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Глава 1

Вычислительная линейная алгебра

Лекция I
14 февраля 2023 г.

1.1 Элементарные преобразования

Пусть R — ассоциативное кольцо с единицей. Займёмся изучением некоторых особенных видов
(пока квадратных) матриц M(n,R).

1.1.1 Элементарные трансвекции

Определение 1.1.1 (Элементарная трансвекция). ti,j(ξ) = e + ξ · ei,j для i ̸= j, ξ ∈ R. Иными
словами, матрица вида

j

i



1 0
. . . ξ

. . .
0 1



Определение 1.1.2 (Элементарные преобразования первого типа, или трансвекции). Группа по
умножению, порождённая элементарными трансвекциями.

В частности, t1,2(ξ) =
(
1 ξ
0 1

)
, t2,1(ξ) =

(
1 0
ξ 1

)
.

Лемма 1.1.1 (Аддитивность трансвекций по ξ). ti,j(ξ) · ti,j(ζ) = ti,j(ξ + ζ). Иными словами,
ti,j : R→ GL(n,R) — гомоморфизм для любых 1 ⩽ i ̸= j ⩽ n.

Доказательство. Посчитаем ti,j(ξ) · ti,j(ζ). Это можно сделать так:

(e+ ξei,j)(e+ ζei,j) = e+ ξei,j + ζei,j + ξζei,jei,j , последнее слагаемое 0, так как i ̸= j.

а можно так: (
1 ξ
0 1

)
·
(
1 ζ
0 1

)
=

(
1 ξ + ζ
0 1

)
Последняя выкладка работает и для матриц произвольного размера, так как в вычислении на
самом деле используются лишь 2 различных индекса — i и j. При замене из на 1 и 2 ничего не
поменяется, так как определение умножения не опирается на порядок строк или столбцов.
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Такой трюк позволяет компактно записывать вычисления с большими матрицами, мало отличаю-
щимися от нейтральной e.

Следствие 1.1.1. ti,j(ξ)−1 = ti,j(−ξ), откуда ti,j(ξ) ∈ GL(n,R)
def
= M(n,R)∗.

Лемма 1.1.2 (Коммутационная формула Шевалле). Мультипликативный коммутатор двух транс-
векций — часто трансвекция:

[ti,j(ξ), th,k(ζ)] =


ti,k(ξζ), i ̸= k ∧ j = h

th,j(−ζξ), i = k ∧ j ̸= h

e, i ̸= k ∧ j ̸= h

что-то, i = k ∧ j = h

(Мультипликативный коммутатор [x, y]
def
= xyx−1y−1)

Доказательство. Можно тупо записать огромные формулы:

[ti,j(ξ), th,k(ζ)] = ti,j(ξ) · th,k(ζ) · ti,j(−ξ) · tk,h(−ζ) = (e+ ξei,j)(e+ ζeh,k)(e− ξei,j)(e− ζeh,k) =
= · · · = e+ ξζδj,hei,k − ζξδk,ieh,j + ζξζδk,iδj,heh,k − ξζξδj,hδk,iei,j + ξζξζδj,hδk,iδj,hei,k

Какая боль это писать. . . И ведь никто не прочитает и не проверит. . . Прошу прощения, был
неправ.

Члены с коэффициентами вида ξ2 или ξ2ζ, то есть те, где есть квадрат чего-то, точно обнуляются,
так как по определению трансвекции i ̸= j, k ̸= h. Имея записанное, проверить, что лемма говорит
правду — легко.

(Ещё можно поумножать матрицы 3× 3 или 4× 4 — тут ещё разбор случаев, когда какие индексы
совпадают. Кайф)

1.1.2 Элементарные псевдоотражения

Определение 1.1.3 (Элементарное псевдоотражение). Матрица вида di(ε) = e + (ε − 1)ei,i, где
i ̸= j, ε ∈ R∗. Иными словами, матрица вида

i

i


1 0

ε
. . .

0 1



Определение 1.1.4 (Элементарные преобразования второго типа, или псевдоотражения). Группа
по умножению, порождённая элементарными псевдоотражениями.

Лемма 1.1.3 (Мультипликативность псевдоотражений по ε). di(ε)di(θ) = di(εθ). Иными словами,
di : R

∗ → GL(n,R) — гомоморфизм для любого 1 ⩽ i ⩽ n.

Доказательство. Здесь есть всего один индекс, умножим матрицы 1× 1:
(
ε
)
·
(
θ
)
=
(
εθ
)
.

Следствие 1.1.2. di(ε)−1 = di(ε
−1), откуда di(ε) ∈ GL(n,R).

Замечание. Псевдоотражения — подгруппа обратимых элементов в диагональных матрицах

diag(a1, . . . , an)
def
=

a1 0
. . .

0 an


Так как умножаются диагональные матрицы покомпонентно, то справедливость (лемма 1.1.3) оче-
видна ещё и с другой стороны.
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Лемма 1.1.4. [di(ε), dj(θ)] =

{
di([ε, θ]), i = j

e, i ̸= j
— в частности, псевдоотражения с разными

индексами коммутируют, а с одинаковыми — коммутируют, если коммутируют параметры.

Лемма 1.1.5. di(ε)tj,k(ξ)di(ε)−1 =


tj,k(εξ), i = j

tj,k(ξε
−1), i = k

tj,k(ξ), иначе
.

Доказательство.

Если i = j = 1 ∧ k = 2, то(
ε 0
0 1

)
·
(
1 ξ
0 1

)
·
(
ε−1 0
0 1

)
=

(
ε 0
0 1

)
·
(
ε−1 ξ
0 1

)
=

(
1 εξ
0 1

)
Если i = k = 1 ∧ j = 2, то(

ε 0
0 1

)
·
(
1 0
ξ 1

)
·
(
ε−1 0
0 1

)
=

(
ε 0
0 1

)
·
(
ε−1 0
ξε−1 1

)
=

(
1 0

ξε−1 1

)
Наконец, если i ̸= j, k, то домножение на псевдоотражение справа домножит i-й столбец на ε−1,
слева — i-ю строчку на ε, так как единственный ненулевой элемент в них — 1 на пересечении, то
tj,k(ξ) останется прежней.

