
x

)
и для g(x) =

sin
(
− 1

x

)
их сумма имеет верхний предел вовсе не 2.

7. Вариант для нижних пределов:

lim
x→x0

(f(x) + g(x)) ⩾ lim
x→x0

f(x) + lim
x→x0

g(x)

8. Следствие 3.3.1. Если ∃ limx0 g, то lim
x→x0

(f + g)(x) = lim
x→x0

f(x) + limx0 g.

Доказательство. С одной стороны lim
x→x0

(f +g)(x) ⩽ lim
x→x0

f(x)+ limx0
g, но с другой стороны

lim
x→x0

f(x) = lim
x→x0

(f + g − g)(x) ⩽ lim
x→x0

(f + g)(x)− limx0
g

9. Формулы для верхних и нижних пределов.

I. x0 ∈ A′ ∩ R.

∀ε > 0 : ∃
o

Uδ(x0) = (x0 − δ;x0 + δ)\{x0} введём обозначения

h′(δ) = h

(
o

U δ(x0)

)
= sup {f(x) | 0 < |x− x0| < δ ∧ x ∈ A}

l′(δ) = l

(
o

Uδ(x0)

)
= inf {f(x) | 0 < |x− x0| < δ ∧ x ∈ A}

Тогда на l′, h′ : R+ → R можно посмотреть, как на функции. Заметим, что h′(δ) нестро-
го возрастает, а l′(δ) нестрого убывает — просто потому что для δ1 < δ2 множества
вложены {f(x) | 0 < |x− x0| < δ1 ∧ x ∈ A} ⊂ {f(x) | 0 < |x− x0| < δ2 ∧ x ∈ A}.

Но тогда
lim

x→x0

f(x) = inf
δ>0

h′(δ) = lim
δ→0

h′(δ)

lim
x→x0

f(x) = sup
δ>0

l′(δ) = lim
δ→0

l′(δ)
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II. x0 ∈ A′ ∩{±∞}. Рассмотрим для определённости x0 = +∞. Окрестности такой точки —
лучи (M ; +∞).

h′(M) = sup {f(x) | x > M,x ∈ A}

l′(M) = inf {f(x) | x > M,x ∈ A}

Аналогично (I) h′, l′ : R → R — функции, причём h′ убывает, а l′ возрастает. В таком
случае

lim
x→+∞

f(x) = inf
M
h′(M) = lim

h→+∞
h′(M)

lim
x→+∞

f(x) = sup
M

l′(M) = lim
M→+∞

l′(M)

Замечание. Ввиду монотонности l′ и h′ можно считать, что M ∈ B, где B ⊂ R и B —
не ограничено.

В частности, для последовательности: пусть {xn}n∈N — ограниченная последовательность.
Тогда

lim
n→+∞

xn = lim
i→+∞

sup
j>i

xj = inf
i∈N

sup
j>i

xj

lim
n→+∞

xn = lim
i→+∞

inf
j>i

xj = sup
i∈N

inf
j>i

xj

Лекция XV
21 октября 2022 г.

3.4 Бесконечные пределы

Пусть f : A→ R, A ⊆ R, x0 ∈ A′.

Определение 3.4.1 (Предел +∞). f имеет предел +∞ в точке x0, если

∀
o

Uε(+∞) : ∃
o

V ε(x0) : ∀x ∈
o

V ε(x0) : f(x) ∈
o

Uε(+∞)]

Так, для f : (0;+∞); f : x 7→ 1
x : lim

x→0
f(x) = +∞.

Аналогично определён предел −∞.

Тогда для f : (−∞; 0); f : x 7→ 1
x : lim

x→x0

f(x) = −∞.

Определение 3.4.2 (Стремление к ∞). f стремится к бесконечности в точке x0, если |f(x)| −→
x→x0

+∞.

Так, 1
x стремится к ∞ в нуле, или {(−1)nn}n∈N стремится к бесконечности при n→ +∞.

Предложение 3.4.1.

• Если f стремится к бесконечности, то limx0

1
f = 0.

• Если g(x) −→
x→x0

0 и g(x) ̸= 0 вблизи 0, то 1
g стремится к бесконечности вблизи точки x0.

Доказательство.

• Надо доказать импликацию(
∀M : ∃

o

Uε(x0) : ∀x ∈
(

o

Uε(x0) ∩A
)
|f(x)| > M

)
⇒
(
∀ε > 0 : ∃

o

V ε(x0) : ∀x ∈
(

o

V ε(x0) ∩A
)

:

∣∣∣∣ 1

f(x)

∣∣∣∣ < ε

)
Подойдёт для ε :M = 1

ε и точно такая же окрестность.

• Здесь, наоборот, подойдёт ε = 1
M и точно такая же окрестность.
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3.5 Пределы справа и слева

f : A→ R, A ⊆ R, x0 ∈ (A′ ∩ R).

Предположим, что x0 — по-прежнему предельная точка для A∩ (x0; +∞). Так, для A = (0; 1)∪{2}
это предположение верно для x0 ∈ [0; 1) и неверно для x0 ∈ [1; +∞).

Определение 3.5.1 (Предел справа). Если ∃ limx0
f
∣∣
A
∩ (x0; +∞) = c, то c называется пределом

функции f в точке x0 справа.

Обозначают limx0+ f или lim
x→x0+0

f(x).

Предположим, что x — по-прежнему предельная точка для A ∩ (−∞;x0).

Определение 3.5.2 (Предел слева). Если ∃ limx0
f
∣∣
A
∩ (−∞;x0) = c, то c называется пределом

функции f в точке x0 слева.

Обозначают limx0− f или lim
x→x0−0

f(x).

Пример: функция f(x) =


3, x < 1

0, x = 1

x, x > 1

имеет пределы: lim1− f = 3; lim1+ f = 1.

h(x) =

{
sin
(
1
x

)
, x > 0

0, x < 0
: ∄ lim0+ h; lim0− h = 0.

Предостережение. Не путать левые и правые пределы с верхними и нижними.

Теорема 3.5.1. Пусть x0 — предельная точка и для A∩ (x0; +∞), и для A∩ (−∞;x0). Следующие
условия эквиваленты:

1. f имеет предел в точке x0.

2. f имеет предел и слева, и справа, и они равны.

Доказательство.

⇒. Предел есть как у f , так и у её сужений на A ∩ (x0; +∞) и на A ∩ (−∞;x0).

⇐. Запишем условия существований обоих пределов, выберем минимальную из двух окрестно-
стей.

3.6 Классификация разрывов

Пусть x0 ∈ A, x0 — предельная точка для A. Пусть функция не является непрерывной (определе-
ние 3.1.7), то есть предела нет, либо он существует, но не равен f(x0), то говорят, что f имеет
(претерпевает) разрыв в x0.

• Разрыв первого рода: устранимый разрыв: ∃ limx0
f ̸= f(x0).

• Разрыв первого рода: скачок ∃ limx0+ f ;∃ limx0− f ; limx0+ f ̸= limx0− f .

• Разрыв второго рода — всё остальное.

3.7 Непрерывные функции на замкнутых конечных множе-
ствах

f : A→ R, x0 ∈ A.

Определим непрерывные функции немного по-другому:

Определение 3.7.1 (f непрерывна в x0). ∀U(f(x0)) : ∃V (x0) : f (V (x0) ∩A) ⊂ U(f(x0)).
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Это определение утверждает, что в изолированной точке x0 ∈ A функция также непрерывна.

В предельной же точке x0 ∈ A′ непрерывная функция, согласно определению, имеет предел, равный
f(x0).

Определение 3.7.2 (Функция f непрерывна на множестве A). Функция f непрерывна на всех
точках множества A.

Факт 3.7.1. Для f, g — непрерывных функций в точке x0, то для α, β ∈ R в точке x0 непре-
рывны также их линейные комбинации αf + βg и произведение fg.

Если g(x0) ̸= 0, то 1
g тоже непрерывна в x0.

Доказательство. Если x0 — изолированная точка, то утверждение тривиально.

Иначе x0 ∈ A′ и утверждение следует из соответствующих теорем о пределах.

Непрерывность в точке x0 в терминах неравенств:

∀ε > 0 : ∃δ > 0 : ∀x ∈ A : (|x− x0| < δ ⇒ |f(x)− f(x0)| < ε)

Теорема 3.7.1 (Непрерывность на языке последовательностей). Функция f непрерывна в x0 ∈ A
⇐⇒ для всякой последовательности {yn}n∈N ⊂ A, стремящейся к x0: f(yn) −→

n→+∞
f(x0).

Доказательство.

⇒.

∀ε > 0 : ∃δ > 0 : ∀x ∈ A : (|x− x0| < δ ⇒ |f(x)− f(x0)| < ε)∀δ > 0 : ∃N : (n > N ⇒ |yn − x0| < δ)

Скрестив эти два условия, получаем ∀ε > 0 : ∃N : ∀n > N : |f(yn)− f(x0)| < ε.

⇐. От противного: если f не непрерывна в x0, то ∃ε > 0 : ∀δ > 0 : ∃y ∈ A : |y − x0| <
δ ∧ |f(y)− f(x0)| ⩾ ε.

Тогда возьмём δn = 1
n . Находим y = yn из строчки выше, получаем противоречие.

Лекция XVI
24 октября 2022 г.

Пусть A ⊂ R — замкнутое ограниченное множество; f : A→ R — непрерывная функция.

Теорема 3.7.2 (Вейерштрасс, 1-я). Функция f при заданных условиях ограниченна на A.

Доказательство. От противного: f не ограниченна. Тогда ∀n ∈ N : ∃xn ∈ A : |f(xn)| > n. Так как
{xn} ⊂ A, то {xn} ограничена.

Значит, в ней есть сходящаяся подпоследовательность {xnj} (теорема 3.1.18). Пусть последова-
тельность {xnj

} сходится к z. Отсюда последовательность f(xnj
) сходится к f(z), но так не может

быть, потому что f(xnj
) не ограниченна, а f(z) — вполне себе реальное значение.

Теорема 3.7.3 (Вейерштрасс, 2-я). Функция f при заданных условиях принимает свои наибольшее
и наименьшее значения.

Доказательство. Так как она ограниченна, то из предыдущей теоремы

∃l := inf f(A) и ∃M := sup f(A)

Докажем, что эти значения достигаются, без потери общности докажем про супремум. Так как
M = sup f(A), то ∀n ∈ N : ∃xn ∈ A : f(xn) > M − 1

n .

У этой последовательности {xn} также существует сходящаяся подпоследовательность {xnj} (тео-
рема 3.1.18). Пусть z = lim+∞ xnj

. Тогда рассмотрим f(z). Так как f(xn) > M − 1
n , то f(z) ⩾ M .

Но f(xn) ⩽M заведомо, ведь M — супремум. Отсюда f(z) =M .
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Теорема 3.7.4 (Дарбу, о промежуточных значениях). Пусть f : ⟨a, b⟩ → R. Здесь ⟨a, b⟩ — отрезок,
луч, или даже прямая, у которого концы могут быть как включены, так и нет.

