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Глава 1

Наивная теория множеств

1.1 Множества. Отношения и операции

Множества бывают конечные (с n ∈ N0 элементами) и бесконечные.

Конечные множества можно задать перечислением {1, 3, 8, 21} или свойством {x|ϕ(x)}, например,
{x|x — чётное натуральное}.

Равенство A = B ⇐⇒ ∀x : (x ∈ A ⇐⇒ x ∈ B).

Включение A ⊂ B ⇐⇒ ∀x : (x ∈ A⇒ x ∈ B).

Пересечение A ∩ B = {x|x ∈ A ∧ x ∈ B}. Ассоциативно и коммутативно. Дистрибутивно относи-
тельно △.

Объединение A ∪B = {x|x ∈ A ∨ x ∈ B}. Ассоциативно и коммутативно.

Разность A ∪B = {x|x ∈ A ∧ x /∈ B}.

Симметрическая разность A△B def
= (A\B) ∪ (B\A). Ассоциативно и коммутативно.

Дополнение A∁ def= U\A, если все рассматриваемые множества содержатся в унивёрсуме U .

Булеан — множество всех подмножеств A. Обозначается P(A) = 2A = {X|X ⊂ A}.

1.1.1 Отношения

Декартово произведение A × B = {(a, b)|a ∈ A ∧ b ∈ B}. Подмножества R ⊂ A × B называются
бинарными отношениями между A и B. Запись (a, b) ∈ R иногда упрощают до aRb. Так, типичным
отношением является «<». Тогда пишут a < b.

Композиция отношений R (между A и B) и S (между B и C):

S ◦R = {(a, c) ∈ A× C|∃b ∈ B : ((a, b) ∈ R ∧ (b, c) ∈ S)}

R−1 = {(b, a)|(a, b) ∈ R};R−1 ⊂ B ×A — обратное отношение.
(
R−1

)−1
= R.

dom(R) = {a|∃b : (aRb)} — область определения R.

rng(R) = {b|∃a : (aRb)} — область значений R.

Образ R(A′) = {b ∈ B|∃a ∈ A′ : aRb} для A′ ⊂ A.

Прообраз R−1(B′) = {a ∈ A|∃b ∈ B′ : aRb} для B′ ⊂ B.

R является функциональным отношением ⇐⇒ ∀a, b, b′ : ((aRb) ∧ (aRb′)) ⇒ b = b′).
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R — функция, если оно функционально, и dom(R) = A. В таком случае пишут R(a) = b для того
единственного b ∈ B : aRb.

Можно подчеркнуть, что R — тотальная функция, а если dom(R) ̸= A, и R :⊂ A → B, то это
частичная функция.

Функция называется инъекцией, если ∀a, a′ ∈ A : a ̸= a′ ⇒ f(a) ̸= f(a′).

Функция называется сюръекцией, если rng(f) = B.

Функция называется биекцией, если она одновременно является и сюръекцией, и инъекцией.

Типы внутренних бинарных отношений R ⊂ A×A

Рефлексивность ∀a ∈ A : aRa.

Антирефлексивность ∀a ∈ A : !(aRa).

Симметричность ∀a, b ∈ A : aRb ⇐⇒ bRa.

Антисимметричность ∀a, b ∈ A : ((aRb) ∧ (bRa)) ⇒ a = b.

Транзитивность ∀a, b, c ∈ A : (aRb) ∧ (bRc) ⇒ aRc.

Предпорядок — отношение с рефлексивностью и транзитивностью. Обозначается ⩽,⪯,⊆,⊑.

Частичный порядок — антисимметричный предпорядок.

Строгий порядок — антирефлексивность и транзитивность. Обозначается <,≺,⊂,<.

Эквивалентность — рефлексивность, симметричность, транзитивность. =,≡,≈,∼=,≃.

Классы эквивалентности

Рассмотрим некое множество A и отношение эквивалентности на нём ≡.

Пусть [ ] : A → 2A, a 7→ [a], где [a] = {x ∈ A|x ≡ a} — класс эквивалентности, (порождённый
элементом | элемента) a.

Предложение: классы эквивалентности образуют разбиение A, т. е. ∀a ∈ A : [a] ⊂ A ∧ [a] ̸= ∅, а
кроме того ∀x, y ∈ A : ([x] = [y]) ∨ ([x] ∩ [y] = ∅) и ∪

a∈A
[a] = A.

Доказательство. [a] ̸= ∅, так как a ∈ [a]. По этой же причине
(

∪
a∈A

[a]

)
⊃

(
∪
a∈A

a

)
⊃ A, но так

как ∀a ∈ A : [a] ⊂ A, то ∪
a∈A

[a] = A.

Если a ≡ b, то ∀x ∈ [a] : x ∈ [b], (так как раз a ≡ x, то по транзитивности b ≡ x).

Если же a ̸≡ b, то [a] ∩ [b] = ∅. От противного: пусть ∃x ∈ A : x ∈ [a] ∧ x ∈ [b]. Тогда по
транзитивности a ≡ b, противоречие.

Фактор множества A по отношению эквивалентности ≡ обозначается A/≡.

A/≡
def
= {s ⊂ A|∃a ∈ A : s = [a]}.

Лекция II
13 сентября 2022 г.
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1.2 Мощность множества. Сравнение мощностей

О мощности множества можно думать, как о количестве его элементов. Однако непонятно, как
быть с бесконечными множествами.

Определение 1.2.1 (Равномщность). A и B равномощны — A ≃ B — если существует биекция
f : A→ B.

1.2.1 Свойства отношения равномощности

Отношение рефлексивно, симметрично, транзитивно.

A ≃ A, так как id — искомая биекция.

A ≃ B ⇒ B ≃ A, так как существование биекции f : A → B влечёт существование обратной
биекции f−1 : B → A.