1.1.3 Действия элементарных преобразований на матрицах

Лемма 1.1.6. Элементарная трансвекция действует на матрицу x слева следующим образом:

th,k(ξ) ·


x1,∗
...

xh,∗
...

xn,∗

 =


x1,∗
...

xh,∗ + ξxk,∗
...

xn,∗


Лемма 1.1.7. Элементарное псевдоотражение действует на матрицу x слева следующим об-
разом:

dh(ε) ·


x1,∗
...

xh,∗
...

xn,∗

 =


x1,∗
...

εxh,∗
...

xn,∗


Лемма 1.1.8. Элементарная трансвекция действует на матрицу x справа следующим обра-
зом: (

x∗,1 . . . x∗,h . . . x∗,n
)
· th,k(ξ) =

(
x∗,1 . . . x∗,h + x∗,kξ . . . x∗,n

)
Лемма 1.1.9. Элементарное псевдоотражение действует на матрицу x справа следующим
образом: (

x∗,1 . . . x∗,h . . . x∗,n
)
· dh(ε) =

(
x∗,1 . . . x∗,hε . . . x∗,n

)
Определение 1.1.5 (Элементарная подгруппа). E(n,R)

def
= ⟨ti,j(ξ)|ξ ∈ R, 1 ⩽ i ̸= j ⩽ n⟩ ⩽ GL(n,R)

— подгруппа в группе обратимых матриц, состоящая из трансвекций.

Используя D(n,R) как подгруппу в GL(n,R), состоящую из обратимых диагональных матриц,
можно ввести определение:
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Определение 1.1.6 (Полная элементарная подгруппа). GE(n,R)
def
= ⟨E(n,R), D(n,R)⟩ ⩽ GL(n,R)

— подгруппа в группе обратимых матриц, порождённая трансвекциями и псевдоотражениями.

Факт 1.1.1. GE(n,R) = E(n,R) ·D(n,R).

Доказательство. Всякий элемент g ∈ GE(n,R) по определению представим в виде e1d1 . . . emdm,
где ei ∈ E(n,R), di ∈ D(n,R). Согласно (лемма 1.1.5) diei+1d

−1
i ∈ E(n,R), то есть можно посте-

пенно перекидывать элементы из E(n,R) в начало произведения.

Лекция II
15 февраля 2023 г.

Положим за di,j(ε)
def
= di(ε)dj(ε

−1), где i ̸= j, ε ∈ R∗.

Теорема 1.1.1. di,j(ε) является произведением 4 элементарных трансвекций.

Доказательство. Будем двигаться назад: чтобы получить
(
1 0
0 1

)
из
(
ε 0
0 ε−1

)
, добавим

• первую строчку ко второй с коэффициентом ε−1,

• вторую строчку к первой с коэффициентом 1− ε,

• первую строчку ко второй с коэффициентом −1,

• вторую строчку к первой с коэффициентом 1− ε−1:(
ε 0
0 ε−1

)
⇝

(
ε 0
1 ε−1

)
⇝

(
1 ε−1 − 1
1 ε−1

)
⇝

(
1 ε−1 − 1
0 1

)
⇝

(
1 0
0 1

)
Таким образом,

(
ε 0
0 ε−1

)
=

(
1 0
−ε−1 1

)(
1 −1 + ε
0 1

)(
1 0
+1 1

)(
1 −1 + ε−1

0 1

)
. (Как было пра-

вильно замечено, в формуле порядок матриц пришлось развернуть, и прибавления строчек заме-
нить на вычитания. Поэтому знаки в матрицах противоположны заявленным) В общем случае
di,j(ε) = ti,j(−ε−1)tj,i(−1+ ε)ti,j(1)tj,i(−1+ ε−1). Операции можно было совершать не над строка-
ми, а над столбцами: например, можно то же произведение транспозиций применить к e не слева,
а справа.

1.2 Матрицы перестановки

Определение 1.2.1 (Мономиальная матрица x). В каждой строке x и каждом столбце x един-
ственный элемент, не равный 0 (причём он обратим).

Множество мономиальных матриц обозначают N(n,R), и это подгруппа в GL(n,R).

Определение 1.2.2 (Матрица перестановки). Такая мономиальная матрица, что все её ненулевые
элементы равны 1.

Множество всех матриц перестановки обозначают Wn, это тоже подгруппа GL(n,R).

Определение 1.2.3 (Означенная (signed) матрица перестановки). Такая мономиальная матрица,
что все её ненулевые элементы равны ±1.

Матрица перестановки переставляет элементы базиса, изоморфны Sn, означенные матрицы пере-
становки переставляют означенный базис, изоморфны октаэдральной группе.

Определение 1.2.4 (Октаэдральная группа). Положим X := {−n, . . . ,−1, 1, . . . , n} (|X| = 2n).

Octn
def
= {π ∈ SX | π(−i) = −π(i)} ⩽ SX
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Имеет место изоморфизм Sn ∼=Wn, π 7→ (π), (π)i,j = δi,π(j). Можно проверить, что (π)(ρ) = (π · ρ).

Так как перестановки порождаются транспозициями, то матрицы перестановки порождаются мат-
рицами транспозиций wi,j = e− ei,i − ej,j + ei,j + ej,i.

Так определённые wi,j — элементарные преобразования третьего вида.

Следствие 1.2.1. Wn = ⟨{wi,j | i+ 1 = j}⟩. Это абсолютный аналог утверждения, что симмет-
рическая группа Sn порождена фундаментальными транспозициями.

Лемма 1.2.1. Умножение на w слева переставляет строки, справа — переставляет столбцы.

В частности, w1,2 ·
(
x1,∗
x2,∗

)
=

(
x2,∗
x1,∗

)
и
(
x∗,1 x∗,2

)
· w1,2 =

(
x2,∗ x1,∗

)
Преобразования третьего типа выражаются через преобразования первого и второго типа:

Определение 1.2.5.
wi,j(ε) = ti,j(ε)tj,i(−ε−1)ti,j(ε) ∈ E(n,R)

Проще говоря, матрица где все строчки и столбцы как у единичной матрицы e кроме тех, что с
номерами i, j:

wi,j(ε)
def
=

i

j

i j(
0 ε
−ε−1 0

)
Лемма 1.2.2. wi,j = wi,j(1) · di(−1) = dj(−1)wi,j(1) ∈ GE(n,R)

1.3 Классификация линейных отображений над полем. Кано-
нический вид линейного отображения

Модуль над полем (то есть векторное пространство) с точностью до изоморфизма определяется
своей размерностью. А чем определяется (с точностью до изоморфизма, естественно) линейное
отображение?