Рассмотрим α, β ∈ ⟨a, b⟩ (α < β). Пусть x = f(α), y = f(β). Тогда

∀z ∈ (min(x, y),max(x, y)) : ∃γ ∈ (α, β) : f(γ) = z

Доказательство. От противного: пусть ∃α, β, z : z ∈ (min(x, y),max(x, y)) такие, что z /∈ f ((α;β)).

Обозначим L = {u ∈ [α;β] | f(u) ⩽ z} и H = {u ∈ [α;β] | f(u) ⩾ z}.

По противному предположению L ∩H = ∅. С другой стороны, L ∩H = [α;β].

Докажем, что L и H замкнуты, без потери общности докажем это для L. Рассмотрим некую
последовательность {un}n∈N ⊂ L. Так как ∀un ∈ {un} : f(un) ⩽ z, то f( lim

n→∞
un) ⩽ z, т. е. L

замкнуто.

Таким образом, мы пришли к противоречию, так как по теореме о связности отрезка (теорема 3.0.3)
это невозможно.

Следствие 3.7.1. Пусть f : ⟨a, b⟩ → R — непрерывная функция. Следующие условия эквива-
лентны:

1. f инъекция

2. f строго монотонная (строго возрастает или строго убывает).

Доказательство.

⇐. Очевидно.

⇒. Докажем, что f является нестрого монотонной. От противного: предположим противное.

Тогда ∃α < β < γ : α, β, γ ∈ ⟨a, b⟩ :

{
f(α) < f(β)

f(γ) < f(β)
∨

{
f(α) > f(β)

f(γ) > f(β)

Замечание. На самом деле, отрицанием монотонности является ∃c1 < c2 и c3 < c4 такие, что

(f(c1) < f(c2)) ∧ (f(c3) > f(c4))

Разбором случаев можно получить существование искомых трёх точек, но этот разбор слу-
чаев не будет приведён.

В случае

{
f(α) < f(β)

f(γ) < f(β)
без потери общности предположим, что f(α) ⩽ f(γ). Тогда по

теореме о промежуточном значении f принимает значение f(α) на отрезке [β; γ]. Получили
противоречие с инъективностью.

Аналогично можно доказать в другом случае.

Отсюда f нестрого монотонна, а из-за инъективности — строго.

Следствие 3.7.2. Для непрерывной функции f : ⟨a, b⟩ → R образ всякого замкнутого отрезка
[α, β] есть замкнутый отрезок.

Доказательство. По теореме Вейерштрасса у образа есть минимальное и максимальное значение.
По теореме Дарбу все значения между ними достигаются.

Теорема 3.7.5. Пусть f : ⟨a, b⟩ → R. Среди следующих двух условий любые два влекут третье:

1. f непрерывна и инъективна.

2. f строго монотонна.

3. Образ любого замкнутого отрезка есть замкнутый отрезок.
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Доказательство.

• (1) ∧ (3) ⇒ (2) — см. выше, верно даже (1) ⇒ (2).

• (1) ∧ (2) ⇒ (3) — см. выше, верно даже (1) ⇒ (3).

• (2) ∧ (3) ⇒ (1). Инъективность следует из (2). Докажем, что f непрерывна. Предположим,
что f строго возрастает (иначе можно рассмотреть −f).

Рассмотрим x0 ∈ ⟨a, b⟩ такой, что f претерпевает разрыв в точке x0.

– x0 ∈ (a, b).

Так как f строго монотонна, то

∃u := lim
y→x0−

f(y) ∧ ∃v := lim
y→x0+

f(y)

так как f слева от x0 возрастает и ограничена числом x0, аналогично справа.

Разрыв означает u ̸= v. Так как u ⩽ f(x0) ⩽ v, то либо u < f(x0) (в этом случае
значения из (u; f(x0)) не достигаются нигде не ⟨a, b⟩), либо f(x0) < v (в этом случае
значения из (f(x0), v) не достигаются нигде на ⟨a, b⟩).

В любом случае, есть непрерывный отрезок, строго внутри которого лежит x0, тогда его
образом не является непрерывный отрезок, противоречие.

– Теперь пусть x0 = a и f разрывна в x0.

На самом деле тогда всё будет абсолютно аналогично, lim
y→x0+0

f(y) > f(x0). Здесь обра-

зом малого отрезка [x0;x0+ε], такого, что ε < b−a. Опять же не является непрерывный
отрезок.

Следствие 3.7.3. Если f : [a, b] → R — строго монотонная непрерывная функция, то f−1 : I →
[a, b] тоже непрерывна.

Лекция XVII
3 ноября 2022 г.

3.8 Степени и корни

Теорема 3.8.1. Пусть g : [a, b] → R непрерывна и инъективна. Из непрерывности I := g([a; b]) —
отрезок (I = [min(g(a), g(b)),max(g(a), g(b))]).

Пусть h = g−1 : I → [a; b]. Тогда h непрерывна.

Доказательство.

h строго монотонна, так как g строго монотонна.

h, как обратная функция, инъективна.

Пусть gk : R⩾0 → R; x 7→ xk для фиксированного k ∈ N.

Рассмотрим ей обратную hk : [0;+∞) → [0; +∞). Формально, мы доказывали, что такая обратная
существует и монотонна для функций, непрерывных на отрезке. Но можно сузить функцию gk на
любой сколь угодно большой отрезок [0; b], откуда получим, что hk существует и непрерывна в
любой точке R⩾0.

Определение 3.8.1 (Корень натуральной степени). k
√
x

def
= hk(n), где hk определена выше.
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Определение 3.8.2 (Степень с рациональным положительным показателем). xr
def
= n

√
xm для

r ∈ Q>0, где r = m
n ,m, n ∈ N.

Заметим, что из определения (обратной функции) k
√
y — единственное положительное число u :

uk = y.

Пусть k
l = m

n . Чтобы показать корректность определения степени с рациональным положительным

показателем, докажем, что l
√
xk = n

√
xm. Это равенство равносильно тому, что

(
l
√
xk
)n

= xm.

Факт 3.8.1. a
√
vb = ( a

√
v)

b. В самом деле, vb ?
= ( a

√
v)

ba
= ( a

√
v)

ab
= vb.

Применив факт, получим левую часть, равной l
√
xkn. Но так как l | kn, то мы можем «сократить»

на этот множитель, получив искомое xm.

Таким образом, определение степени с рациональным положительным показателем корректно. Бо-
лее того, несложно видеть, что оно согласовано с определением натуральной степени.

3.8.1 Свойства

• n
√
x · n

√
y = n

√
xy. Можно проверить, что обе части равенства при возведении в степень n

дают xy.

• n
√

m
√
x = nm

√
x. Так же можно проверить.

• (xr1)r2 = xr1·r2

Доказательство. Пусть r1 = k
l , r2 = m

n

n

√
(

l
√
xk)m =

n

√
l
√
xkm =

nl
√
xmk

• xr1 · xr2 = xr1+r2 .

Доказательство. Пусть r1 = k
l , r2 = m

n

ln
√
xkn · nl

√
xml =

nl
√
xkn+ml = xr1+r2

Определение 3.8.3 (Степень с произвольным рациональным показателем). Для положительных

уже определено, определим для остальных: Для x > 0 : xq
def
=

{
1, q = 0
1

x−q , q < 0

3.9 (Асимптотическое) сравнение функций. O и o символика.

Пусть f, g : A→ R, где A ⊂ R.

Определение 3.9.1 (f есть O(g) на A). ∃C : ∀x ∈ A : |f(x)| ⩽ C|g(x)|.

Обозначают f = O(g). Это исторически сложившаяся запись, в которой = некоммутативно.

В связи с такой записью, также пишут expression1 = expression2 +O(something).

Можно говорить об этом на подмножествах A, а можно просто сузить функции.

• f = O(g), g = O(h) ⇒ f = O(h).

Доказательство. Константы, получающиеся при оценке, перемножаются.
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• ϕ1 = O(ψ1), ϕ2 = O(ψ2) ⇒ ϕ1ϕ2 = O(ψ1ψ2).

• f = O(1) ⇒ f ограничена.

Можно сравнивать «асимптотическое» поведение функций в данной точке: пусть f, g : A → R,
x0 ∈ A′.

Определение 3.9.2 (f есть o(g) в точке x0).

∀ε > 0 : ∃
o

Uε(x0) : ∀x ∈
(

o

Uε(x0) ∩A
)

: |f(x)| < ε|g(x)|

Обозначают f = o(g) в x0.

Так, o(1) — стремящиеся к нулю функции.

Факт 3.9.1. Если ∀x ∈ A\{x0} : f(x) ̸= 0, то f = o(g) ⇐⇒ limx0

f(x)
g(x) = 0.

Доказательство. Поделить определение на |g(x)|.

Факт 3.9.2. Если f = o(g), то f = O(g) вблизи x0.

Предложение 3.9.1. Пусть f, g, h : A→ R и x0 ∈ A′.

1. Если f = o(g) в x0 и g = O(h) вблизи x0, то f = o(h) в x0.

2. Если f = O(g) вблизи x0 и g = o(h) в x0, то f = o(h) в x0.

Доказательство. Докажем первый пункт:

∃
o

Uε(x0) : ∃c : |g(x)| ⩽ C|h(x)| в
o

Uε(x0) ∩A.

∀ε > 0 : ∃
o

V ε(x0) : |f(x)| ⩽ ε|g(x)|. Можно считать, что
o

V ε(x0) ⊂
o

Uε(x0).

∀x ∈
o

V ε(x0) ∩A : |f(x)| ⩽ ε|g(x)| ⩽ C · ε|h(x)|.

Пусть f : A→ R, x0 ∈ A′, A ⊂ R.

Определение 3.9.3 (f бесконечна малая в x0). limx0
f = 0

Определение 3.9.4 (f бесконечна большая в x0). limx0 |f | = +∞

Факт 3.9.3. f бесконечно малая и не обращается в ноль вблизи x0 ⇐⇒ 1
f бесконечно большая.

Определение 3.9.5 (f — бесконечно малая величина более высокого порядка, чем g в точке x0).
limx0 f = 0; limx0 g = 0; f = o(g).

Так, x2 — бесконечно малая более высокого порядка, чем x в нуле.

Определение 3.9.6 (f — бесконечно большая величина более высокого порядка, чем g в точке
x0). limx0

|f | = +∞; limx0
|g| = +∞; g = o(f).

Так, x2 — бесконечно большая более высокого порядка, чем x на ∞.
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Глава 4

Дифференцирование

Лекция XVIII
12 ноября 2022 г.

А что было? Я прогульщик. . .

Лекция XIX
14 ноября 2022 г.

4.0.1 Резюме определений дифференцируемости

Пусть f : ⟨a, b⟩ → R.

Предложение 4.0.1. Следующие условия эквивалентны:

1. ∃ lim
x→x0

f(x)−f(x0)
x−x0

def
= f ′(x0).

2. ∃g : ⟨a, b⟩ → R, непрерывная в x0 ∈ ⟨a, b⟩, такая, что f(x)− f(x0) = g(x) · (x− x0).

3. ∃c ∈ R : f(x)− f(x0) = c · (x− c0) + o(x− x0) при x→ x0.

Доказательство.

• (1) ⇒ (2). Достаточно рассмотреть g(x) =

{
f(x)−f(x0)

x−x0
, x ̸= x0

f ′(x0), x = x0
.