A
f
≃ B ∧B

g
≃ C ⇒ A

f◦g
≃ C.

Таким образом, ≃ является отношением эквивалентности, но ввести фактор множества всех мно-
жеств нельзя, так как множества всех множеств не существует.

Определение 1.2.2. Множество A не превосходит по мощности множество B (A ⪯ B), если
существует инъекция f : A→ B.

Теорема 1.2.1 (Теорема Кантора — Шрёдера — Бернштейна). A ⪯ B ∧B ⪯ A⇒ A ≃ B.

Доказательство. Пусть A
f→ B

g→ A — две инъекции.

Пусть h = f ◦ g. Как композиция инъекций, она является инъекцией.

Пусть


A0 = A

A1 = g(B)

A2 = h(A)

Заметим, что A2 ⊆ A1 ⊆ A0.

A1 ≃ B, потому что g : B → A1 — биекция.

Аналогично h : A0 → A2 — биекция.

Утверждается, что достаточно доказать, что A0 ≃ A1.

Определим бесконечную последовательность An+2 = h(An). Из этого определения видно, что
An+1 ⊆ An и множества, равномощные A0 — с чётными номерами, а равномощные A1 — с
нечётными.

Пусть Cn = An\An+1. Нетрудно видеть, что h : C0 → C2 — биекция. Вообще говоря, все C2n рав-
номощны. После этого из картинки видно, что C2n уплотняются, а остальные могут тождественно
перейти в себя. Формальнее,

u : A0 → A1 u(a) =

{
h(a), ∃n ∈ N : a ∈ C2n

a, otherwise

Можно увидеть, что u — искомая биекция.

Определение 1.2.3. Множество A меньше по мощности B (A ≺ B), если{
A ⪯ B

B ̸⪯ A

здесь равносильно⇐⇒

{
A ⪯ B

A ̸≃ B

Теорема 1.2.2 (Теорема Кантора). Для любого множества A: A ≺ 2A.

Доказательство.
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Замечание. Если A — конечно и имеет n элементов, то теорема верна, так как n < 2n для любого
n ∈ N0.

A ⪯ 2A — рассмотрим инъекцию a ∈ A 7→ {a}. Теперь докажем, что A ̸≃ 2A. Предположим
противное: A ≃ 2A. Тогда есть биекция g : A → 2A. Теперь, сходно с диагональным аргументом
для N ̸≃ R, определим [B ⊆ A : B = {a ∈ A|a /∈ g(a)} Очевидно, ∄a ∈ A : B = g(a). Однако
B ⊆ A⇒ B ∈ g(A), противоречие.

1.2.2 Некоторые виды множеств по мощностям

1. Конечные множества. Комбинаторика

2. Счётные множества — множества, равномощные N. Информатика

3. Континуальные множества — множества, равномощные 2N. Матанализ

N
счётное

⊂ Z
счётное

⊂ Q
счётное

⊂ R
континуальное

⊂ C
континуальное

Шкала мощностей

0, 1, 2, 3, . . . , (ω = |N|), . . . , (C = |2N|), . . . ,

Предложение 1.2.1. Для любого бесконечного множества A : N ⪯ A.

Доказательство. Пусть A — бесконечное множество. Тогда ∃a0 ∈ A. Заметим, что A\{a0} тоже
бесконечно. Дальше по индукции мы можем найти an для любого n ∈ N. Таким образом, мы
нашли инъекцию N → A.

Вопрос. Существует ли множество A : N ≺ A ≺ R?

Континуум гипотеза, CH, утверждает, что таких множеств не существует.

Лекция III
20 сентября 2022 г.

Вопрос. Пусть даны множества A и B:

A ≃ B

A ≺ B

B ≺ A

. Правда ли, что другого исхода не бывает?

Наиболее популярная система аксиом утверждает, что всё исчерпывается этими тремя случаями.

1.3 Числовые структуры в теории множеств

1.3.1 Натуральные числа

Определим натуральное число, как мощность конечного множества.

0 := |∅|; 1 := |{∅}|

Сложение: для непересекающихся множеств |A| + |B| = |A| ⊔ |B|, но так как множества могут
пересекаться, то мы можем их сделать искусственно непересекающимися:

|A|+ |B| = |({0} ×A) ∪ ({1} ×B)|

Умножение:
|A| · |B| = |A×B|
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Степень не является основной операцией, но её можно определить красиво:

|A||B| = |AB |

Упорядоченность:

|A| ⩽ |B| def⇐⇒ = A ≺ B

После определения структуры надо доказать свойства (ассоциативность и коммутативность + и
·, дистрибутивность · относительно +, нейтральность 0 и 1, 0 < 1 < 2 < . . . , между соседними
числами нет других чисел, аксиому индукции), но мы этого делать не будем.

Любая структура, удовлетворяющая этим свойствам, изоморфна N.

1.3.2 Целые числа

Построим целые числа из натуральных — (N,+, ·,⩽, 0, 1).

Определим Z = N × N/ ∼, где (a, b) ∼ (c, d)
def⇐⇒ a + d = b + c. Паре (a, b), неформально говоря,

будет соответствовать a− b.

Замечание. Здесь и далее тильда над плюсом: +̃ не имеет никакого отношения к отношению экви-
валентности ∼, она лишь показывает, что данное сложение отличается от сложения в предыдущей
структуре.

[a, b] +̃ [c, d] := [a+ c, b+ d]

[a, b] ·̃ [c, d] := [ac+ bd, ad+ bc]

[a, b] ⩽̃ [c, d] := (a+ d) ⩽ (b+ c)

0̃ := [0, 0]; 1̃ := [1, 0]

После определения операций, и проверки, что эквивалентные пары после равных операций экви-
валентны, надо проверить свойства целых чисел:

Это упорядоченное кольцо, то есть:

+̃, ·̃ ассоциативны и коммутативны; ·̃ дистрибутивна относительно +̃, 0̃ нейтральны относительно
+̃, ·̃,

∀x : ∃y : x+ y = 0

∀x, y, z : x ⩽ y ⇒ x+ z ⩽ y + z

∀x, y, z : x ⩽ y ∧ z > 0 ⇒ xz ⩽ yz

1.3.3 Рациональные числа в теории множеств

Уже есть N ⊂ Z — внутри Z есть подмножество, изоморфное N.