Определение 1.3.1 (Изоморфность линейных отображений ϕ : U → V и ψ :W → Z). Существуют
два изоморфизма U ∼=W и V ∼= Z, такие, что диаграмма коммутативна.

U V

W Z

ϕ

ψ

∼=∼=

Определение 1.3.2 (Ранг линейного отображения ϕ). Размерность образа: rk(ϕ)
def
= dim(Im(ϕ)).

Теорема 1.3.1. (U, V, ϕ) ∼= (W,Z,ψ) ⇐⇒


dim(U) = dim(W )

dim(V ) = dim(Z)

rk(ϕ) = rk(ψ)

.

Доказательство.

⇒. Очевидно.

⇐. Так как ϕ, ψ : U → V — линейные отображения, то можно считать, что они заданы, как
домножения на матрицу. Получаем аналогичный вопрос: когда можно одну матрицу привести
к другой при замене базиса в U и замене базиса в V , то есть при домножении на обратимые
матрицы слева и справа?
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Теорема 1.3.2. Для любого линейного отображения ϕ : U → V можно так выбрать

базисы в U и в V , чтобы матрица отображения имела вид
(
e 0
0 0

)
— окаймлён-

ная единичная матрица (здесь e — квадратная единичная матрица, 0 — матрицы из
нулей произвольного размера).

Доказательство. Обозначим n = dim(U),m = dim(V ).

– Выберем базис Ker(ϕ); dim(Ker(ϕ)) = n−r. Обозначим этот базис ur+1, . . . , un.

– Дополним до базиса U : u1, . . . , ur — относительный базис U/Ker(ϕ).

– Рассмотрим ϕ(u1), . . . , ϕ(ur) — базис Im(ϕ).

– Дополним этот базис до базиса V .

В данных базисах матрица линейного отображения — действительно окаймлён-
ная матрица.

Таким образом, всякое линейное отображение имеет лишь 3 инварианта — параметры окайм-
лённой матрицы, а это и есть rk(ϕ),dim(U),dim(V ).

1.4 Комбинаторная эквивалентность матриц

Пусть x ∈M(m,n,K), где K — поле (рассуждения также можно обобщить до случая тела).

К какому виду можно привести x элементарными преобразованиями над строками?

Теорема 1.4.1. Для любого x ∈M(m,n,K) : ∃h ∈ GE(m,K) : hx имеет специальный (строково-
эшелонированный) вид:

1. В каждой строке ведущий элемент (pivot) — первый ненулевой элемент — равен 1.

2. В каждой следующей строке ведущий элемент правее, чем в предыдущей.

3. Элементы над ведущими равны 0.

4. Последние строки состоят из нулей.

1 ∗ 0 ∗ 0 ∗
1 ∗ 0 ∗

. . .
...

1 ∗
0 . . . 0

...
0 . . . 0


Доказательство. Рассмотрим наименьший номер ненулевого столбца j : a∗,j ̸= 0. Перестановкой
строк можно добиться того, что a1,j ̸= 0. Поделим строку a1,∗ на a1,j , теперь первая строчка
соответствует строково-эшелонированному виду.

Вычитая эту строку из следующих с правильными коэффициентами получаем, что a∗,j =


1
0
...
0

.
Кроме того, надо занулить коэффициенты выше, буде такие найдутся (они будут в последующих
шагах индукции). Таким образом, дальше (к следующим строкам матрицы) можно применить
индукцию — она оборвётся либо когда закончатся строки, либо останутся только строки из нулей.
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Следствие 1.4.1 (Комбинаторная эквивалентность). Всякую матрицу преобразованиями над
строками и перестановкой столбцов можно привести к следующему виду (ступенчатый вид):

∀x ∈M(m,n,K),∃h ∈ GE(m,K), w ∈Wn : hxw =

(
e ∗
0 0

)
где e —квадратная матрица некоего размера r × r, а остальные блоки — произвольного раз-
мера.

Таким образом, две матрицы комбинаторно эквивалентны, если одна может быть получена из
другой элементарными преобразованиями над строками и перестановкой столбцов, или, что ана-
логично, они обе могут быть приведены к одному ступенчатому виду.

Лекция III
21 февраля 2023 г.

1.4.1 Элементарная эквивалентность матриц

В этом параграфе K опять-таки поле.

Теорема 1.4.2. x ∈ M(m,n,K) ⇒ ∃g ∈ GE(m,K), h ∈ GE(n,K) : gxh =

(
e 0
0 0

)
— окаймлён-

ная единичная матрица размера r × r.

Доказательство. В предыдущем вопросе мы доказали, что можно подобрать такие g, w : gxw
— окаймлённая единичная матрица, у которой справа сверху мусор. Этот мусор можно вынести,
поочерёдно вычитая столбцы слева (в которых все элементы равны 0, кроме одного — 1), домно-
женные на правильный коэффициент.

Две матрицы элементарно эквивалентны, если ни могут быть приведены к одному окаймлённому
виду.

Две матрицы x, y ∈ M(m,n,K) строго элементарно эквивалентны, если ∃g ∈ E(m,K), h ∈
E(n,K) : y = gxh, то есть разрешены только элементарные трансвекции первого рода.

Теорема 1.4.3. x ∈ M(m,n,K) ⇒ ∃g ∈ E(m,K), h ∈ E(n,K) : gxh — либо окаймлённая единич-
ная матрица r × r, либо dm(ε) (в случае m = n = r):

gxh =


(
e 0
0 0

)
dm(ε)

Замечание. Такой ε равен определителю (определителю Дьёдоне) матрицы x, det(x) (либо если
матрица не строго эквивалентна псевдоотражению, то det(x) = 0). К сожалению, такой способ
определить определитель не обобщается даже на кольца (даже коммутативные).

Доказательство. Вспомним доказательство предыдущей теоремы о комбинаторной эквивалентно-
сти матриц, и применим к нему лемму о di(ε)dj(ε−1) ∈ E(n,K). Таким образом можно всякий раз
кроме последней строки применять эту лемму, и обойтись преобразованиями первого типа, чтобы
выставить все, кроме быть может одной, единицы в главной диагонали.

Замечание. Всё вышеописанное применимо к телу. Для тела определитель Дьёдоне лежит в {0}∪
T ∗/[T ∗, T ∗].
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1.4.2 Ранг матрицы над полем. Различные определения ранга над кольцом

Тензорный и скелетный ранги

Рассмотрим матрицу над полем x ∈M(m,n,K).