• (2) ⇒ (3). f(x)− f(x0) = g(x0) · (x−x0)+ (g(x)− g(x0)) · (x−x0), причём g(x)− g(x0) −→
x→x0

0.

• (3) ⇒ (1). f(x)−f(x0)
x−x0

= c+ o(1).

Определение 4.0.1 (Линейный дифференциал). df (x0, h) = f ′(x0) · h.

4.0.2 Арифметические свойства дифференцирования

Предложение 4.0.2. Если f, g : ⟨a, b⟩ → R, обе дифференцируемы в x0, то

∀α, β ∈ R : (αf + βg)′(x0) = αf ′(x0) + βg′(x0)

Доказательство.

(αf + βg)(x)− (αf + βg)(x0)

x− x0
= α

f(x)− f(x0)

x− x0
+ β

g(x)− g(x0)

x− x0
−→
x→x0

α · f ′(x0) + βg′(x0)

41



Предложение 4.0.3. Если f, g : ⟨a, b⟩ → R, обе дифференцируемы в x0, то

(f · g)′(x0) = f(x0)g
′(x0) + f ′(x0)g(x0)

Доказательство. ∃ϕ, ψ : ⟨a, b⟩ → R непрерывные в x0, такие, что f(x)− f(x0) = ϕ(x) · (x− x0) и
g(x)− g(x0) = ψ(x) · (x− x0).

Тогда

f(x)g(x)− f(x0)g(x0) =

(f(x)− f(x0))g(x) + f(x0)(g(x)− g(x0)) =

ϕ(x) · (x− x0) · g(x) + f(x0) · ψ(x) · (x− x0) =

h(x) · (x− x0)

где h(x) = ϕ(x) · g(x) + f(x0) · ψ(x) — непрерывна в x0.

4.0.3 О суперпозиции (композиции)

Замечание. Для E ⊂ R, f : E → R, такой, что f непрерывна в x0 ∈ E.

Положим A ⊂ R, A ⊃ f(E), g : A→ R, так, что g непрерывна в y0 = f(x0).

Докажем, что g ◦ f непрерывна в x0.

Доказательство. Пусть z0 = g(y0). Рассмотрим окрестность W (z0). Из непрерывности g : ∃V (y0) :
g(V (y0)) ⊂W (z0).

Кроме этого, ∃U(x0) : f(U(x0)) ⊂ V (y0). Значит, g(f(U(x0))) ⊂ W (z0) и g ◦ f непрерывна по
определению.

Следствие 4.0.1. Пусть f : E → R и u0 ∈ E′, в которой f существует (однако не обязательно
непрерывна), для A ⊃ f(E) рассмотрим g : A→ R, непрерывную в v0 = f(u0).

Если ∃ lim
x→u0

f(x) = c, то lim
x→u0

(g ◦ f)(x) = g(c).

Замечание. Условие непрерывности g нельзя отбросить: h(x) = (χ{0}) ◦
(
x · sin

(
1
x

))
не имеет

предела в нуле, в точках 1
π·n она равна 1, в остальных — 0.

Доказательство. Рассмотрим f1(x) =

{
f(x), x ̸= u0

lim
x→u0

f(x), x = u0
. f1 уже непрерывна в u0, значит, g◦f1

непрерывна в u0.

Производная композиции

Теорема 4.0.1. Пусть f : ⟨a, b⟩ → R; f(⟨a, b⟩) ⊂ ⟨c, d⟩; g : ⟨c, d⟩ → R.

Если f дифференцируема в x0 ∈ ⟨a, b⟩ и g дифференцируема в y0 = f(x0), то (g ◦ f)′(x0) =
g′(f(x0)) · f ′(x0) = g′(y0) · f ′(x0).

Замечание. В старых книжках можно встретить доказательство вида

g(f(x))− g(f(x0))

x− x0
=
g(f(x))− g(f(x0))

f(x)− f(x0)
· f(x)− f(x0)

x− x0
−→
x→x0

g′(f(x0)) · f(x0)

которое было бы корректным при условии f(x) ̸= f(x0) вблизи x0.

Однако это вовсе не обязано выполняться, наиболее простым способом обойти это ограничение
является возня с функциями ϕ и ψ, как ниже.
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Доказательство.

∃ϕ : ⟨a, b⟩ → R, непрерывная в x0, такая, что f(x)− f(x0) = ϕ(x) · (x− x0).

∃ψ : ⟨c, d⟩ → R, непрерывная в y0, такая, что g(y)− g(y0) = ψ(y) · (y − y0).

Подставим во второе равенство y = f(x) : g(y)− g(y0) = ψ(f(x)) · (f(x)− f(x0)) = ψ(f(x)) · ϕ(x) · (x− x0).

Так как h(x) = ψ(f(x)) · ϕ(x) непрерывна в x0, то в самом деле f(g(x)) дифференцируема в x0.

Сама производная (g ◦ f)′(x0) = h(x0) = ψ(f(x0))ϕ(x0) = g′(f(x0)) · f ′(x0).

4.0.4 Производная xn

Факт 4.0.1. (xn)′ = nxn−1 для n ∈ N

Доказательство. По индукции.

• n = 1 ⇒ lim
x→x0

x−x0

x−x0
= 1

• (x · xn)′ = x′ · xn + x · (xn)′ = xn + x · nxn−1 = (n+ 1)xn.

Замечание. Для f ≡ c — константы: f ′(x0) = 0.

Факт 4.0.2. (xn)′ = nxn−1 для n ∈ Z

Доказательство. По индукции.

• n = −1 ⇒ lim
x→x0

1
x− 1

x0

x−x0
= lim

x→x0

1
x·x0

= − 1
x2
0

• ( 1x ) · (x
n)′ =

(
1
x

)′ · xn + 1
x · (xn)′ = −xn−2 + 1

x · nxn−1 = (n− 1)xn−2.

Следствие 4.0.2. Для f : ⟨a, b⟩ → R :
(

1
f

)′
(x0) = − f ′(x0)

f(x0)2
.

Доказательство. Рассмотреть h(x) = 1
x и продифференцировать h ◦ f .

Следствие 4.0.3. Если f и g дифференцируемы в x0 и g(x0) ̸= 0, то
(

f
g

)′
(x0) = f ′(x0) ·

(
1
g (x0)

)
+

f(x0) ·
(

1
g

)′
(x0) =

f ′(x0)
g(x0)

− f(x0) · g′(x0)
g(x0)2

= f ′(x0)g(x0)−f(x0)g
′(x0)

g(x0)2
.

4.0.5 Производная обратного отображения

Для инъективного отображения f : ⟨a, b⟩ → R, дифференцируемого в x0 ∈ ⟨a, b⟩ положим y0 =
f(x0).

В предположении непрерывности f−1 в точке y0 и того, что f(⟨a, b⟩) — отрезок:

Теорема 4.0.2. При сделанных предположениях и условии f ′(x0) ̸= 0: f−1 дифференцируема в y0,
причём

(
f−1

)′
(y0) =

1
f ′(x0)

= 1
f ′(f(y0))

.

Замечание. Если f непрерывна не только в точке x0, но на всём отрезке ⟨a, b⟩, то автоматически
следуют условия f(⟨a, b⟩) — отрезок, и f ′(y0) — непрерывна.

Доказательство.

∃ϕ : ⟨a, b⟩, непрерывная в x0, такая, что f(x)− f(x0) = ϕ(x) · (x− x0).

Положим x0 = f−1(y0), и вообще x = f−1(y).
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Тогда y − y0 = f
(
f−1(y)

)
− f

(
f−1(y)

)
= ϕ

(
f−1(y)

) (
f−1(y)− f−1(y0)

)
, откуда сразу получаем (в

предположении ϕ
(
f−1(y)

)
̸= 0 вблизи y0, или же f ′(f−1(y0)) ̸= 0) f−1(y)−f−1(y0)

y−y0
−→
y→y0

1
ϕ(f−1(y0))

.

Лекция XX
18 ноября 2022 г.

4.1 Смыслы производной

4.1.1 Скорость точки

Пусть материальная точка движется по прямой, её положение на прямой в момент времени t —
это x(t) (t ∈ ⟨a, b⟩).

Рассмотрев c, d ∈ ⟨a, b⟩, (можно считать c < d), получаем среднюю скорость движения x(d)−x(c)
d−c .

Предел при c→ d : v(t) = x′(t).

4.1.2 Касательные

Пусть f : ⟨a, b⟩ → R, x0 ∈ ⟨a, b⟩.

Пусть f дифференцируема в x0; обозначим l(x) = f(x0) + f ′(x0) · (x− x0).

Тогда f(x) − l(x) = o(x − x0), x → x0. Из всего пучка прямых, проходящих через x0 : l(x) един-
ственная удовлетворяет данному свойству.

График функции l(x) называют касательной. Коэффициент угла наклона касательной является
пределом коэффициентов углов наклона секущих.

4.2 Связь производной и монотонности

Пусть f : ⟨a, b⟩ → R, x0 ∈ ⟨a, b⟩.

Определение 4.2.1 (f возрастает в точке x0). ∃δ > 0 : ∀x : |x−x0| < δ ⇒

{
f(x) ⩽ f(x0), x ⩽ x0

f(x) ⩾ f(x0), x ⩾ x0
.

При строгом возрастании неравенства строгие.

При (строгом) убывании тоже понятно что (например, −f (строго) возрастает).

Теорема 4.2.1. Пусть f дифференцируема в точке x0 ∈ ⟨a, b⟩.

Если f ′(x0) > 0, то f строго возрастает в точке x0.

Если f нестрого возрастает в точке x0, то f ′(x0) ⩾ 0.

Доказательство.

(1) f ′(x0) > 0 ⇒ f ′(x0) · (x− x0) + ϕ(x), где ϕ(x) = o(x− x0), то есть

∀ε > 0 : ∃δ > 0 : ∀x ∈ ⟨a, b⟩ : |x− x0| < δ ⇒ |ϕ(x)| < ε · |x− x0|

Если x > x0, то f(x) − f(x0) > f ′(x0) · (x − x0) − ε · |x − x0| = (f ′(x0) − ε) · |x − x0|, откуда
при выборе ε < f ′(x0) в самом деле получаем строгое возрастание.

Случай x < x0 рассматривается аналогично.

(2) Раз f нестрого возрастает в x0, то
f(x)−f(x0)

x−x0
⩾ 0 вблизи x0. По теореме о предельном

переходе в неравенствах, получаем f ′(x0) ⩾ 0.
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4.2.1 Локальные максимум и минимум

Определение 4.2.2 (f имеет локальный максимум в x0 ∈ ⟨a, b⟩).

∃U(x0) : ∀x ∈ U(x0) ∩ ⟨a, b⟩ : f(x) ⩽ f(x0)

Определение 4.2.3 (f имеет строгий локальный максимум в x0 ∈ ⟨a, b⟩).

∃
o

Uε(x0) : ∀x ∈
o

Uε(x0) ∩ ⟨a, b⟩ : f(x) < f(x0)

Если точка является точкой или локального минимума, или локального максимума, то её называют
точкой локального экстремума.