Рассмотрим Q := (Z× (N\{0}))/ ∼, где (a, b) ∼ (c, d)
def⇐⇒ ad = bc.

Теперь введём операции:
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[a, b]+̃[c, d]
def
= [ad+ bc, bd]

[a, b]̃·[c, d] def= [ac, bd]

[a, b] ⩽ [c, d]
def⇐⇒ ad ⩽ bc

0̃ := [0, 1]; 1̃ := [1, 1]

После определения операций, и проверки, что эквивалентные пары после равных операций экви-
валентны, надо проверить свойства рациональных чисел:

Это упорядоченное поле, такое, что любой элемент получается делением целого числа на нату-
ральное.

1.3.4 Вещественные числа в теории множеств

Уже определены N ⊂ Z ⊂ Q.

Определим R := S/ ∼, где S — множество всех последовательностей Коши {qi}i∈N рациональных
чисел: ∀n ∈ N : ∃m ∈ N : ∀i, j ∈ N : i, j > m : (|qi| − |qj |) < 2−n.

{qi} ∼ {ri}
def⇐⇒ lim

i→∞
(qi − ri) = 0

[{qi}] +̃ [{ri}]
def
= [{qi + ri}]

[{qi}] ·̃ [{ri}]
def
= [{qi · ri}]

[{qi}] ⩽̃ [{ri}]
def
= ∃n,m ∈ N : ∀i, j ∈ N : i, j > m : qi − rj < −2−n

0̃ := [{0, 0, . . . }]; 1̃ := [{1, 1, . . . }]

После определения операций, и проверки, что эквивалентные последовательности Коши после
равных операций эквивалентны, надо проверить, что получилось полное упорядоченное поле, (то
есть любое непустое ограниченное сверху множество имеет супремум).

1.3.5 Комплексные числа

Уже определены N ⊂ Z ⊂ Q ⊂ R.

Из аксиом упорядоченного кольца R можно доказать ∄i ∈ R : i2 = −1. Поле комплексных чисел
есть наименьшее расширение поля вещественных чисел, обладающее таким элементом.

Определим C := R× R.

Теперь введём операции

(a, b)+̃(c, d)
def
= [a+ c, b+ d]

(a, b)̃·(c, d) def= (ac− bd, ad+ bc)

0̃ := (0, 0); 1̃ := (1, 0); i = (0, 1)

Можно проверить, что полученная структура — поле, являющееся расширением R (содержит под-
множество, изоморфное R) и содержащее мнимую единицу.
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Глава 2

Аксиоматика Цермело — Френкеля
с аксиомой выбора.

2.1 Противоречивость наивной теории множеств

К сожалению, наивная теория множеств противоречива. Например, вот пример противоречия: y :=
{x|x /∈ x}. Тогда y ∈ y ⇐⇒ y /∈ y.

Лекция IV
21 сентября 2022 г.

2.2 Аксиомы Цермело — Френкеля с аксиомой выбора, ZFC

Множества обозначаются латинскими буквами, переменными: x, y, z, . . . . Для формул ϕ, ψ опреде-

лены также формулы (ϕ ∨ ψ), (ϕ ∧ ψ), (ϕ ⇒ ψ), ((ϕ ⇐⇒ ψ)
def
= (ϕ ⇒ ψ ∧ ψ ⇒ ϕ)),¬ϕ. Также для

получения новых формул пишут ∀xϕ или ∃xϕ.

Запись A = {x|ϕ(x)} определяет не множество, но новый класс, который может не быть множе-
ством. Класс — неформальное понятие о формуле.

Для классов определены булевские операции A ∪B,A ∩B,¬A, что на самом деле просто модифи-
цирует задающие класс формулы. Так, A ∪B = {x|ϕA(x) ∨ ϕB(x)}.

0. Существует хотя бы одно множество. ∃x : x = x. Аксиома не всегда приводится, иногда
опускается.

1. Аксиома объёмности. ∀X,Y : (∀u : (u ∈ X ⇐⇒ u ∈ Y )) ⇐⇒ X = Y .

2. Аксиома (неупорядоченной) пары. ∀u, v : (∃{u, v} = X (это такое обозначение множества) :
∀z : (z ∈ X ⇐⇒ z = u ∨ z = v)).

Определение 2.2.1 (Упорядоченная пара). Упорядоченной парой из элементов x, y называет-

ся множество (x, y)
def
= {x, {x, y}}.

Определение 2.2.2 (Одноэлементное множество). {x} def= {x, x}.

Предложение 2.2.1. (x, y) = (x′, y′) ⇐⇒ x = x′ ∧ y = y′.

3. Аксиома выделения. ∀X,ϕ(u) (ϕ(u) — формула от свободной переменной) : (∃{x ∈ X|ϕ(x)} =
Y : u ∈ Y ⇐⇒ (u ∈ X ∧ ϕ(u))). Пересечение класса со множеством – множество.

Теорема 2.2.1. Существует пустое множество
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Доказательство. Рассмотрим множество из Аксиомы 0, назовём его x, рассмотрим

∅ def
= {u ∈ x|¬(u = u)}. Видно, что ∀x : x ∈ ∅ ⇐⇒ x ̸= x, откуда получаем ∀x : ¬(x ∈ o).

Теорема 2.2.2. Существует разность множеств X\Y .

Доказательство. Определим её, как {u ∈ X|u /∈ Y }.