Для коммутативного кольца R определим

Определение 1.4.1 (Внешнее произведение, outer tensor). Матрица uv, где u ∈ Rm, v ∈ Rn .

Внешнее произведение — это матрица ранга 1.

Определение 1.4.2 (Ранг матрицы x ∈ M(m,n,K)). Наименьшее r, такое что существуют r
матриц ранга 1, таких, что x равен их сумме. Обозначают rk(x), иногда для определённости
называют тензорным рангом.

Теорема 1.4.4. Ранг матрицы x ∈ M(n,m,R) равен наименьшему числу r, такому, что ∃y ∈
M(n, r,R) и z ∈M(r,m,R), такие, что

x = yz

Иногда такое r называют скелетным рангом, но скелетный ранг всегда равен тензорному рангу.

Доказательство.

⇒. Если x = u1v1 + · · ·+ urvr, то

x =
(
u1 . . . ur

)
·

v1...
vr


⇐. x = yz = ye2z = (y(e1,1 + · · ·+ er,r)) · ((e1,1 + · · ·+ er,r)z) = y∗,1z1,∗ + · · ·+ y∗,rzr,∗.

Строчный и столбцовый ранги

Определение 1.4.3 (Строчный ранг матрицы, rrk(x)). Ранг модуля, порождённого строками x,
если этот модуль свободен.

Определение 1.4.4 (Столбцовый ранг матрицы, crk(x)). Ранг модуля, порождённого столбцами x,
если этот модуль свободен.

Замечание. Строчный ранг и столбцовый не обязаны существовать. Для коммутативного кольца
если оба существуют, то они равны. В таком случае их общее значение называют внешним рангом,
ork(x).

Интересный факт. Внешний ранг всегда не меньше тензорного ранга.

Теорема 1.4.5. Если K — поле, то тензорный ранг матрицы совпадает с её строчными и столб-
цовыми рангами, а ещё равен r из теоремы о комбинаторной эквивалентности матриц (след-
ствие 1.4.1).

Доказательство. Переходя x⇝ gx, где g ∈ GE(m,K) — элементарная матрица, мы переходим к
пространству строк, содержащемуся в пространстве строк x.

Так как g обратимо, то пространства строк совпадают. Аналогично для столбцов, crk(x) = crk(xh),
и пространства столбцов совпадают.

Заметим, что преобразований над строками достаточно, чтобы получить эшелонированную матри-
цу с единичным блоком r× r, то есть r линейно независимых строк. Применив далее преобразова-
ния над столбцами, приведём матрицу к каноническому виду — окаймлённой единичной, причём
ранг её будет тот же r.

Если же аналогичные действия проделать сначала над столбцами, то получится столбцово-эшелонированная
матрица с единичным блоком r̃×r̃. Так как канонический вид матрицы единственен (теорема 1.3.1),
то r = r̃.
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Отсюда получается, что r = crk(x) = rrk(x) = rk(x), где последнее — ранг линейного отображения.
Кроме того, отсюда вытекают факты, что строчный ранг не меняется при столбцовых преобразо-
ваниях, а столбцовый — при строчных.

Замечание. Без использования понятия о ранге линейного отображения можно так доказать то,
что элементарные преобразования над строчками не меняют и столбцовый ранг тоже: если какое-
то подмножество столбцов было линейно зависимо: λ1u1 + · · · + λsus = 0, то и после применения
элементарного преобразования эта комбинация осталась нулевой:

λ1(u1g) + · · ·+ λs(usg) = 0

Определение 1.4.5 (Ранг по минору, mrk(x)). Наибольший размер минора, имеющего ненулевой
определитель.

Интересный факт. mrk(x) ⩽ rk(x).

Интересный факт (Теорема о базисном миноре). Над полем mrk(x) = rk(x).

1.4.3 Системы линейных уравнений

Пусть мы всё ещё работаем над полем.

Рассмотрим линейное отображение ϕ : Kn → Km. Пусть u ∈ Km.

Определение 1.4.6 (Система линейных уравнений). Уравнение ϕ(x) = u, где неизвестный x ∈ Kn.

Уравнение называется системой уравнений, потому что традиционно, выбрав базисы, можно запи-

сать ϕ(x) = ax, где a ∈M(m,n,K), u =

u1
...
um

, и система уравнений приобретает вид ax = u.

Но людям раньше нравилось много писать, поэтому они записывали
a1,1x1 + · · ·+ a1,nxn = u1

a2,1x1 + · · ·+ a2,nxn = u2

. . .

am,1x1 + · · ·+ am,nxn = um

Лекция IV
22 февраля 2023 г.

Теорема 1.4.6. Если x0 — какое-то (частное) решение уравнения ϕ(x) = u, то множество всех
решений — это x0 +Ker(ϕ).

Доказательство. Любое (общее) решение x удовлетворяет ϕ(x) = u, откуда ϕ(x − x0) = 0, и
x ∈ x0 +Ker(ϕ).

Система ϕ(x) = 0 называется однородной.

Ядро, разумеется, является подпространством; при работе над полем оно свободно, то есть

Ker(ϕ) = ⟨v1, . . . , vd⟩

Факт 1.4.1. d = n− r.

Этот базис v1, . . . , vd называется фундаментальной системой решений.

Следствие 1.4.2. Любое решение x имеет вид x0 + v1λ1 + · · ·+ vdλd.
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1.4.4 Векторная запись системы линейных уравнений. Теорема Кронекера
— Капелли

На самом деле теорема Кронекера — Капелли — очевидный факт, который Капелли, записывая,
назвал теорема Кронекера, что потом при ссылках преобразовалось в текущее название.

a =
(
a∗,1 . . . a∗,n

)
x =

x1...
xn


Векторная запись системы линейных уравнений a∗,1x1 + · · ·+ a∗,nxn = u.

Является ли вектор u линейной комбинацией векторов a∗,1, . . . , a∗,n?

Теорема 1.4.7 (Кронекер — Капелли). Ответ на этот вопрос известен: когда u ∈ ⟨a∗,1, . . . , a∗,n⟩ ⇐⇒
⟨a∗,1, . . . , a∗,n⟩ = ⟨a∗,1, . . . , a∗,n, u⟩.

Иначе говоря, система ax = u совместна ⇐⇒ rk(a) = rk(a|u).