Теорема 4.2.2 (Необходимое условие существования локального экстремума). Пусть f : (a, b) → R
имеет локальный экстремум в x0 ∈ (a, b).

Если ∃f ′(x0), то f ′(x0) = 0.

Доказательство. Пойдём от противного: либо f ′(x0) > 0 (тогда f строго возрастает в x0), либо
f ′(x0) < 0 (тогда f строго возрастает в x0).

Так как как справа, так и слева от x0 есть точки области определения f , то в любом случае
получаем противоречие.

4.2.2 Поведение функции на отрезке

Назовём функцию f хорошей на отрезке [a, b], если она непрерывна на [a, b] и дифференцируема
на (a, b).

Этого определения не было на лекции, но я хочу его ввести, так как оно часто будет встречаться.

Теорема 4.2.3 (Ролль). Пусть f : [a, b] → R, где a < b, причём она хорошая (подраздел 4.2.2).

При условии f(a) = f(b) : ∃c ∈ [a, b] : f ′(x) = 0.

Доказательство. По второй теореме Вейерштрасса (теорема 3.7.3) функция достигает на отрезке
свои глобальные максимальное и минимальное значение.

Одно из них не равно f(a) = f(b) (если вдруг оба равны, то функция — константа, откуда f ′(x) = 0
везде).

Тогда в этой точке c достигается локальный экстремум, и f ′(c) = 0.

Пусть f, g : [a, b] → R — две хорошие на [a, b] функции (подраздел 4.2.2).

Найдём α ∈ R : f(x) + α · g(x) удовлетворяет условию теоремы Ролля.

f(a) + α · g(a) = f(b) + α · g(b) ⇒ α(g(b)− g(a)) = f(b)− f(a).

Предположим, что g(b) ̸= g(a). В таком случае α = −f(b)− f(a)

g(b)− g(a)
, и к функции f(x) + α · g(x)

применима теорема Ролля:
∃c ∈ (a, b) : f ′(c) + α · g′(c) = 0

Отсюда
f(b)− f(a)

g(b)− g(a)
· g′(c) = f ′(c).

При условии ∀t ∈ (a, b) : g′(t) ̸= 0 получаем
f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)
.
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Теорема 4.2.4 (Формула Коши). При сделанных предположениях, а именно: f, g : [a, b] → R —
две хорошие на [a, b] функции (подраздел 4.2.2), и g(a) ̸= g(b) и ∀t ∈ (a, b) : g′(t) ̸= 0 выполняется
условие

∃c ∈ (a, b) :
f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)

Доказательство. Смотри выше.

Замечание. Формула работает и для b < a. В любом случае (при хороших f, g (подраздел 4.2.2)),

∃c ∈ (a, b) :
f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)

Следствие 4.2.1 (Формула Лагранжа). При g(x) = x формула Коши приобретает вид

∃c ∈ (a, b) : f(b)− f(a) = f ′(c) · (b− a)

Замечание. Формула работает и для b < a. В любом случае (при выполнении условий на непре-
рывность и дифференцируемость f), ∃c ∈ (min(a, b),max(a, b)) : f(b)− f(a) = f ′(c) · (b− a).

Замечание. Формулу можно читать в таком свете: для хорошей (см. выше) функции f , есть
касательная к точке внутри интервала (a, b), параллельная секущей, проходящей через (a, f(a)) и
(b, f(b)).

Формула Лагранжа довольно полезна даже в вычислениях: если известно f(a) и f ′(x) ограничена,
причём b− a мало, то можно оценить f(b).

Следствие 4.2.2. Если f непрерывна на [a, b] и дифференцируема на (a, b), то при условии
∀x ∈ (a, b) : f ′(x) = 0: f — константа.

Доказательство. От противного, применить формулу Лагранжа к u, v : f(u) ̸= f(v).

Следствие 4.2.3. Если f ′(x) ⩾ 0 на (a, b) и f(x) дифференцируема на [a, b], то f нестрого
возрастает на [a, b].

При строгом неравенстве — строгое возрастание.

Доказательство. Применить формулу Лагранжа.

Следствие 4.2.4. Если g непрерывна на [a, b], дифференцируема на (a, b), и ∀x ∈ (a, b) : g′(x) ̸= 0.

Тогда производная g′(x) одного знака на (a, b).

Доказательство. Пусть u, v ∈ [a, b]. Тогда ∃c ∈ (a, b) : f(v)− f(u) = f ′(c) · (v − u) ̸= 0.

Отсюда видим, что f инъективна, то есть она строго возрастает (или убывает).

Эту же штуку она делает в каждой точке, откуда в каждой точке — определённый знак производ-
ной.

Замечание. Отсюда видим, что условие g(b) ̸= g(a) в формуле Коши (теорема 4.2.4) — лишнее.

Пример того, что производная непрерывной функции необязательно непрерывна, даже если суще-
ствует:

Рассмотрим

f(x) =

{
x2 · sin( 1x ), x ̸= 0

0, x ̸= 0

Функция непрерывна:
f(x)− f(0)

x
=
x2 sin

(
1
x

)
x

= x · sin
(
1
x

)
−→
x→0

0.
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Более того, она дифференцируема в каждой точке:

f ′(0) = 0; f ′(x) = 2x · sin
(
1

x

)
+ x2 ·

(
− 1

x2

)
cos

(
1

x

)
= 2x · sin

(
1

x

)
− cos

(
1

x

)
, x ̸= 0

Тем не менее, несложно видеть, что в нуле производная претерпевает разрыв второго рода.

Лекция XXI
21 ноября 2022 г.

Пусть f, g : (a; b) → R дифференцируемы на области определения.

Теорема 4.2.5 (Простейший вариант правила Лопиталя). Пусть lima f = lima g = 0. При условии
g′(x) ̸= 0 вблизи a и ∃ lim

x→a+

f ′(x)
g′(x) = d ∈ R: lim

x→a+

f(x)
g(x) = d.

Доказательство. Рассмотрим ε > 0, для него ∃δ > 0 : ∀x ∈ (a, b) : |x− a| < δ ⇒
∣∣∣ f ′(x)
g′(x) − d

∣∣∣ < ε.

Пусть y ∈ (a; b). Доопределим f(a) = g(a) = 0, получим условие правила Коши (теорема 4.2.4).

Получается, ∃c ∈ (a, y) : f(y)
g(y) = f(y)−f(a)

g(y)−g(a) = f ′(c)
g′(c) , откуда рассмотрев |a − y| < δ, получаем∣∣∣ f(y)g(y) − d

∣∣∣ < ε, что и есть определение предела limy
f
g = d.

Следствие 4.2.5. Пусть ϕ хорошая на [a, b] (подраздел 4.2.2). Предположим, что ∃ lim
t→a+

ϕ′(t) = d.

Возьмём g(x) = x − a, f(x) = ϕ(x) − ϕ(a). Тогда по правилу Лопиталя lim
x→a+

f(x)−f(a)
x−a = d, что

является определением производной справа.

Иными словами, если у производной есть предел справа, и в предельной точке она определена,
то она там непрерывна справа (равна пределу справа).

Это значит, что производная, как функция, если уж претерпевает разрыв, то обязательно
второго рода.

Предложение 4.2.1 (О среднем значении производной). Пусть f — дифференцируема на (a, b).
Рассмотрим α, β ∈ (a, b) : α ̸= β.

Для любого v ∈ (f ′(α), f ′(β)) : ∃γ ∈
o

Iα,β : f ′(γ) = v.

Доказательство.

Положим g(x) = f(x) − vx. Видим, что g′(x) = f ′(x) − v. Тогда получается, что g′(x) принимает
значения разных знаков в α, β ⇒ ∃γ ∈ Iα,β : g′(γ) = 0.

Например, из теоремы Вейерштрасса, производная в экстремуме равна 0.

Теорема 4.2.6 (Ещё вариант правила Лопиталя). Пусть f, g — дифференцируемы на (a, b), причём
lim

x→a+
f(x) = lim

x→a+
g(x) = +∞.

Если ∃ lim
x→a+

f ′(x)
g′(x) = d, то для любых a < s < t < b : ∃c ∈ (s, t) : f(s)−f(t)

g(s)−g(t) = f ′(c)
g′(c) .

Рассмотрим какой-нибудь ε > 0. Для него ∃δ > 0 : ∀y ∈ (a, b) : |y − a| < δ ⇒
∣∣∣ f ′(y)
g′(y) − d

∣∣∣ < ε.

Будем считать, что t < a+ δ, зафиксируем его такое.

d− ε <
f(s)− f(t)

g(s)− g(t)
< d+ ε ⇐⇒ d− ε <

f(s)

g(s)

1− f(t)
f(s)

1− g(t)
g(s)

< d+ ε
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При уменьшении s f(s), как и g(s), становится всё больше, поэтому
1− f(t)

f(s)

1− g(t)
g(s)

начиная с некоторого

места — положительна.

lim
s→a+

1− f(t)
f(s)

1− g(t)
g(s)

(d− ε) ⩽ lim
s→a+

⩽
1− f(t)

f(s)

1− g(t)
g(s)

(d+ ε)

Несложно видеть, что lim
s→a+

1− f(t)
f(s)

1− g(t)
g(s)

= 1, откуда из предыдущего равенства: d − ε ⩽ lim
s→a+

f(s)
g(s) ⩽

d+ ε. Это же верно и для нижних пределов, получаем равенство предела d.

4.3 Формула Тейлора

Пусть f : (a, b). Возьмём t ∈ (a, b). Будем считать, что f непрерывна в t (или даже на (a, b)).

Определение 4.3.1 (Многочлен Тейлора функции f в точке t порядка n). Такой многочлен p
степени не больше n, что f(x)− p(x) = o((t− x)n) при x→ t.

Примеры.

• Многочлен Тейлора порядка 0 — это константа, p(x) = c. По определению, f(x)− c = o(1) ⇒
c = limt f = f(t).

• Многочлен Тейлора порядка 1 — линейный, p(x) = α · (x− t) + β. По определению f(x)− α ·
(x− t)− β = o(x− t) ⇒ f(t) = β, α = f ′(t).

4.3.1 Построение многочлена Тейлора

При работе с многочленами Тейлора будем предполагать, что у функции по крайней мере в точке

t имеется по крайней мере n-я производная (f (n+1) def
= (f (n))′ — производная, взятая n+ 1 раз).

Построим многочлен p степени не больше n, такой, что

p(t) = a0

p′(t) = p(1)(t) = a1

. . .

p(n)(t) = an

, где a0, . . . , an где ai — наперёд заданные числа.

Утверждается, что такой многочлен существует и единственен.

Рассмотрим произвольный p(x) = cnx
n + cn−1x

n−1 + · · ·+ c0.

Преобразуем выражение: p(x) = cn((x− t) + t)n + ((x− t) + t)n−1 + · · ·+ c0.

Раскроем скобки так, чтобы получить p(x) = dn(x− t)n + dn−1(x− t)n−1 + · · ·+ d0.