4. Аксиома объединения. ∀X : ∃Y : (∀z : u ∈ z ∧ z ∈ X ⇒ u ∈ Y ). Аксиома говорит, что
существует множество, содержащее объединение элементов X.

Теорема 2.2.3. Существует объединение элементов X, обозначаемое
( ⋃
z∈X

z

)
.

Доказательство. Рассмотрим для данного X Y из данной аксиомы. Используя аксиому

выделения, получим
( ⋃
z∈X

z

)
def
= {u ∈ Y |∃z ∈ X : u ∈ z}.

Теорема 2.2.4. Существует пересечение элементов X, обозначаемое
( ⋂
z∈X

z

)
Доказательство. Рассмотрим для данного X Y из данной аксиомы. Используя аксиому

выделения, получим
( ⋂
z∈X

z

)
def
= {u ∈ Y |∀z ∈ X : u ∈ z}.

5. Аксиома степени. ∀X : ∃P(X) = 2X : (u ∈ 2X ⇐⇒ u ⊆ X).

Определение 2.2.3 (Подмножество). Y ⊆ X
def⇐⇒ ∀u : (u ∈ Y ⇒ u ∈ X).

Теорема 2.2.5. Для множеств A,B существует множество A×B = {(a, b) | a ∈ A ∧ b ∈ B}.

Доказательство.

• {x} ∈ P(X) ⊆ P(X ∪ Y )

• {x, y} ∈ P(X ∪ Y )

• (x, y) = {x, {x, y}} ∈ P(P(X ∪ Y )).

• X × Y
def
= {z ∈ P(P(X ∪ Y ))|∃x ∈ X, y ∈ Y : z = (x, y)}

6. Аксиома замены.

∀ϕ(u, v) : (∀x, y, y′ : ϕ(x, y)∧ϕ(x, y′) ⇒ y = y′) ⇒ ∀X : (∃Y : (∀u, v : u ∈ X∧ϕ(u, v) ⇒ v ∈ Y ).
Неформальнее, если ϕ — функциональное отношение (быть может не везде определённая
функция), то существует множество, содержащее образ ϕ(X).

Используя аксиому выделения, можно доказать существование множества, являющегося об-
разом ϕ(X).

7. Аксиома бесконечности. ∃Y : (∅ ∈ Y ∧ (∀y : y ∈ Y ⇒ (y ∪ {y}) ∈ Y )).

Несложно видеть, что ∅ ∈ Y, {∅} ∈ Y, {∅, {∅}} ∈ Y, . . .

8. Аксиома фундирования (иногда называется аксиомой регулярности).

∀X : (X ̸= ∅ ⇒ ∃x : (x ∈ X ∧ ∀u ∈ x : u /∈ X)).
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Неформально говоря, для бинарного отношения ∈ на непустом множестве X существует
минимальный элемент внутри X.

Предложение 2.2.2. ∄X : X ∈ X.

Доказательство. Предположим, что существует X ∈ X. Для противоречия рассмотрим
{X}. Из определения {X} единственный Y ∈ {X} — это X. Но тогда противоречие с аксио-
мой фундирования, ведь X ∈ X.

9. Аксиома выбора. ∀X : ∃f : (2X\{∅}) → X : ∀Y ⊆ X : (Y = ∅ ∨ f(Y ) ∈ Y ).

Замечание. Функция f — особое множество пар.

Часто использование аксиомы выбора подчёркивается отдельно, так как она неконструктивна
и из неё подчас следуют странные, контринтуитивные вещи.

Факт 2.2.1. В ZF AC равносильна следующему: ∀ бесконечного A : A ≃ A×A.

Теорема 2.2.6. A ≺ B ∨B ≺ A ∨A ≃ B в ZFC

Доказательство. Будет подальше (раздел 2.5)

Лекция V
22 сентября 2022 г.

2.3 Вполне упорядоченные множества. Ординалы

Пусть (P ;⩽) — частичный порядок: антирефлексивность (x < y ⇐⇒ x ⩽ y ∧ x ̸= y), транзитив-
ность.

Можно писать и (P ;⩽), и (P ;<), так как понятно, как из < получить ⩽, и наоборот (равенство
считаем уже заданным на множестве).

Определение 2.3.1 (Фундированный порядок). P — фундированный порядок, если любое подмно-
жество имеет минимальный элемент: ∀X ⊆ P : ∃x ∈ P : ∄y : y < x.

Определение 2.3.2 (Линейный порядок). Любые два элемента сравнимы: ∀x, y ∈ P :

x < y

y < x

x = y

Определение 2.3.3 (Верхняя граница для множества X ⊆ P ). Такое число y ∈ P : ∀x ∈ X : x ⩽ y.

Определение 2.3.4 (Точная (наименьшая) верхняя граница, supremum). Наименьшее число в
множестве верхних границ. y = supX.

Рассмотрим множествоM =
{
x ∈ Q | x2 < 2

}
в каком-то порядке. Тогда sup(R;⩽)M =

√
2; ∄ sup(Q;⩽)M .

Определение 2.3.5 (Начальный сегмент, задаваемый элементом p). p̂ = {x ∈ P | x < p}.

Пусть (P,<) и (Q,≺) — частичные порядки.

Определение 2.3.6 (Изоморфизм из P на Q). Биекция f : P → Q, такая, что ∀x, y ∈ P :
x < y ⇐⇒ f(x) ≺ f(y).

Определение 2.3.7 (Изоморфность частичных порядков P и Q). Существование изоморфизма из
P в Q.

Факт 2.3.1. Изоморфизм — отношение эквивалентности.

Определение 2.3.8 (Вложение). Инъекция f : P → Q, сохраняющая порядок: ∀x, y ∈ P :
x < y ⇐⇒ f(x) ≺ f(y).