Факт 1.4.2 (Дополнение к теореме Кронекера — Капелли). Система ax = u имеет единственное
решение ⇐⇒ rk(a) = rk(a|u) = n.

Доказательство. В этом случае dimKer(a) = dimKn − dim Im a = 0 и ядро нулевое.

1.4.5 Решение систем линейных уравнений методом Гаусса

Гаусс, может, этим методом и не решал системы, ну да ладно.

ax = u a ∈M(m,n,K) x ∈ Kn u ∈ Km

Для любого g ∈ GL(m,K) = GE(m,K) умножение на матрицу слева приводит к эквивалентной
системе gax = gu. Также можно перенумеровать неизвестные:

(gaw)(w−1x) = gu, w ∈Wn

Раньше было доказано (следствие 1.4.1), что можно подобрать такие g ∈ GE(m,K), w ∈ Wn,

что gaw имеет ступенчатый вид:
(
gaw|gu

)
=

(
e ∗ ∗
0 0 δ

)
, δ ∈ {0, 1}m−r. Система совместна

⇐⇒ δ = 0. Таким образом, неизвестные разбились на 2 группы: главные x1, . . . , xr и свободные
xr+1, . . . , xn.

Систему можно переписать в виде
x1 + c1,r+1xr+1 + · · ·+ c1,nxn = d1

. . .

xr + cr,r+1xr+1 + · · ·+ cr,nxn = drx1...
xr

 =

d1...
dr

−
c1,r+1

...
cr,r+1

xr+1 − · · · −

c1,n...
cr,n

xr+1

В качестве частного решения можно взять решение при занулённых свободных переменных, а в
качестве базиса ядра — решения, принимая каждую свободную переменную по очереди единицей:

d1 − c1,r+1xr − · · · − c1,nxn
...

dr − cr,r+1xr − · · · − cr,nxn
xr+1

...
xn


=



d1
...
dr
0
...
0


+



−c1,r+1

...
−cr,r+1

1
...
0


xr+1 + · · ·+



−c1,n
...

−cr,n
0
...
1


xn
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1.4.6 Определитель по Вейерштрассу

Пусть x ∈M(n,R) — матрица над коммутативным кольцом.

В определении по Вейерштрассу матрица фигурирует, как строка столбцов x = (x∗,1, . . . , x∗,n).

Определение 1.4.7 (Определитель по Вейерштрассу). Det : Rn × · · · ×Rn︸ ︷︷ ︸
n

→ R со следующими

свойствами.

1. Полилинейность: Det линейно по каждому аргументу при фиксированных остальных.

2. Антисимметричность: если два столбца совпали, то определитель — нуль.

3. Нормированность: Det(e1, . . . , en) = Det(e) = 1.

Существует ли такой определитель? (Да, например, определитель Лейбница (определение 1.4.13))

Единственен ли он? (Да: (теорема 1.4.13))

Лемма 1.4.1. Определитель не меняется при элементарных преобразованиях над столбцами.

Доказательство.

Det(x · tr,s(ξ)) = Det(x∗,1, . . . , x∗,r, . . . , x∗,s + x∗,rξ, . . . , x∗,n) =

Det(x∗,1, . . . , x∗,r, . . . , x∗,s, . . . , x∗,n) + Det(x∗,1, . . . , x∗,r, . . . , x∗,r, . . . , x∗,n)︸ ︷︷ ︸
0

ξ

Лемма 1.4.2 (Кососимметричность определителя). При перестановке двух столбцов местами
определитель меняет знак.

Доказательство. Обозначим F (ur, us) := Det(u1, . . . , ur
r
, . . . , us

s
, . . . , un).

В силу линейности определителя, 0 = F (ur + us, ur + us) = F (ur, ur)︸ ︷︷ ︸
0

+F (ur, us) + F (us, ur) +

F (us, us)︸ ︷︷ ︸
0

.

Замечание. Кососимметричность следует из антисимметричности, а обратное верно только если 2
— не делитель 0 (и 2 ̸= 0).

Лемма 1.4.3. Если один из столбцов является линейной комбинацией остальных, то опреде-
литель равен 0.

1.4.7 Знак перестановки. Определение через декремент

Определение 1.4.8 (Декремент). Любая перестановка представима в виде произведения незави-
симых циклов (включая тривиальные).

∀π ∈ Sn : π = ρ1 · . . . · ρm

Определение 1.4.9 (Орбита перестановки). Множество {k, π(k), π(π(k)), . . . } =
{
πl(k) | l ∈ Z

}
Так как перестановка обратима (является биекцией), то любые две различные орбиты не пересе-
каются.

Замечание. Количество независимых циклов π — количество орбит π.

Определение 1.4.10 (Декремент π). decr(π)
def
= n−m, где π ∈ Sn, а m — количество независимых

циклов (или орбит) π.

Если {1, . . . , n} = X1⊔· · ·⊔Xm, где X1, . . . , Xm — орбиты перестановки, то декремент — это сумма
m∑
i=1

(|Xi| − 1).
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Определение 1.4.11 (Знак перестановки). sgn(π) = (−1)decr(π)

Теорема 1.4.8. decr(π) — наименьшее количество транспозиций, произведение которых в некото-
ром порядке равно π.

Доказательство. Давайте следить за длиной конкретного разложения перестановки по системе
образующих транспозиций.

База: decr(id) = n− n = 0.

Переход: Всякое применение транспозиции меняет декремент на 1 (если она меняет местами эле-
менты одного цикла π, то декремент увеличивается, а если из разных — то уменьшается).

В самом деле, если элементы из одного цикла меняются местами, то цикл разлагается на 2: для
p < q : (ipiq)(i1i2 . . . ir) = (i1 . . . ip−1iq . . . ir) · (ipip+1 . . . iq−1).

Если же местами меняются элементы разных циклов, то это вычисление получается домножением
равенства выше на (ipiq) слева: (i1i2 . . . ir) = (ipiq)(i1 . . . ip−1iq . . . ir) · (ipip+1 . . . iq−1).

• • • •

• • •

• • • •

• • •

1.4.8 Знак перестановки. Определение через инверсии

Воспользуемся тем, что Sn = ⟨(ij), i+ 1 = j⟩.

Определение 1.4.12 (i < j образуют инверсию в перестановке π ∈ Sn). πi > πj .

Обозначим за inv(π) количество инверсий в перестановке π.