Заметим, что

p(x) = dn(x− t)n + · · ·+ d3(x− x0)
3 + d2(x− x0)

2 + d1(x− x0) + d0

p′(x) = n · dn(x− t)n−1 + · · ·+ 3 · d3(x− x0)
2 + 2 · d2(x− x0) + 1! · d1

p(2)(x) = n(n− 1) · dn(x− t)n−2 + · · ·+ 3 · 2 · d3(x− x0) + 2! · d2
p(3)(x) = n(n− 1)(n− 2) · dn(x− t)n−3 + · · ·+ 3! · d3

Вообще, по индукции можно доказать, что p(k)(0) = k! · dk.
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Лекция XXII
25 ноября 2022 г.

Итак, мы поняли, что ∃!p ∈ R[x] : deg p ⩽ n и его производные — заранее назначенные p(k)(x0) =
αk.

Его можно представить в виде p(x) =
n∑

j=0

αj

j! (x− x0)
j .

4.3.2 Формула Бинома Ньютона

Рассмотрим многочлен q(x) = (x+ a)n.

Чтобы записать его в каноническом для многочлена виде, заметим, что

q(k)(x) = n · (n− 1) · . . . · (n− k + 1) · (x+ a)n−k =
n!

(n− k)!
an−k

q(k)(0) =
n!

(n− k)!
an−k

Но производные прямо связаны с коэффициентами многочлена, как мы знаем из разложения в ряд

Тейлора в нуле. Получается, q(x) =
n∑

j=0

1
j! ·

n!
(n−j)!a

n−jxj =
(
n
j

)
an−jxj . О да, мы вывели формулу

Бинома Ньютона!

Предложение 4.3.1. В данной точке у f не может быть более одного многочлена Тейлора
порядка n (для любого фиксированного n и данной точки x0).

Доказательство. От противного: пусть есть два многочлена, p, q.

Тогда r(x) = p(x)−q(x) = (f(x)−q(x))−(f(x)−p(x)) = o((x−x0)n). Получается, r(x) = o((x−x0)n),
но так как deg r ⩽ n, то r(x) = 0.

(Вот почему: пусть r(x) = aj(x − x0)
j + · · · + an(x − x0)

n = o((x − x0)
n), где aj ̸= 0 — первый

ненулевой коэффициент. Тогда aj+(x−x0)(aj+1+· · ·+an(x−x0)n−j) −→
x→x0

aj ̸= o((x−x0)n−j)).

Теорема 4.3.1 (Локальная формула Тейлора). Пусть f : (a, b) → R дифференцируема на (a, b) хотя
бы n− 1 раз; пусть f, f (1), . . . , f (n−1) непрерывны на (a, b).

Рассмотрим x0 ∈ (a, b) и предположим, что ∃f (n)(x0).

В таком случае существует единственный многочлен Тейлора порядка n для f в точке x0, причём

p(x) =

n∑
j=0

f (j)(x0)

j!
(x− x0)

j

Замечание. Так как f (k) дифференцируема на (a, b), то она там непрерывна; таким образом, усло-
вие непрерывности в теореме имеет смысл только для f (n−1).

Доказательство.

Рассмотрим r(x) = f(x)− p(x). Заметим, что r(j)(x0) = 0 для j = 0, . . . , n.

Лемма 4.3.1. Пусть r : (a, b) → R — произвольная функция; x0 ∈ (a, b).

Предположим, что у r есть n − 1 производная на (a, b), а также ∃r(n)(x0), причём
r(x0) = r′(x0) = · · · = r(n)(x0) = 0.

Тогда r(x) = o((x− x0)
n).
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Доказательство леммы.

Индукция по n.

База: n = 1: r(x0) = 0;∃r′(x0) = 0.

По определению r(x)− r(x0) = r′(x0) · (x− x0) + p(x− x0), тем самым, r(x) = o(x− x0).

Переход: докажем для n+ 1.

Применим формулу Лагранжа: r(x) = r(x)− r(x0) = r′(c)(x− x0), где c — строго между
x и x0.

r′ удовлетворяет условию леммы с индексом n, получается, r′(x) = o((x− x0)
n).

∀ε > 0 : ∃δ > 0 : |x− x0| < δ ⇒ r′(x) < ε · |x− x0|

Тогда получается r(x) = |r′(c)| · |x− x0| ⩽ ε · |c− x0|n · |x− x0|n ⩽ ε · |x− x0|n+1.

Из леммы получаем, что r(x) = o((x − x0)
n), откуда в самом деле p — многочлен Тейлора для

f .

Пример. lim
x→0

sin(x)−x
cos(x)−1 =?

Заметим, что sin(x) = sin(x), 0 в нуле; sin′(x) = cos(x), 1 в нуле; sin′′(x) = − sin(x), 0 в нуле.

Заметим, что cos(x) = cos(x), 1 в нуле; cos′(x) = − sin(x), 0 в нуле; cos′′(x) = − cos(x), -1 в нуле.

Тогда
sin(x)− x

cos(x)− 1
=

(x+ o(x2))− x

(1− x2

2 + o(x2))− 1
=

o(x2)

−x2

2 + o(x2)
−→
x→x0

0.

Итак, вот локальная формула Тейлора:

f(x) =

n∑
j=0

f (j)(x0)

j!
(x− x0)

j + o((x− x0)
n)

где o((x− x0)
n) — остаточный член в форме Пеано.

Теорема 4.3.2. Пусть f имеет n непрерывных производных на (a, b), причём даже ∃f (n+1) на
(a, b).

Тогда

∀x ̸= x0 ∈ (a, b) :

n∑
j=0

f (j)(x0)

j!
(x− x0)

j +
f (n+1)(ξ)

(n+ 1)!
(x− x0)

n+1

где ξ — какая-то точка строго между x и x0.

Здесь f(n+1)(ξ)
(n+1)! (x− x0)

n+1 — остаток в форме Лагранжа.

Замечание. Можно не требовать непрерывность ни одной производной, так как мы знаем про
существование следующих.

Доказательство.

Обозначим r(x) = f(x)− p(x).

Лемма 4.3.2. Пусть r дифференцируема n + 1 раз на (a, b); пусть r(x0) = r′(x0) =
· · · = r(n)(x0) = 0.

Тогда ∀x ̸= x0 : ∃ξ строго между x и x0, такая, что r(x) =
r(n+1)(ξ)
(n+1)! (x− x0)

n+1.
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Доказательство леммы.

Индукция по n.

База: n = 0.

В таком случае r(x) = r(x)− r(x0) = r′(ξ) · (x− x0) — просто формула Лагранжа.

Переход: докажем для n+ 1.

Рассмотрим f(x) = r(x) и g(x) = (x − x0)
n+2; g′(x) = (n + 2)(x − x0)

n+1, после чего
применим формулу Коши:

r(x)

(x− x0)n+2
=

r′(c)

(n+ 2)(c− x0)n+1
, где c строго между x и x0.

Теперь воспользуемся индукционным предположением для r′:

r′(c) =
r(n+2)(ξ)

(n+ 1)!
(c− x0)

n+1

r(x) = (x− x0)
n+2 · 1

(n+ 2)!
· r(n+2)(ξ)

(c− x0)n+1
(c− x0)

n+1 =
r(n+2)(ξ)

(n+ 2)!
(x− x0)

n+2

Используя тот факт, что r(n+1)(x) = f (n+1)(x), так как p — многочлен степени не больше n,
получаем искомое равенство.

Лекция XXIII
28 ноября 2022 г.

Давайте посчитаем 3
√
9.

Для этого воспользуемся рядом Тейлора, нам придётся дифференцировать xr, где r ∈ Q.

Пусть r = p
q ; p, q ∈ N. Выразим

(
x

1
q

)′
=

1

q
(
x

1
q

)q−1 , как производную обратной функции.

Упростив, получаем
(
x

1
q

)′
= 1

qx
1
q−1. Теперь можно заметить, что x

p
q =

(
x

1
q

)p
, откуда(

x
p
q

)′
= p

(
x

1
q

)p−1

· 1
qx

1
q−1 = p

qx
p−1
q + 1−q

q = p
qx

p
q−1, откуда мы видим, что формула

(xr)′ = rxr−1 применима не только к целым, но и к рациональным степеням.

Представим 3
√
9 = (8+1)

1
3 — найдём рядом точный куб 23 = 8. Записав ряд Тейлора с остаточным

членом в форме Лагранжа, получаем для f(x) = x
1
3 :

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f (2)(ξ)(x− x0)

2 = x
1
3
0 +

1

3
x
− 2

3
0 (x− x0) +

2

9 · 2
(ξ)−

5
3 (x− x0)

2

где ξ ∈ (x0, x). Подставим x = 9, x0 = 8

2 +
1

3 · 4
− 1

9
ξ−

5
3

Пока ξ меняется от 8 до 9, член ξ−
5
3 меняется очень мало: очевидно, ξ−

5
3 монотонно по ξ, причём

8−
5
3 − 9−

5
3 =

9
5
3 − 8

5
3

(8 · 9) 5
3

=
92 − 82

9
1
3 + (9 · 8) 1

6 + 8
1
3

· 1

(8 · 9) 5
3

⩽
17

6
· 1

1024
⩽ 0, 003

то есть ошибка при вычислении точного значения 3
√
9 при помощи ряда Тейлора порядка всего 2

уже очень мала.
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Глава 5

Первообразная

Пусть дана функция f : ⟨a, b⟩ → R.

Определение 5.0.1 (Первообразная f на ⟨a, b⟩). Такая функция F : ⟨a, b⟩ → R, дифференцируемая
на ⟨a, b⟩, такая, что F ′(x) = f(x) для x ∈ ⟨a, b⟩.

Замечание. Как известно, у производной могут быть разрывы только первого рода (следствие 4.2.5),
поэтому первообразной точно нет у функции, претерпевающей где-то разрыв первого рода.

Так, нет первообразной у функции f(x) = sign(x) на (−∞; +∞).

Факт 5.0.1. Если у функции f есть две первообразные, F1 и F2, то F1 = F2 + c, где c ∈ R.

Доказательство. Рассмотрим функцию F = F1−F2. Её производная равна нулю (следствие 4.2.2),
значит, она постоянна.

Следствие 5.0.1. Если F1 — первообразная, то множество всех первообразных — как раз
{F1 + C | C ∈ R}.

Теорема 5.0.1. У любой непрерывной функции есть первообразная.

Доказательство. Будет потом.

5.1 Про дифференциальные формы

Ниже написанное может казаться казуистикой, но оно будет полезно при работе с функциями от
нескольких переменных.

«На самом деле», первообразные бывают не столько у функций, сколько у дифференциальных
форм.

Определение 5.1.1 (Линейная функция). Функция вида ϕ(h) = a · h, где a ∈ R.

Определение 5.1.2 (Дифференциальная форма). Произвольное отображение

Φ : ⟨l, r⟩ → {линейные функции}

В качестве примера можно рассмотреть дифференциал (определение 4.0.1).

Φ : x 7→ df (x, h) = f ′(x) · h

Более того, из определения видно, что всякая дифференциальная форма имеет вид Φ : x 7→ a(x) ·h,
где уже a : ⟨l, r⟩ → R — произвольная функция.

Введём обозначение для дифференциала функции f , как линейной формы: df = (Φ : x 7→ f ′(x) ·h).
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Дифференциал линейной функции f(x) = x — линейная форма Φ : x 7→ 1·h; это линейная форма, в
каждой точке которой сидит линейная функция с коэффициентом 1. Его можно также обозначить
dx.