Определение 2.3.9 (Полный порядок или вполне упорядоченное множество (P ;<)). Линейный
фундированный порядок (P ;<): в любом подмножестве есть минимум, все элементы сравнимы.
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2.3.1 Свойства полных порядков

(P ;<) и (Q;≺) ниже — полные порядки.

1. Для любого вложения в себя f : P → P верно: ∀p : p ⩽ f(p).

Доказательство. От противного: ∃p ∈ P : p ̸⩽ f(p). Тогда {p ∈ P | f(p) < p} ≠ ∅, а ещё в
этом множестве есть минимальный элемент p0. Минимальность означает следующее:

∀x ∈ P : x < p⇒ x ⩽ f(x)

Но вложение сохраняет порядок, из f(x) < f(p0) и транзитивности следует ∀x ∈ p̂0 : x <
f(p0) Тогда f(p0) – верхняя грань p̂0. В то же время p0 = sup p̂0, откуда p0 ⩽ f(p0)

2. Никакой полный порядок не может быть изоморфен своему начальному сегменту ∀p ∈ P :
P ≇ p̂.

Доказательство. Допустим, для некоего p существует вложение f : P → p̂. Тогда f(p) < p,
противоречие.

3. Для любых P,Q :

 P ∼= Q

∃p ∈ P : p̂ ∼= Q

∃q ∈ Q : P ∼= q̂

, причём выполняется ровно одно.

Доказательство.

• Если выполняются одновременно первое и ещё какое-то, то вполне упорядоченное мно-
жество изоморфно своему начальному сегменту.

• Если одновременно выполняются второе и третье, то тоже существует вложение из P в
некое несобственное подмножество — композиция изоморфизмов.

• Докажем, что выполняется хотя бы одно.

– Введём отношение f
def
= {(p, q) ∈ P ×Q | p̂ ∼= q̂}. Это отношение функционально:

если f(p, q) и f(p, q′), то q̂ ∼= q̂′, откуда если q ̸= q′, то больший из q и q′ порождает
полный порядок, изоморфный своему начальному сегменту (порождённому меньшим
из q и q′). Аналогично это инъекция. Будем писать f(p) = q; f−1(q) = p.

– Утверждается, что либо dom f = P , либо rng f = Q.

– Заметим, что если p ∈ rng f , то ∀x < p : x ∈ rng f . Рассмотрим некий x < p и
покажем, что действительно ∃y ∈ Q : x̂ ∼= ŷ.

Известно, что p̂
fp∼= q̂. Пусть данный изоморфизм переводит x в y = fp(x) (y ∈ Q).

Утверждается, что x̂ ∼= ŷ. Ну, в самом деле, ∀a < x : fp(a) < fp(x) — изоморфизм со-
храняет порядок; ∀b ≺ y : f−1

p (b) < f−1
p (y) — обратный изоморфизм тоже сохраняет

порядок.

– Аналогично если q ∈ dom f , то ∀y ≺ q : y ∈ dom f .

– Предположим противное: dom f ⊊ P . Пусть p — наименьший элемент P\(dom f)
(существует из-за фундированности). Аналогично, q — наименьший элемент, такой,
что q /∈ rng(f). Заметим, что p̂ = dom f ; q̂ = rng f .

Утверждается, что f : p̂ → q̂ — изоморфизм, так как для любых p1, p2 : p1 < p2 < p
изоморфизм, переводящий p̂2 в q̂2, переводит p1 в некий q1 : q1 ≺ q2. Значит, порядок
сохраняется.

Но тогда получается p̂ ∼= q̂, противоречие.
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– Итак, dom f = P ∧ rng f = Q. В любом случае мы нашли изоморфизм между одним
порядком, и подмножеством другого. А подмножество — начальный сегмент: уже
доказано, что dom f и rng f каждый если не совпадают с порядком, то являются
начальными сегментами.

Лекция VI
4 октября 2022 г.

Комментарии к пункту 3 из предыдущей лекции: Для доказательства достаточно рассмотреть три
случая: Хотя я пока не очень понимаю, почему недостаточно того, что написано выше

1. P,Q не имеют наибольшего элемента. Этот случай, как сказано на лекции, полностью по-
крывается приведённым выше доказательством

2. Ровно один порядок, без потери общности, P — содержит наибольший элемент. Тогда у него
есть несколько, из-за фундированности — конечное число — предшественников p0, p1, . . . , pn,
таких, что p̂n не имеет наибольшего элемента.

3. И P , и Q содержат наибольший элемент. . . .

Замечание. Фундированное множество — именно то множество, на котором можно использовать
метод математической индукции. Для полного порядка (P ;<) определим множество A ⊆ P , такое,
что

∀p ∈ P : (p̂ ⊆ A⇒ p ∈ A) ⇒ A = P

Доказательство. От противного — найти минимальный элемент в P\A.

2.3.2 Ординалы

Определение 2.3.10 (Транзитивное множество S). ∀x, y : (x ∈ y ∧ y ∈ S) ⇒ x ∈ S.

Определение 2.3.11 (Ординал или порядковое число). Такое транзитивное множество S, что

∀x, y ∈ S :

x ∈ y

y ∈ x

x = y

(2.1)

Несложно видеть, что из-за аксиомы фундированности (регулярности) возможно лишь одно из
трёх.

Обозначим ординалы греческими буквами α, β, . . . , и класс ординалов обозначим Ord.

Пусть < — сужение отношения ∈ на Ord. Иначе говоря, для a, b ∈ Ord вместо a ∈ b будем (иногда)
писать a < b.

Свойства ординалов

1. x ∈ α⇒ x ∈ Ord

Доказательство. ∀u ∈ v ∈ x : так как α — ординал, то u, v ∈ α, и для u, v выполняется конъ-
юнкция (2.1). Кроме того, она выполняется для u и x, откуда u ∈ x (остальные альтернативы
— x ∈ u ∨ x = u — вызывают противоречие с фундированностью).