Теорема 1.4.9. sgn(π) = (−1)inv(π) =
∏

1⩽i<j⩽n

π(i)−π(j)
i−j .

Ещё можно сказать, что количество инверсий равняется минимальному количеству фундаменталь-
ных транспозиций, произведение которых в некотором порядке даёт π.

Доказательство. Несложно проверить, что всякая фундаментальная транспозиция, после домно-
жения на перестановку (неважно, слева или справа), меняет количество инверсий в ней на ±1.

А именно, при домножении π на транспозицию (ij) слева происходит смена π(i) и π(j), пара
индексов i и j либо перестаёт, либо начинает образовывать инверсию. Кроме того, все инверсии i, k
меняются на инверсии j, k и наоборот, так как относительное положение индекса k относительно
i или j не поменялось (транспозиция фундаментальная, поэтому |i− j| = 1).

При домножении π на транспозицию (xy) справа происходит смена π(i) и π(j) где π(i) = x, π(j) =
y, пара индексов i и j либо перестаёт, либо начинает образовывать инверсию. Остальные инверсии
остаются прежними, так как |x− y| = 1.

Без доказательства существования знак ещё можно определить следующим образом:

Теорема 1.4.10. Для n ⩾ 2 существуют ровно два гомоморфизма ϕ : Sn → {±1}. Это тождествен-
ный 1 и sgn.
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Доказательство. {±1} — абелева группа. Пусть π ∼ σ ∈ Sn ⇐⇒ ϕ(π) = ϕ(σ).

При сопряжении аргумента ϕ(π) не меняется: ϕ
(
σπσ−1

)
= ϕ(σ)ϕ(π)ϕ(σ)−1 = ϕ(π).

Так как все транспозиции сопряжены, то ϕ(τ) = const для всех транспозиций τ .

Если ϕ(τ) = 1, то гомоморфизм — тождественная единица, иначе ϕ(τ) = −1, и ϕ ≡ sgn.

1.4.9 Знакопеременное определение определителя

Пусть x ∈M(n,R), где R — коммутативное кольцо.

Определение 1.4.13 (Определитель по Лейбницу). det(x) =
∑
π∈Sn

sgn(π)
n∏
j=1

xj,π(j).

Лемма 1.4.4 (Общее правило знаков). Слагаемое xπ(1),ρ(1) · . . . · xπ(n),ρ(n) входит в сумму со
знаком sgn(π) · sgn(ρ).

Доказательство. В коммутативном кольце xπ(1),ρ(1)·. . .·xπ(n),ρ(n) = x1,ρ(π−1(1))·. . .·xn,ρ(π−1(n)).

Свойства транспонирования:

1. xtt = x

2. (x+ y)t = xt + yt

3. (xy)t = yt · xt.

Данному набору свойств удовлетворяет (xt)j,i
def
= xi,j . Транспонирование t :M(n,R)→M(n,Ro).

Теорема 1.4.11. det(xt) = det(x).

Доказательство. Согласно правилу знаков det(xt) =
∑
π∈Sn

sgn(π)
n∏
j=1

xπ(j),j = det(x).

Для некоммутативного кольца R это неверно:

Пример. Определим алгебру Вейля W1(K) = K⟨x, d⟩/([d, x] = 1) — алгебра над полем K, где d, x
не коммутируют, и взят фактор по отношению [d, x] = 1. Алгебра дифференциальных операторов
некоммутативна.

Говорят, в квантовой механике активно используется Wn(K).

Если посчитать row det
(
d d
x x

)
= dx− xd = 1.

В другую сторону: col det
(
d d
x x

)
= dx− dx = 0.

В самом деле, столбцы линейно зависимы, а строки — нет.

Лекция V
1 марта 2023 г.

1.4.10 Существование определителя (удовлетворяющего условиям Вейер-
штрасса)

Теорема 1.4.12. Определитель по Лейбницу удовлетворяет условиям Вейерштрасса

Доказательство.
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• Линейность по столбцам. Пусть x∗,r = u+ v. Тогда

det(x) =
∑
π∈Sn

sgn(π)xπ(1),1 · . . . · xπ(r),r

=

(u+v)π(r)

· . . . · xπ(n),n

В силу дистрибутивности кольца можно раскрыть скобки (a(b+ c)d = (ab+ac)d = abd+acd):

det(x) =
∑
π∈Sn

sgn(π)xπ(1),1 · . . . · uπ(r) · . . . · xπ(n),n +
∑
π∈Sn

sgn(π)xπ(1),1 · . . . · vπ(r) · . . . · xπ(n),n

Аналогично можно выносить константу, домноженную на произвольный столбец.

• Если два столбца, пусть x∗,r и x∗,s, совпадают, то определитель равен 0:

det(x) =
∑
π∈An

xπ(1),1·. . .·xπ(r),r·. . .·xπ(s),s·. . .·xπ(n),n−
∑

π∈(rs)·An

=

Sn\An

xπ(1),1·. . .·xπ(r),r·. . .·xπ(s),s·. . .·xπ(n),n

В силу равенства столбцов x∗,r и x∗,s в левой сумме все слагаемые совпадают со слагаемыми
в правой сумме.

• Нормированность определителя: det(e) = 1. Несложно видеть даже большее: определитель
треугольной матрицы равен произведению диагональных элементов

det

a1 ∗
. . .

0 an

 = a1 · . . . · an

1.4.11 Единственность определителя (удовлетворяющего условиям Вейер-
штрасса)

Теорема 1.4.13. Никакое другое отображение, кроме определителя Лейбница, не удовлетворяет
условиям определителя Вейерштрасса.

Доказательство. Всякий столбец раскладывается по столбцовому базису {ei}i=1..n:

uj = e1x1,j + · · ·+ enxn,j

Рассмотрим произвольный определитель Вейерштрасса Det, и разложим его аргументы по столб-
цовому базису:

Det(u1, . . . , un) = Det((e1x1,1 + · · ·+ enx1,n), . . . , (e1x1,n + · · ·+ enxn,n)) =

=

n∑
i1,...,in=1

Det(ei1 , . . . , ein) · xi1,1 · . . . · xin,n =

=
∑
π∈Sn

Det(eπ(1), . . . , eπ(n)) · xπ(1),1 · . . . · xπ(n),n

Таким образом, мы видим, что получили определение определителя по Лейбницу. В самом деле,
Det(eπ(1), . . . , eπ(n)) равен знаку перестановки, так как из антисимметричности следует кососим-
метричность, и Det(eπ(1), . . . , eπ(n)) равен с точностью до знака det(e), а знак определителя —
чётность декремента π.