Вместо не очень хорошей записи a(x) · h (что такое в ней h?) будем записывать линейные формы
так: a · dx.

Теперь скажем, что функция F — первообразная дифференциальной формы Φ, если dF = Φ. Это
определение согласуется с ранее данным: пусть Φ = adx, и dF = F ′ dx; мы ищем такую функцию
F , что F ′ = a.

Пусть a(x) dx — дифференциальная форма на ⟨l, r⟩. Тогда следующим значком∫
a(x) dx

обозначают множество всех первообразных данной линейной формы.

5.2 Первообразные элементарных функций

Так,
∫
xα dx = 1

α+1x
α+1 + C при α ∈ Q \ {−1}. Можно ещё написать первообразные некоторых

интересных функций, которые мы ещё не прошли:

•
∫
sinx dx = − cosx+ C.

• ex dx = ex + C.

• x−1 dx = log x+ C.

5.3 Сложный дифференциал

Давайте напишем дифференциал композиции.

(f ◦ g)′(x) = f ′(g(x))g′(x)

поэтому
d(f ◦ g) = f ′(g(x))g′(x) dx

Здесь x после дифференциала dx, и x внутри скобок от вызова функций — разные сущности:
внутри скобок — точка, в которой мы вычисляем значение, чтобы узнать, чему равна производная;
после значка d это — название линейной функции с коэффициентом 1. Правильнее было бы напи-
сать d(f ◦ g) = f ′(g( · ))g′( · ) dx. Если заметить, что g′( · ) dx = dg, то получим d(f ◦ g) = (f ′ ◦ g) dg.

Отсюда
∫
(f ′ ◦ g) dg =

∫
(f ◦ g) dx.

Теперь, например, можно посчитать
∫
x sin(x2) dx =

∫
sin(x2) d

(
x2

2

)
= 1

2

∫
sin
(
x2
)
dx2 = − 1

2 cos(x
2) + C

По просьбам трудящихся, на лекции ещё посчитали

∫
tg(x) dx =

∫
sin(x)

cos(x)
dx = −

∫
dcosx

cosx
=

y=cos x
−
∫

dy

y
= − log(y) + C = − log(cosx) + C

(написанное выше — например, интеграл на
(
−π

2 ; +
π
2

)
, но нельзя сказать, что это интеграл на

(−∞; +∞) — интегрируемая функция не везде определена).

5.4 Интегрирование по частям

Так как (f · g)′ = f ′ · g + f · g′, то d(f · g) = g · df + f · dg.

Формула интегрирования по частям:
∫
f dg = fg −

∫
g df .
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Применим её для
∫
log x dx:∫

log x · dx = x log x−
∫
x · d(log x) = x log x−

∫
x
1

x
dx = x log x− x+ C

Или вот ещё пример:
∫
sinx · ex dx.∫

sinx · dex = ex sinx−
∫

cosx · ex dx = ex sinx−
∫

cosx · dex = ex sinx− ex cosx−
∫

sinx · ex dx

Интеграл пришёл сам в себя, получается,
∫
ex sinx dx+

∫
ex sinx dx = ex sinx− ex cosx (сумма по

Минковскому), или же
∫
ex sinx dx = 1

2 (e
x sinx− ex cosx) + C.

Замечание. На самом деле, мы получили, что если интеграл существует, то он равен этому
выражению.

Чтобы показать, что он существует, можно либо сослаться на теорему о том, что первообразная
у непрерывной функции существует, либо просто проверить — продифференцировав полученное
выражение обратно.

Иногда бывает, что в интеграле
∫
f(x) dx под дифференциал ничего загнать не получается.

Бывает полезно рассмотреть y = ϕ(x). Тогда получается, что dy = ϕ′(x) dx, откуда dx = 1
ϕ′(x) dy.

После этого ∫
f(x) dx =

∫
f(ϕ−1(y))

1

ϕ′(ϕ−1(y))
dy

Лекция XXIV
2 декабря 2022 г.

Посчитаем ещё один интеграл: ∫ √
1− x2 dx, при − 1 ⩽ x ⩽ 1

Попробуем замену x = sin t, при t ∈ [−π
2 ;

π
2 ].∫ √

1− x2 · dx =
√
1− sin2 t · dsin t =

Корень равен cos t, потому что при данных t : cos t ⩾ 0.

=

∫
cos2 t · dt =

∫
cos(2t) + 1

2
dt =

1

4

∫
cos(2t) d(2t) +

1

2

∫
dt =

1

4
sin(2t) +

1

2
t+ C
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Глава 6

Интеграл

На самом деле, то, что мы выше называли интегралом (даже значок рисовали) — первообразная.

Само слово интеграл — это о каком-то суммировании потока входящих и исходящих средств,
вопрос — сколько в итоге получилось?

Определение 6.0.1 (Функционал). Отображение: Φ : X → R, где X — множество любой природы.

Пусть f : A → R, отрезок I ⊂ A. Определим интеграл J(f, I). Он по возможности должен
удовлетворять следующим свойствам:

1. J(f, I1 ⊔ I2) = J(f, I1) + J(f, I2) — если что-то набралось сначала на одном отрезке, потом
на другом, то в результате получилась сумма.

2. J(αf1 +βf2, I) = αJ(f1, I)+βJ(f2, I) — если есть какая-то платформа, которая едет с одной
скоростью, а на ней что-то едет с другой скоростью, то оно сложится в таком виде.

3. J(1, [a, b]) = b−a — если что-то набирается со скоростью 1, то и наберётся столько, в течение
какого времени набиралось.

4. f ⩾ 0 ⇒ J(f, I) ⩾ 0 — если вода наливалась, то в итоге она налилась. В силу линейности
получаем отсюда J(f, I) ⩾ J(g, I), если во всех точках f(x) ⩾ g(x).

6.1 Интеграл Римана — Дарбу

6.1.1 Интуиция

Пусть f : I → R. Разобьём отрезок на более маленькие части, необязательно равные: I =
⊔
i

Ii.

На всяком отрезке возьмём инфимум (для этого потребуем от функции ограниченности), получим

ступенчатую (кусочно постоянную) функцию g : I → R; x 7→



inf I1, x ∈ I1
...

inf Ii, x ∈ Ii
...

. Иначе говоря,

g =
∑
k

ck · χIk .

Отсюда видим вывод:
J(f, I) ⩾ J(g, I) =

∑
i

ck|Ik|

Аналогично, определим h =
∑
k

dkχIk , где dk = sup
x∈Ik

f(x).
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Таким образом, как бы мы не разбивали отрезок, будет наблюдаться неравенство

J(g, I) ⩽ J(f, I) ⩽ J(h, I)

Если же мы разобьём I на достаточно малые кусочки, то можно надеяться, что суммы J(g, I) и
J(h, I) будут близки.

6.1.2 Определение

Пусть I = ⟨a, b⟩, где a, b ∈ R.

Рассмотрим ограниченную функцию f : I → R.

Определение 6.1.1 (Разбиение отрезка). Совокупность отрезков I1, . . . , In : I =
n⊔

i=1

Ii, где n ∈ N.

Отрезкам не запрещено быть пустыми, или вырождаться в точку.

Определение 6.1.2 (Измельчение разбиения). Разбиение ∆1, . . . ,∆k — измельчение разбиения
I1, . . . , In, если ∀∆s : ∃It : ∆s ⊂ It.

Лемма 6.1.1. У любых двух разбиений есть общее измельчение.

Доказательство. Рассмотрим два разбиения I =
N⊔

k=1

I ′k и I =
T⊔

j=1

I ′′j .

Тогда (так как пересечение двух отрезков — отрезок) семейство {I ′k ∩ I ′′j }k=1..N,j=1..T является их
общим измельчением.

Рассмотрим некое A — разбиение отрезка I. Теперь будем считать, что ∅ /∈ A.

Определение 6.1.3 (Сумма Дарбу по разбиению A).

• Верхняя: SA(f)
def
=
∑
I∈A

(
sup
x∈I

f(x)

)
· |I|.

• Нижняя: sA(f)
def
=
∑
I∈A

(
inf
x∈I

f(x)

)
· |I|.

Из определения очевидно, что sA(f) ⩽ SA(f)

Лемма 6.1.2. Для любых двух разбиений A и B выполняется неравенство sA(f) ⩽ SB(f).

Доказательство. Рассмотрим их общее измельчение C.

Лемма 6.1.3. Если D и E — два разбиения, причём E — измельчение разбиения D, то

sD(f) ⩽ sE(f) ⩽ SE(f) ⩽ SD(f)

Доказательство леммы.

SD(f) =
∑
Ii∈D

(
sup
s∈Ii

f(x)

)
· |I|

Рассмотрим одно слагаемое:(
sup
s∈Ii

f(x)

)
· |I| =

∑
∆k⊂Ii

sup
x∈Ij

f(x)

Очевидно, если брать супремум не по Ii, а по ∆k ⊂ I, то получится только меньше.(
sup
s∈Ii

f(x)

)
· |I| ⩾

∑
∆k⊂Ii

sup
x∈∆k

f(x)
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Чтобы доказать для нижних сумм Дарбу, можно заменить f на −f .

Таким образом, SA(f) ⩾ SC(f) ⩾ sC(f) ⩾ sB(f).

Следствие 6.1.1. Пусть U — множество всех верхних сумм для f , а V — множество всех
нижних сумм.

Согласно лемме, (V,U) — щель. Положим I(f) := inf U и I(f) := supV . Получается, в щели
лежат числа [I(f); I(f)].

Определение 6.1.4 (Верхний интеграл Дарбу от f по I). Выше определённая I(f).

Определение 6.1.5 (Нижний интеграл Дарбу от f по I). Выше определённая I(f).

Определение 6.1.6 (Интеграл Дарбу от f по I). Если I(f) = I(f), то это число — интеграл
функции f на отрезке ⟨a, b⟩ (обозначают I(f)), а функция — интегрируема по Риману — Дарбу на
[a, b].

Примеры.

• Функция Дирихле D = χQ не интегрируема по Риману — Дарбу на [0; 1]: на всяком отрезке
её супремум 1, а инфимум — 0.

• Пусть ∆ ⊂ I. Найдём интеграл от f = χ∆.

Рассмотрим разбиение {J1,∆, J2}, где J1 и J2 — левая и правая половинки I \∆.

В нём верхние и нижние суммы Дарбу совпали, поэтому можно утверждать, что в щели
точно лежит одно число — |∆|.

Факт 6.1.1. Если f ⩽ g на ⟨a, b⟩, то I(f) ⩽ I(g), так как I(f) ⩽ I(g).

Представим себе f(x) = 1
x на (0, 1]. Она там непрерывна; для всякого x0 ∈ (0; 1] : ∀ε > 0 : ∃δ : ∀x ∈

(0; 1] : |x − x0| ⇒
∣∣∣ 1x − 1

x0

∣∣∣ < ε. Несложно видеть, что у данной функции δ хотя и существует, но
зависит не только от ε, но ещё и от x0.