2. α = {β|β < α}.

Доказательство. Оставлю, как упражнение.

3. Вполне упорядоченные множества изоморфны (α,<) ∼= (β,<), если и только если они равны
α = β.
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Доказательство.

⇐. Очевидно

⇒. (α,<) ∼= (β,<) ⇒ ∃ биекция f : α→ β. Докажем, что ∀x ∈ α : x = f(x).

Пусть, это не так. Возьмём наименьшее x ̸= f(x). Тогда ∀z < x : f(z) = z.
x = {z ∈ α|z < x}. С другой стороны, f(x) = {f(z) | z ∈ α ∧ z < x}, откуда
x = f(x), противоречие.

Но тогда получается, что α ⊆ β, а по симметрии — α = β.

4. α < β ∨ β < α ∨ α = β.

Доказательство. Вытекает из теоремы о вполне упорядоченных множеств и предыдущего
свойства.

5. α ⩽ β ⇐⇒ α ⊆ β

Доказательство. Докажем, что α ∈ β ⇐⇒ α ⊊ β. В правую сторону очевидно, ∀x ∈ α : x ∈
β из транзитивности. Но α ̸= β, откуда α ⊊ β. В левую сторону — α ∈ (β\α), минимальный
элемент разности.

Определение 2.3.12 (Наименьший ординал, больший α). α+ 1
def
= α ∪ {α}. Несложно пока-

зать, что α ∪ {α} — ординал, проверить транзитивность и конъюнкцию (2.1).

6. ∄β ∈ Ord : α < β < α+ 1.

Доказательство. От противного: β ∈ α ∪ {α}. Либо α = β, либо противоречие с аксиомой
фундированности, так как α ∈ β.

7. Любое множество ординалов A вполне упорядоченно отношением < (из п. 4), причём
⋃
A =

supA.

Доказательство.

• Любые два ординала сравнимы, причём если ординалы x, y, z ∈ A и x ∈ y ∈ z, то x ∈ z.

•
⋃
A — ординал. Проверим транзитивность: x ∈ y ∈

⋃
A. Но тогда ∃α ∈ A : y ∈ α. Тогда

x ∈ α по транзитивности, откуда x ∈
⋃
A.

• Покажем, что
⋃
A — верхняя граница A по отношению <. ∀α ∈ A : α ⩽

⋃
A. Это всё

равно, что α ⊆
⋃
A.

• Покажем, что
⋃
A = supA — наименьшая верхняя граница. Покажем, что для любой

верхней границы β :
⋃
A ⩽ β. Это верно, так как ∀α ∈ A : α ⊆ β.

8. Класс Ord не является множеством.

Доказательство. Пусть, является. Тогда α :=
⋃
Ord = supOrd — наибольший ординал. Но

тогда рассмотрим α+ 1.

9. Любое вполне упорядоченное множество изоморфно единственному ординалу.

Доказательство. Единственность очевидна, так как изоморфные ординалы равны.

Рассмотрим вполне упорядоченное множество (P ;<). Сначала заметим, что ∀p ∈ P : ∃α ∈
Ord : p̂ ∼= α. Это верно из принципа наименьшего элемента во вполне упорядоченных множе-
ствах — для минимального p такого, что ∄α ∼= p̂ подойдёт ординал

⋃
{α ∈ Ord | ∃q ∈ p̂ : α ∼= q̂}.

Теперь рассмотрим M = {α|∃p ∈ P : α ∼= p̂}. Это множество по аксиоме замены. Но тогда⋃
M ∼= P .
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Лекция VII
11 октября 2022 г.

Типы ординалов

0. Нулевой ординал ∅.

1. Последовательные ординалы (последователи) — ординалы вида {α}+ 1

2. Предельные ординалы — все остальные ординалы

Определение 2.3.13 (Натуральное число). Непредельный ординал, все элементы которого также
не являются предельными. Множество натуральных чисел обозначается ω = {0, 1, 2, . . . }.

Предложение 2.3.1. Множество ω существует.

Доказательство. По аксиоме бесконечности ∃X : (∅ ∈ X ∧ ∀x ∈ X : (x ∪ {x}) ∈ X)).

Заметим, что 0 = ∅ ∈ X.

Теперь заметим, что 1 = {0} ∪∅ ∈ X.

Можно доказать по индукции, что любое натуральное число содержится в X.

Теперь воспользуемся аксиомой выделения, получим множество натуральных чисел

ω = {x ∈ X | x — натуральное}

Определение 2.3.14 (Конечное множество). Множество, равномощное некоторому натуральному
числу.

Шкала ординалов

0, 1, . . . , ω, ω + 1, (ω + 2 = (ω + 1) + 1), . . . , (ω · 2 = ω + ω), ω · 2 + 1, . . . , ω · 3, . . . , ω · ω, . . .

Теорема 2.3.1 (О рекурсивных определениях по ординалам). Для любой функции-класса G :
V → V , где V — класс всех множеств, ∃! функция-класс F : Ord → V : F (α) = G

(
F
∣∣
α

)
,

где F
∣∣
α
— функция, ограниченная на α, а именно, F

∣∣
α

def
= {(β, y) ∈ F | β < α}. Напоминание:

F (x) = y
def⇐⇒ (x, y) ∈ F

Доказательство.

• Единственность: пусть существуют две такие функции F, F ′. Утверждается, что ∀α ∈ Ord :
F (α) = F ′(α). Предположим, что это не так, возьмём наименьшее α такое, что это не так.
Тогда F

∣∣
α
= F ′

∣∣
α
, откуда F (α) = F ′(α) = G

(
F
∣∣
α

)
, противоречие.