1.5 Мультипликативность определителя

det(xy) = det(x) det(y)
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1.5.1 Блочные матрицы

Рассмотрим матрицу из M(m,n,R).

Пусть µ = (m1, . . . ,mr) — разбиение числа m, то есть m1 + · · · +mr = m, и ν = (n1, . . . , ns) —
разбиение n.

Разобьём элементы матрицы в соответствии с разбиением:

m1

...

mr

n1 ... ns


Подматрицу xi,j ∈M(mi, nj , R) называют блок матрицы x в позиции (i, j) для i ∈ [1, r], j ∈ [1, s].

Операции над блочными матрицами

1. Сложение.

Рассмотрим две матрицы x, y с одинаковым разбиением на блоки.

Тогда сумма определяется поблочно (x+ y)i,j = xi,j + yi,j .

2. Умножение. Пусть x ∈M(l,m,R), y ∈M(m,n, r), λ = (l1, . . . , lq) — разбиение l.

Рассмотрим (λ, µ) разбиение x и (µ, ν) разбиение y.

Тогда произведение определяется поблочно:

(x · y)i,k =

r∑
j=1

xi,j · yj,k

Важнейший частный случай — разбиения на равные слагаемые. Так, квадратную матрицу из
M(m · n,R) можно разбить на m×m блоков размера n× n: M(m · n,R) =M(m,M(n,R)).

1.5.2 Определитель блочно треугольной матрицы

Теорема 1.5.1. Рассмотрим матрицу x =

(
y ∗
0 z

)
∈ M(n,R). Для определённости можно поло-

жить y ∈M(m,R), z ∈M(n−m,R).

Утверждается, что det(x) = det(y) det(z).

Доказательство. Определим подгруппы Юнга в Sn. Пусть µ = (m1, . . . ,mr) — разбиение m.
Тогда π лежит в подгруппе Юнга, соответствующей разбиению µ, если ∀k = 1..r : π(i) ∈ mk ⇐⇒

i ∈ mk. Здесь запись i ∈ mk означает, что
k−1∑
j=1

mj < i ⩽
k∑
j=1

mj .

Иными словами, подгруппы Юнга не перемешивают элементы вне разбиения.

Такая подгруппа Юнга изоморфна Sm1
× · · · × Smk

.

Для удобства будем рассматривать подгруппы Юнга размера 2: для разбиения n = (m,n − m).
Здесь определение упрощается до i ⩽ m ⇐⇒ π(i) ⩽ m.

Итак, посчитаем определитель x. Заметим, что в формуле∑
π∈Sn

sgn(π)x1,π(1) · . . . · xn,π(n)
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суммирование можно проводить только по перестановкам из подгруппы Юнга для (m,n−m).

В самом деле, по принципу Дирихле, если какая-то из первых m строчек попала не в первый из
m столбцов, то тогда какой-то из них остался свободен, и в него попадёт что-то из следующих
строчек, то есть конкретное произведение даст 0. В соответствии с этим, будем суммировать по не
π ∈ Sn, а по (ρ, σ) ∈ Sm × Sn−m.∑
(ρ,σ)∈Sm×Sn−m

sgn(ρ)x1,ρ(1) · . . . ·xm,ρ(m) · sgn(σ)xm+1,m+σ(1) · . . . ·xm+(n−m),m+σ(n−m) = det(y) det(z)

Следствие 1.5.1. Для любого квадратного разбиения матрицы на блоки (r = s), такого,
что элементы ниже главной диагонали — нуль-матрицы, определитель равен произведению
блочных подматриц на главной диагонали.

1.5.3 Мультипликативность определителя

Пусть x, y ∈M(n,R).

Теорема 1.5.2. det(xy) = det(x) det(y)

Доказательство. Рассмотрим блочную матрицу
(
y e
0 x

)
, и домножим её слева на

(
e 0
−x e

)
(это

трансвекция, прибавляющая ко второй строчке первую, домноженную на −x):(
e 0
−x e

)
·
(
y e
0 x

)
=

(
y e
−xy 0

)
Так как это элементарное преобразование, то определитель не поменялся. Сделаем ещё пару пассов
руками: (

y e
−xy 0

)
·
(
0 −e
e 0

)
=

(
e −y
0 xy

)
Это тоже произведение парочки элементарных преобразований первого типа, значит, det(y) det(x) =
det(xy), и из коммутативности кольца R, в котором мы считаем определитель, доказательство за-
вершено.

Лекция VI
7 марта 2023 г.

1.5.4 Миноры, разложение по строке, определитель по Лапласу

R — коммутативное кольцо, x ∈ M(m,n,R). Выберем I ⊂ m = {1, . . . ,m}; J ⊂ n = {1, . . . , n}
так, что |I| = |J | = d. Рассмотрим сужение матрицы x на I × J , как матрицу из M(d,R).

Определение 1.5.1 (Минор MI,J(x)). Определитель матрицы (xi,j)i∈I,j∈J .

Если же m− |I| = n− |J |, то det(xi,j)i/∈I,j /∈J — дополнительный минор, обозначается M I,J .

Особенно важен случай m = n. Здесь определён дополнительный минор

M i,j = det
(
вычеркнули из x строку i и столбец j

)
Определение 1.5.2 (Алгебраическое дополнение к элементу xi,j). Ai,j(x)

def
= (−1)i+jM i,j(x).

Можно также сказать, что это определитель матрицы, где x∗,j и xi,∗ заменили на нули, но xi,j —
на единицу.

Теорема 1.5.3 (Разложение по строке). Для матрицы x ∈M(n,R):

∀i1, i2 ∈ [1, n] :

n∑
j=1

xi1,jAi2,j =

{
det(x), i1 = i2

0, i1 ̸= i2
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Доказательство. Рассмотрим i1-ю строку матрицы x. Разложим её по строчному базису xi1,∗ =
xi1,1f1 + · · ·+ xi1,nfn.

Разложим определитель в сумму n слагаемых, где i1-я строка разложена по строчному базису.

Дальше мы можем переставлять строчки по одной, получив форму разложения по строке для
i1 = i2.