Определение 6.1.7 (Равномерно непрерывная функция). Такая функция f : A→ R, что

∀ε > 0 : ∃δ > 0 : ∀x0, x ∈ A : |x− x0| < δ ⇒ |f(x)− f(x0)| < ε

Лекция XXV
5 декабря 2022 г.

6.2 Достаточный признак интегрируемости

Теорема 6.2.1 (Кантор). Пусть E — замкнутое ограниченное множество, а f : E → R — непре-
рывная функция. Тогда эта функция автоматически равномерно непрерывна.

Доказательство. От противного: пусть ∃ε > 0 : ∀δ > 0 : ∃x, y ∈ E : |x − y| < δ, но |f(x) −
f(y)| ⩾ ε. Зафиксируем такой ε; рассмотрим последовательность δn = 1

n , сопоставим всякому
соответствующие x, y ∈ E.

Согласно второй теореме о компактности (теорема 3.1.18) существует возрастающая последова-
тельность индексов nj : xnj −→

j→∞
x ∈ E. Используя |xn − yn| −→

n→∞
0, получаем, что ynj −→

j→∞
x.

Подставим посылку теоремы: ∀n ∈ N : |f(xnj )− f(ynj )| ⩾ ε. Но такого не может быть, f(xnj ) −→
j→∞

f(x), и f(ynj
) −→
j→∞

f(x).

Теорема 6.2.2. На замкнутом отрезке [a, b] все непрерывные функции интегрируемы по Риману.
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Доказательство. Рассмотрим какую-нибудь непрерывную f : [a, b] → R. Согласно теореме Канто-
ра (теорема 6.2.1), она равномерно непрерывна:

∀ε > 0 : ∃δ(ε) > 0 : ∀x, y ∈ [a, b] : |x− y| < δ(ε) ⇒ |f(x)− f(y)| < ε

Рассмотрим J = ⟨l, r⟩ ⊂ [a, b] — некий отрезок. Если |J | < δ(ε), то oscJ f ⩽ ε.

oscJ f = sup
x,y∈J

|f(x)− f(y)| = sup
x∈J

f(x)− inf
y∈J

f(y) ⩽ ε

Пусть E — произвольное разбиение отрезка I на отрезки длины меньше δ. Посчитаем на нём
суммы Дарбу:

SE =
∑
e∈E

(sup
e
f) · |e|

sE =
∑
e∈E

(inf
e
f) · |e|

Вычислим разности сумм SE − sE ⩽
∑
e∈E

ε · |e| = ε · |b− a|.

Получается, ∀ε > 0 : найдётся разбиение E , такое, что SE − sE ⩽ ε · |b − a|. Так как |b − a| —
константа, то отсюда сразу вытекает, что множества нижних и верхних сумм Дарбу образуют
узкую щель.

Задача 6.2.1 (Упражнение). Интегрируема ли по Риману — Дарбу функция Римана R (опреде-
ление 3.1.5)?

1. R непрерывна во всех иррациональных точках; разрывна во всех рациональных точках.

2. R интегрируема по Риману — Дарбу на любом конечном отрезке.

6.3 Свойства интеграла по Риману — Дарбу

1. Монотонность. Пусть f, g : ∆ → R. Если ∀x ∈ ∆ : f(x) < g(x), то I(f) ⩽ I(g) и I(f) ⩽ I(g).

Доказательство. Рассмотрим произвольное E — разбиение отрезка ∆.

SE(f) =
∑
e∈E

(sup
e
f) · |e| ⩽

∑
e∈E

(sup
e
g) · |e| = SE(g)

sE(f) =
∑
e∈E

(inf
e
f) · |e| ⩽

∑
e∈E

(inf
e
g) · |e| = sE(g)

Следствие 6.3.1. Если f и g интегрируемы, то I(f) ⩽ I(g).

2. Согласованность с домножением на константу. Пусть f : ∆ → R ограничена, α ⩾ 0, E —
разбиение ∆. Тогда SE(αf) = αSE(f) и sE(αf) = αsE(f).

Следствие 6.3.2. I(αf) = α · I(f) и I(αf) = α · I(f).

Следствие 6.3.3. Если f интегрируема, то ∃I(αf) = αI(f).

3. Сумма. Согласованность с домножением на -1. Пусть f : ∆ → R ограничена, α ⩾ 0, E —
разбиение ∆. Тогда SE(−f) = −sE(f) и sE(−f) = −SE(f).

Следствие 6.3.4. I(−f) = −I(f) и I(−f) = −I(f).

Следствие 6.3.5. Если f интегрируема, то ∃I(−f) = −I(f).

Следствие 6.3.6. Если f интегрируема и α ∈ R, то ∃I(αf) = αI(f).

4. Пусть f, g : ∆ → R. Тогда I(f + g) ⩽ I(f) + I(g) и I(f + g) ⩽ I(f) + I(g).
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Доказательство.

I(f + g) ⩽ SE(f + g) =
∑
e∈E

sup
e
(f + g) · |e| ⩽

∑
e∈E

(sup
e
f · |e|+ sup

e
g · |e|) = SE(f) + SE(g)

Отсюда получаем, что ∀F1,F2 — разбиений ∆ — выполняется I(f + g) ⩽ SF1
(f) + SF2

(g)
(для доказательства рассмотрим общее измельчение).

Взяв в неравенстве инфимум сначала по всем F1, потом по всем F2, получим

I(f + g) ⩽ I(f) + I(g)

Отсюда
I(f + g) = −I((−f) + (−g)) ⩾ −I(−f)− I(−g) = I(f) + I(g)

Следствие 6.3.7. Если f, g интегрируемы на ∆, то f + g тоже интегрируема, причём
I(f + g) = I(f) + I(g).

6.4 Критерий интегрируемости по Риману — Дарбу

Теорема 6.4.1 (Критерий интегрируемости по Риману — Дарбу). Следующие условия эквивалент-
ны:

1. Ограниченная функция f на отрезке ∆ интегрируема на нём по Риману — Дарбу.

2. ∀ε > 0 : ∃E — разбиение ∆, такое, что
∑
e∈E

(osce f) · |e| < ε.

Доказательство.

⇐.
ε >

∑
e∈E

(osce f) · |e| = SE(f)− sE(f)

Значит, щель узкая, и интеграл существует.

⇒. Щель узкая, значит, ∃F1,F2 — разбиения ∆, такие, что SF1 − sF2 < ε. Тогда берём E —
общее измельчение F1 и F2. По-прежнему, SE − sE < ε, получается, E — искомое разбиение
для данного ε.

Предложение 6.4.1 (Основная оценка интеграла). Если f : A→ R интегрируема на отрезке ∆,
то |f | тоже интегрируема, и |I(f)| ⩽ I(|f |).

Доказательство. Заметим, что

∀J ⊂ A : oscJ |f | = sup
x,y∈J

∣∣|f(a)| − |f(b)|
∣∣ ⩽ sup

x,y∈J

∣∣f(a)− f(b)
∣∣ = oscJ f

Теперь просто применим критерий: f интегрируема, значит, ∀ε > 0 : ∃E — разбиение ∆, такое, что∑
e∈E

(osce f) · |e|, откуда
∑
e∈E

(osce |f |) · |e| и подавно.

Контрпример. Обратное неверно: функция d = D − 1
2 — сдвинутая функция Дирихле — интегри-

руема только под модулем.

Лекция XXVI
9 декабря 2022 г.

Предложение 6.4.2. Если f, g : ⟨a, b⟩ → R — интегрируемы по Риману — Дарбу, то f · g тоже
интегрируема.
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Доказательство. По определению, f и g — ограничены, пусть константой M .

Рассмотрим e ⊂ ⟨a, b⟩, оценим osce(f · g).

x, y ∈ e : |f(x)g(x)− f(y)g(y)| = |f(x)(g(x)− g(y)) + (f(x)− f(y))g(y)| ⩽M · osceg +M · osce f

Отсюда вытекает osce(f · g) ⩽M(osce f + osce g).

Рассмотрим произвольный ε > 0, найдём разбиение отрезка ⟨a, b⟩, такое, что∑
e∈A

osce f · |e| ⩽ ε

2M∑
e∈A

osce g · |e| ⩽
ε

2M

Они найдётся согласно критерию интегрируемости (чтобы A было общее, рассмотрим измельче-
ние).

Тогда для f · g на разбиении A сумма колебаний не превосходит ε, выполняется критерий.

Следствие 6.4.1. Пусть ∆ = ⟨a, b⟩; J = ⟨α, β⟩; J ⊂ ∆. Пусть f : ∆ → R интегрируема по Риману
— Дарбу. Тогда, используя, что χJ : ∆ → R тоже интегрируема, несложно получить, что f

∣∣
J

— тоже интегрируема.

Обозначим получившийся интеграл на подотрезке
∫
J

f =
β∫
α

f =
β∫
α

f(x) dx
def
= I(f · χJ).

Пусть J = J1 ⊔ J2, где J, J1, J2 — отрезки. Заметим, что∫
J

f = I(f · χJ) = I(f · χJ1
+ f · χ(J2)) = I(f · χJ1

) + I(f · χ(J2)) =
∫
J1

f +

∫
J2

f

Куда относить концы?

J = ∅ ⇒ χJ = 0 ⇒
∫
J

f = 0. J = {a} ⇒
∫
J

f = 0 тоже: I(f · χ{a}) = f(a) · I(χ{a})︸ ︷︷ ︸
=0

= 0.

Отсюда сразу следует, что запись
β∫
α

f
def
= IJf для J = ⟨α, β⟩ корректна — нам не важно, включа-

ются ли конца отрезка J .

В частности, получаем, что
γ∫
α

f(x) dx =
β∫
α

f(x) dx+
γ∫
β

f(x) dx для α ⩽ β ⩽ γ.

Основная оценка интеграла:

∣∣∣∣∣ β∫α f(x) dx
∣∣∣∣∣ ⩽ β∫

α

|f(x)|dx.

Следствие 6.4.2. Если |f(x)| ⩽M на (α, β), то

∣∣∣∣∣ β∫α f(x) dx
∣∣∣∣∣ ⩽M · (β − α).

Определение 6.4.1. Если β < α, то
β∫
α

f(x) dx
def
= −

α∫
β

f(x) dx.

При таком определении
γ∫
α

f(x) dx =
β∫
α

f(x) dx+
γ∫
β

f(x) dx при любом относительном порядке α, β, γ.

Основная оценка интегрирования тоже остаётся верной:

∣∣∣∣∣ β∫α f(x) dx
∣∣∣∣∣ ⩽ β∫

α

|f(x)|dx ⩽M · |α− β|.
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6.5 Связь между интегралом и первообразной

Пусть I = ⟨α, β⟩ — отрезок, возможно, бесконечной длины.

Рассмотрим f : ⟨α, β⟩ → R, такую, что для всякого замкнутого отрезка ∆ ⊂ I функция интегриру-
ема на ∆.

Пусть t0 ∈ ⟨α, β⟩. Обозначим F : ⟨α, β⟩; F (t) =
t∫

t0

f(x) dx.

Пусть ∆ ∋ t0 — замкнутый отрезок (∆ ⊂ ⟨α, β⟩). На нём функция интегрируема, ограничена
константой M .