• Существование: рассмотрим некоторый класс функций

C =
{
f : α→ V | α ∈ Ord∧(∀β < α : f(β) = G

(
f
∣∣
β

)}
Заметим, что если f, f ′ ∈ C, то f ⊆ f ′ ∨ f ′ ⊆ f . Утверждается, что искомая функция-класс

F =
⋃
C

В самом деле, можно заметить, что если некое α /∈ domF , то найдётся функция H, такая,

что domH = α+ 1, определённая так: H(β) =

{
F (β), β < α

G
(
F
∣∣
β

)
, β = α

.

15



2.4 Эквивалентные формулировки аксиомы выбора

2.4.1 О наибольшем и максимальном элементах в (X,<)

Определение 2.4.1 (Наибольший элемент). Элемент x ∈ X такой, что ∀y ∈ X : y ⊑ x.

Определение 2.4.2 (Максимальный элемент в (X,<)). Элемент x ∈ X такой, что ∄y : x < y.

В слове наибольший есть подстрока «больший», этот элемент, в отличие от максимального, дей-
ствительно больше остальных.

2.4.2 Формулировки

Теорема 2.4.1 (Лемма Цорна, принцип максимального элемента). Если в частичном порядке
(X,<) любое линейно-упорядоченное множество (любая цепь) имеет верхнюю границу, то в X
имеется максимальный элемент.

Теорема 2.4.2 (Теорема Цермело, принцип полного упорядочивания). Любое множество A можно
вполне упорядочить:

∃ бинарное отношение R ⊆ A×A : (A,R) — вполне упорядоченное множество

Теорема 2.4.3. Из аксиом ZF следует эквивалентность следующих утверждений:

1. Аксиома выбора, AC.

2. Лемма Цорна, ZL.

3. Теорема Цермело, ZT .

Доказательство.

• AC ⇒ ZL.

Рассмотрим некоторое частично-упорядоченное множество (X,<), в котором любая цепь
ограничена сверху. Докажем, что есть максимальный элемент от противного.

∀x ∈ X : ∃y ∈ X : x < y. Рассмотрим L = {L ⊆ X | (L,<) — лум}. Определим B(L) =
{y | ∀x ∈ L : (x < y)}. Из посылки теоремы: {y | ∀x ∈ L : (x ⊑ y)} ≠ ∅; пусть его элемент y.
Тогда B(L) ̸= ∅ тоже, так как для y существует y′ : y < y′, такой y′ уже строго больше всех
элементов из L.

Заметим, что B : L →
(
2X\{∅}

)
. Также, по аксиоме выбора, есть функция f :

(
2X\{∅}

)
→ X.

Рассмотрим композицию этих функций g = f ◦ B : g(L) = f(B(L)). Тогда заметим, что
∀L ∈ L,∀x ∈ L : x < g(L).

Пусть x0 = g(∅);x0 ∈ X. Фактически, x0 — любой элемент из X. Построим некоторую
функцию F по рекурсии. Для этого сначала скажем, что

G : V → V,G(z) =

{
g(rng(z)), z — бинарное отношение (множество пар), и rng(z) ∈ L

x0, иначе

Теперь определим F : Ord → X; F (α) = g
(
rng

(
F
∣∣
α

))
= g({F (β)|β < α}). Здесь я пишу

первую строчку из определения G, так как доказуемо для всех α ∈ Ord : F (α) ∈ L. За-
метим, что F — инъекция, так как разные ординалы переходят в разные элементы. Отсюда
F−1 : X → Ord — сюръекция. Тогда по аксиоме замены класс Ord является множеством,
противоречие.

• ZL⇒ ZT .

Пусть A — любое множество. Рассмотрим множество

X = {f : α→ A | (α ∈ Ord) ∧ (f — инъекция)}
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Удостоверимся, что X — множество: рассмотрим другое множество

Y = {(P ;<) | P ⊆ A и (P ;<) — полный порядок}

Y является множеством, так как Y ⊆ 2A×(A×A). Тогда утверждается, что всякому элементу
Y соответствует ровно один ординал αp. Несложно видеть, что тогда только множество этих
{αp} может быть областью определений функций из X.

Утверждается, что для (X,⊆) применима лемма Цорна: любое линейно-упорядоченное под-
множество в X ограничено сверху. В самом деле, для L ∈ X :

⋃
L ∈ X и

⋃
L — верхняя

граница. Значит, существует максимальный элемент в X. Обозначим (u : α → A) — макси-
мальный элемент в (X,⊆).

Докажем, что u — ещё и сюръекция: пусть существует y ∈ X, такой, что u−1(y) = ∅. Но

тогда рассмотрим u′ : (α + 1) → A; u′(β) =

{
u(β), β < α

y, β = α
, противоречие с максимально-

стью u. Отсюда u : α → A — биекция. Тогда определим полный порядок на множестве A
следующим образом: a < b ⇐⇒ u−1(a) < u−1(b).

• ZT ⇒ AC

Докажем, что для любого X : ∃f :
(
2X\{∅}

)
→ X, такая, что f(S) ∈ S. Для этого всего лишь

найдём полный порядок по теореме Цермело, после чего возьмём минимальный элемент,
пользуясь нашей операцией сравнения.

Лекция VIII
18 октября 2022 г.

2.5 Сравнимость мощностей, шкала кардиналов, кумулятив-
ная иерархия

Теорема 2.5.1. Для любых множеств A и B выполняется ровно одно из условий:

A
∼= B

A ≺ B

B ≺ A

Доказательство. Мы уже удостоверялись, что любые два условия не могут выполняться одно-
временно.

По теореме Цермело, любое множество можно вполне упорядочить. Тогда рассмотрим полные
порядки (A;<A) И (B;<B).

Но тогда выполняется ровно одно из следующих условий:

 A ≃ B

∃!q ∈ B : A ≃ q̂

∃!p ∈ A : B ≃ p̂

Отсюда очевидно, что есть либо инъекция из A в B, либо — наоборот — инъекция из B в A, либо
вдруг даже биекция.