Заметим, что ∀t1, t2 ∈ ⟨α, β⟩:

F (t1)− F (t2) =

∣∣∣∣∣∣
t2∫

t1

f(x) dx

∣∣∣∣∣∣ ⩽ |t1 − t2| ·M

Получается, F непрерывна на ∆, но так как ∆ можно взять сколь угодно большим, т вообще
говоря, F непрерывна даже на ⟨α, β⟩.

Однако на любом замкнутом отрезке F равномерно непрерывна: F (t1) − F (t2) ⩽ |t1 − t2| ·M . Из
формулы следует даже большее:

Определение 6.5.1 (Условие Липшица). h : e → R удовлетворяет условию Липшица, если ∃A >
0 : ∀t1, t2 : |h(t1) = h(t2)| ⩽ A|t1 − t2|.

6.5.1 Теорема Ньютона — Лейбница

Теорема 6.5.1 (Ньютон — Лейбниц). Пусть f : ⟨α, β⟩ непрерывна на отрезке ⟨α, β⟩, причём
t0 ∈ ⟨α, β⟩.

Тогда функция F (t) =
t1∫
t0

f(x) dx, которую мы только что рассматривали, есть первообразная для

f .

Доказательство. Докажем более сильное утверждение: пусть f интегрируема на всяком замкну-
том отрезке ∆ ⊂ I; тогда F ′(u) существует и равно f(u) в каждой точке u, где f непрерывна.

Рассмотрим такое u ∈ ⟨α, β⟩, где f непрерывна.

Рассмотрим ε > 0 : ∃δ > 0 : ∀x ∈ I : |x− u| < δ ⇒ |f(x)− f(u)| ⩽ ε.

Посчитаем производную
F (x)− F (u)

x− u
при x → u. Так как мы хотим доказать, что это f(u), то

запишем

F (t)− F (u)

t− u
−f(u) =

t∫
u

f(x) dx

t− u
−f(u) = 1

t− u

 t∫
u

f(x) dx−
t∫

u

f(u)︸︷︷︸
const

dx

 =
1

t− u

t∫
u

(f(x)−f(u)) dx

Пусть |t−u| ⩽ δ, тогда |x−u| ⩽ δ, где x — под интегралом. Тогда |f(x)−f(u)| ⩽ ε по непрерывности,
и получаем ∣∣∣∣F (t)− F (u)

t− u
− f(u)

∣∣∣∣ ⩽ 1

t− u
· |t− u| · ε = ε

Тем самым, действительно,
F (t)− F (u)

t− u
−→
t→u

f(u).

Следствие 6.5.1 (Формула Ньютона — Лейбница). Пусть f непрерывна на I = ⟨α, β⟩; пусть Φ
— произвольная первообразная f на α, β.
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Тогда ∀a, b ∈ ⟨α, β⟩ :
b∫
a

f(x) dx = Φ(b)− Φ(a).

Доказательство. Пусть t0 ∈ I, функция F (t) =
t∫

t0

f(x) dx является первообразной для f .

Но тогда ∃C ∈ R : Φ(t) = F (t) + C. Отсюда получаем

Φ(b)− Φ(a) = F (b)− F (a) =

b∫
t0

f(x) dx−
a∫

t0

f(x) dx =

b∫
a

f(x) dx

Пример.
1∫
0

x dx = 12

2 − 02

2 = 1
2 .

6.5.2 Замена переменной под интегралом

f(ϕ(x))′ = f ′(ϕ(x)) · ϕ′(x) Предположим, что f, ϕ, f ′, ϕ′ непрерывны на своей области определения:

ϕ : I → R, причём ∆ ⊃ ϕ(I), и f : ∆ → R.

Тем самым f(ϕ(x)) — первообразная для правой части.

b∫
a

f ′(ϕ(x))ϕ′(x) dx = f(ϕ(b))− f(ϕ(a))

С другой стороны,
b∫

a

f ′(ϕ(x))ϕ′(x) dx = f(v)− f(u) =

v∫
u

f ′(s) ds

где u = ϕ(a), и v = ϕ(b).

Лекция XXVII
10 декабря 2022 г.

skipped

Лекция XXVIII
12 декабря 2022 г.

fn : A → R — последовательность функций. Ряд
n∑

i=1

fn(x) сходится поточечно к функции S : A →

R, если частичные суммы сходятся для каждого x сходятся.

Равномерно — если частичные суммы сходятся к S равномерно.

Теорема 6.5.2 (Критерий Вейерштрасса). Пусть dn ∈ R⩾0, где
∞∑
i=1

di <∞.

Если ∀i ∈ N : ∀x ∈ A : |fn(x)| ⩽ dn, то ряд
∞∑
i=1

fn(x) сходится абсолютно и равномерно.

Доказательство. Обозначим Sk(x) :=
k∑

i=1

fi(x). Применим критерий Коши:

∀n > k : |Sn(x)− Sk(x)| = |fk+1(x) + · · ·+ fn(x)| ⩽ |fk+1(x)|+ · · ·+ |fn(x)| ⩽ dk+1 + · · ·+ dn

При достаточно большом k, согласно критерию Коши для числового ряда dn, сумма |dk+1|+· · ·+|dn|
достаточно мала.
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Здесь интересно писать бесконечный ряд Тейлора и смотреть, куда и где он сходится.

Пример (Непрерывная, но нигде не дифференцируемая функция). Определим

f1(x) =

{
|x|, |x| ⩽ 1

2

функция имеет период 1
в точках

1

2
Z нет производной, в остальных — она ±1.

f2(x) =
1

4
f1(4x) =

{
1
4 |x|, |x| ⩽ 1

8

функция имеет период 1
4

в точках
1

8
Z нет производной, в остальных — она ±1.

f3(x) =
1

4
f2(4x) =

{
1
16 |x|, |x| ⩽ 1

32

функция имеет период 1
16

в точках
1

32
Z нет производной, в остальных — она ±1.

Тогда функция F :=
n∑

i=1

корректно определена, так как ряд сходится по критерию Вейерштрас-

са: |fn(x)| ⩽ 1
2·4n−1 . Так как ряд сходится равномерно, а слагаемые непрерывны, то F — тоже

непрерывна.

Тем не менее, она нигде не дифференцируема: для любого n ∈ N можно выбрать hn = ± 1

4n
, так,

что
fn(x+ hn)− fn(x)

hn
= ±1.

Тогда
fn(x+ hn)− fn(x)

hn
=

{
±1, k ⩽ n

0, k > n
.

Запишем
F (x+ hn)− F (x)

hn
=

n∑
j=1

fj(x+ hn)− fj(x)

hn
. При чётных n эта сумма чётна, при нечётных

— нечётна, значит, производной не существует — последовательность не сходится.

Теорема 6.5.3 (Предельный переход под знаком интеграла). Пусть fn заданы на конечном отрезке
I, и все интегрируемы по Риману — Дарбу.

Если fn ⇒ f , то lim
n→∞

∫
I

fn(x) dx =
∫
I

f(x) dx.

Доказательство.∣∣∣∣∣∣
∫
I

fn(x)−
∫
I

f(x) dx

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
I

(fn(x)− f(x)) dx

∣∣∣∣∣∣ ⩽ sup
x∈I

|fn(x)− f(x)|︸ ︷︷ ︸
мало из-за равномерности

·|I| −→
n→∞

0

Замечание. На самом деле, если fn → f поточечно, причём ∀n : ∃A : ∀x ∈ I : |fn(x)| ⩽ A, то
заключение теоремы верно тоже.

Задача 6.5.1. Пусть fn заданы на отрезке ⟨a, b⟩ и дифференцируемы. Пусть fn ⇒ f . При каких
дополнительных условиях ∃f ′, причём f ′ = lim

?
f ′n?

Теорема 6.5.4. I — отрезок, fn, f : I → R, а ещё имеется функция ϕ : I → R.

Известно, что fn дифференцируемы всюду на I, fn ⇒ f , а f ′n ⇒ ϕ.

Тогда f дифференцируема, причём f ′ = ϕ.

Упражнение: можно ослабить условие fn ⇒ f , на следующее: ∃x0 ∈ I : lim
n→∞

fn(x0) = f(x0).

Доказательство. Применим критерий Коши к равномерному схождению производных: ∀ε > 0 :
∃N ∈ |N : ∀k,m > N, x ∈ I : |f ′k(x)− f ′m(x)| ⩽ ε.
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Пусть x ̸= y ∈ I, а ещё g(x) = fk(x) − fm(x). Запишем формулу Лагранжа:
g(x)− g(y)

x− y
= g′(ξ),

где ξ найдётся между x и y.

Раскрыв g по определению, получаем

∣∣∣∣fk(x)− fk(y)

x− y
− fm(x)− fm(y)

x− y

∣∣∣∣ = |f ′k(ξ) − f ′m(ξ)| ⩽ ε, где

ξ найдётся между x и y. Если при фиксированном k устремить m к +∞, получится неравенство∣∣∣∣fk(x)− fk(y)

x− y
− f(x)− f(y)

x− y

∣∣∣∣ ⩽ ε.

Оно же переписывается в виде
fk(x)− fk(y)

x− y
− ε ⩽

f(x)− f(y)

x− y
⩽
fk(x)− fk(y)

x− y
+ ε. Теперь при

фиксированном x устремим y → x. Получим f ′k(x) ⩽ lim
y→x

f(x)− f(y)

x− y
⩽ lim

y→x

f(x)− f(y)

x− y
⩽ f ′k(x) +

ε.

Теперь их сходимости fk к ϕ получаем, что ∃N ′ (можно считать N ′ ⩾ N), такое, что ∀k > N ′ :
|fk(x)− ϕ(x)| ⩽ ε.

Таким образом,

ϕ(x)− 2ε ⩽ lim
y→x

f(x)− f(y)

x− y
⩽ lim

y→x

f(x)− f(y)

x− y
⩽ ϕ(x) + 2ε

6.6 Логарифм и экспонента

Определение 6.6.1 (Натуральный логарифм). log : (0,+∞) → R, где log t =
t∫
1

1
x dx.

Подынтегральная функция непрерывна на луче, поэтому в любой точке определение корректно,
интеграл существует.

6.6.1 Свойства

1. log(t1t2) = log(t1) + log(t2), где t1, t2 > 0.

Доказательство.

log(t1t2) =

t1t2∫
1

dx

x
=

t1∫
1

dx

x
+

t1t2∫
t1

dx

x

При замене y = x
t1
второе слагаемое преобразуется к виду

t2∫
1

dy
y .

2. Логарифм строго монотонен, так как (log t)′ = 1
t по теореме Ньютона — Лейбница.

3. log 1 = 0.

4. lim
x→0

log(1+x)
x = log′(1) = 1.

Теорема 6.6.1 (Теорема единственности). Пусть L : (0,+∞) → R — непрерывная функция, причём
L(t1t2) = L(t1) + L(t2), причём ∃x̸=0 : L(x ̸=0) ̸= 0.

Тогда ∃C ̸= 0 : ∀x > 0 : L(t) = c · log(t).

Доказательство.
L(1) = L(1 · 1) = L(1) + L(1) ⇒ L(1) = 0

Заметим, что L дифференцируема...
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