Определение 2.5.1 (Мощность). Мощность |A| множества A — наименьший ординал, изоморф-
ный A.

Определение 2.5.2 (Кардинал). Ординал, не равномощный никакому меньшему ординалу. Класс
всех кардиналов обозначается Card.

Замечание. ω + 1 ≃ ω ∪ {ω} — тоже счётное множество; ω + 1 — не является кардиналом. Более
того, ω + ω и даже ω · ω не являются кардиналами, они все счётны.

ω1 — наименьший несчётный ординал. Из аксиом ZFC не ясно, континуален ли ω1.
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Определение 2.5.3 (Следующий кардинал). Для кардинала κ существует κ+ — наименьший
ординал, больший κ.

Определим F , используя рекурсию по ординалам: F (α) =


0, α = 0

F (β)+, α = β + 1

sup
γ<α

F (γ), α — предельный ординал

Несложно видеть, и несложно доказать по индукции, что F (α) = α для любого конечного α ∈ ω.
F (ω) = ω, F (ω + 1) = ω+ = ω1, F (ω + ω) = sup{ω, ω+, (ω+)+, . . . }. . .

Предложение 2.5.1. Функция F — функция-класс, устанавливающая изоморфизм между клас-
сом ординалов (Ord, <) и классом кардиналов (Card, <).

Доказательство. Заметим, что F возрастает, а именно, ∀α < β : F (α) < F (β). Это несложно
проверить.

• Докажем по индукции, что F (α) — кардинал для всякого α ∈ Ord. Достаточно убедиться
про F (α), где α — предельный, остальное очевидно. От противного: пусть F (α) ∼= δ, где δ —
кардинал, меньший F (α). Есть два случая:

– ∀ψ < α : F (ψ) < δ. В таком случае F (α) = sup
ψ<α

F (ψ) ⩽ δ и никак не может быть больше

δ.

– ∃ψ < α : F (ψ) ⩾ δ. Так как α — предельный, то ψ + 1 < α тоже. Но F (ψ) ≺ F (ψ + 1),
откуда F (α) ≺ F (ψ + 1). Тогда получаем противоречие, ведь очевидно, что мощность
|F (. . . )| возрастает по мере возрастания аргумента.

• Теперь проверим, что всякий ординал лежит в образе F . Опять же пойдём от противного:
пусть наименьший ординал, не достигающийся функцией, равен δ.

Все меньшие достигались, обозначим M за прообраз всех меньших ординалов.

Покажем, что F (σ) = δ, где σ — наименьший элемент, не лежащий в M.

– Если σ — предельный, то F (σ) = sup
ξ<σ

F (ξ), что не больше δ.

– Иначе σ = ξ + 1 для некоего ординала ξ. F (ξ) < δ, значит по определению F (σ) ⩽ δ.

Но σ /∈ M, значит, F (σ) = δ.

2.5.1 Шкала бесконечных кардиналов

{ℵα}α∈Ord
def
= F (ω + α).

Определение 2.5.4 (Сумма ординалов). Сумма ординалов α+ β — ординал, изоморфный полному
порядку (P ;<), где P = (α× {0}) ∪ (β × {1}) и

(x, i) < (y, j) ⇐⇒

{
x < y, i = j

i < j, i ̸= j

По сути, мы пририсовали к α справа β и рассмотрели это как новый полный порядок.

2.5.2 Кумулятивная иерархия

Определим рекурсией по ординалам {Vα}α∈Ord:

Vα =


0, α = 0

2F (β), α = β + 1⋃
γ<α Vγ , α — предельный ординал
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Эта последовательность Vα — кумулятивная иерархия

Теорема 2.5.2 (Фон Нейман). Всякое множество встретится в V :
⋃
α∈Ord = V , где V — множе-

ство всех множеств.

2.5.3 Арифметика кардиналов

κ+ — наименьший кардинал, больший κ

κ + λ
def
= |{{0} × κ} ∪ {{1} × λ}|

κ · λ def
= |κ × λ|

κλ def
= |{f : κ → λ}|

Свойства

1. Сложение и умножение коммутативны и ассоциативны

2. Умножение дистрибутивно относительно сложения

3. 0, 1 — нейтральны относительно понятно чего

4. (κ · λ)µ = κµ · λµ

5. (κλ)µ = κ(λ·µ)

6. Нетривиальное свойство, с доказательством от Хаусдорфа: (κ+)λ = κ+ · κλ

7. ℵα + ℵβ = ℵα · ℵβ = max{ℵα,ℵβ}. Часть про произведение равносильно аксиоме выбора.

8. α ⩽ β ⇐⇒ ℵℵβ
α = 2ℵβ

Видимо, первые 5 считаются очевидными, остальные — нетривиальными. Как бы то ни было, на
лекции не было ни одного доказательства. . .

2.5.4 Арифметика ординалов

Сумма ординалов уже определена выше.

Произведение ординалов: α · β = (P,<), где P = α× β и

(a, b) < (a′, b′) ⇐⇒ (b < b′) ∨ (b = b′ ∧ a < a′)

Также операции можно определить рекурсивно:

α+ β =


α, β = 0

(α+ γ) + 1, β = γ + 1

sup
γ<β

α+ γ, β — предельный

α · β =


0, β = 0

(α · γ) + α, β = γ + 1

sup
γ<β

α · γ, β — предельный

αβ =


1, β = 0

(αγ) · α, β = γ + 1

sup
γ<β

αγ , β — предельный
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Свойства

1. +, · не коммутативны, но ассоциативны.

2. · дистрибутивно слева относительно + (но не справа).

3. 0, 1 нейтральны относительно ·,+.

4. αβ · αγ = αβ+γ .

5. (αβ)γ = α(β·γ).
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