Если же i1 ̸= i2, то мы посчитали определитель матрицы, у которой на место строки i2 поставили
строку i1, то есть определитель матрицы с равными строками — 0.

Определение 1.5.3 (Определитель по Лапласу (индуктивно)). det(x) = x1,1A1,1(x)+· · ·+x1,nA1,n(x).

Замечание. Вместо строк можно раскладывать по столбцам.

Интересный факт (Лаплас). Можно раскладывать не по одной строке, а по нескольким (по k
строкам). Минор определяется выбором k столбцов.

det(x) =
∑

1⩽j1<...jk⩽n

(−1)i1+···+ik+j1+···+jkM{i1,...,ik}×{j1,...,jk} ·M{i1,...,ik}×{j1,...,jk}

1.5.5 Формула Крамера, теорема Крамера

Формула Крамера получает по матрице ей обратную.

Пусть x ∈M(n,R). Когда x обратима?

Определение 1.5.4 (Присоединённая матрица). adj(x)
def
= (Ai,j(x))

t
1⩽i,j⩽n = (Aj,i(x))1⩽i,j⩽n

Лемма 1.5.1. x · adj(x) = adj(x) · x = det(x) · e.

Доказательство. Раскрыть произведение матриц в сумму и применить теорему Лапласа.

Теорема 1.5.4 (формула Крамера). Матрица g обратима, если и только если det(g) ∈ R∗. Если
det(g) ∈ R∗, то g−1 = 1

det(g) adj(g).

Доказательство. Если g обратима, то ∃g−1 ∈ M(n,R), откуда 1 = det(e) = det(gg−1) = det(g) ·
det
(
g−1

)
, получается, det(g) обратим.

Если det(g) ∈ R∗, то ∃g−1 = 1
det(g) adj(g).

Теорема 1.5.5 (Крамер). В поле K система ax = u (a ∈ M(n,K), u ∈ Kn) имеет единственное
решение ⇐⇒ det(a) ̸= 0. Если det(a) ̸= 0, то это решение задаётся формулой x = a−1u.

Доказательство. Если det(a) ̸= 0, то условия эквивалентны: ax = u ⇐⇒ x = a−1u.

Если в поле det(a) = 0, то rk(a) < n. Тогда либо rk(a|u) = rk(a), откуда по теореме Кронекера —
Капелли ax = u совместна, но не определена, либо rk(a|u) > rk(a), откуда система несовместна.

1.6 Определители некоторых матриц

Даны n функций f1, . . . , fn : R→ R и n аргументов x1, . . . , xn.

Чаще всего полезны определители вида det

f1(x1) . . . fn(x1)
...

. . .
...

f1(xn) . . . fn(xn))

 — альтернанты.

Иногда также случаются определители вида det

f(x1, x1) . . . f(x1, xn)
...

. . .
...

f(xn, x1) . . . f(xn, xn))


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1.6.1 Определитель Вандермонда

Определение 1.6.1 (Матрица Вандермонда). Альтернант для fi : x 7→ xi−1

V (x1, . . . , xn) =

1 x1 . . . xn−11
...

...
. . .

...
1 xn . . . xn−1n


Теорема 1.6.1. det(V (x1, . . . , xn)) =

∏
i>j

(xi − xj).

Доказательство.

• det(V (x1, . . . , xn)) — многочлен от переменных x1, . . . , xn.

• Его степень 0 + 1 + · · ·+ (n− 1) = n(n−1)
2 .

• Профакторизуем по отношению (xi − xj), отображая кольцо многочленов от n переменных
в кольцо многочленов от n − 1 переменных. Строчки xi,∗ и xj,∗ стали равны, значит, (xi −
xj) | det(V (x1, . . . , xn)).

• Все многочлены вида xi−xj для i > j взаимно просты, значит,
∏
i>j

(xi−xj) | det(V (x1, . . . , xn)).

Степень произведения тоже равна n(n−1)
2 .

• Проверим, что константа ассоциированности между ними равна 1. Рассмотрим диагональное
произведение 1 · x2 · x23 · · ·xn−1n . Входит в оба выражения со знаком +1.

1.6.2 Пфаффианы

Пусть x ∈M(n,K).

Определение 1.6.2 (Кососимметричная матрица). Матрица x, такая, что xt = −x.

Определение 1.6.3 (Антисимметричная матрица). Кососимметричная матрица x, такая, что ∀i ∈
[1, n] : xi,i = 0.

Пример. (
0 x
−x 0

)
Интересный факт. Пусть x ∈ M(n,R) — антисимметричная матрица. Если n ≡ 1 (mod 2), то
det(x) = 0. Иначе n ≡ 0 (mod 2), тогда det(x) ∈ R2.

Замечание. Пфаффиан можно определить с точностью до знака, как корень из определителя.

Определение 1.6.4 (Пфаффиан). pf(x) определён для антисимметричных матриц и удовлетворяет
следующим свойствам:

1. pf(y · x · yt) = pf(x) · det(y)

2. pf(x⊕ y) = pf(x) · pf(y), где x⊕ y =

(
x 0
0 y

)
.

3. pf

(
0 1
−1 0

)
= +1.

Интересный факт. det(x) = pf

(
0 x
−xt 0

)
.

Интересный факт. Если x — порядка 2n, то

pf(x) =
∑
π∈S2n

sgn(π)xπ(1),π(2) · . . . · xπ(2n−1),π(2n)

где сумма берётся по всем таким π, что π(2i− 1) < π(2i).
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Глава 2

Многочлены

Лекция VII
14 марта 2023 г.

В доказательстве вычисления определителя Вандермонда были два пробела, надо бы их воспол-
нить (теорема 2.2.1).

2.1 Гомоморфизм эвалюации

Говоря простыми словами, подстановка элемента алгебры в многочлен.

Пусть R — коммутативное кольцо.

Определение 2.1.1 (A — алгебра над R). Кольцо A (часто ассоциативное, с 1A), необязательно
коммутативное, являющееся R-модулем, а ещё ∀x, y ∈ A, λ ∈ R: выполняется аксиома алгебры

λ(xy) = (λx)y = x(λy)

Несложно заметить вложение R ↪→ A; λ 7→ λ·1A. Оно вкладывает R в центр A: R · 1A ⩽ Cent(A).

Замечание. Некоммутативность алгебры позднее будет крайне существенной, так как мы будем
рассматривать A =M(m,R) = EndR(V ).

Пример. Рассмотрим цепочку вложений R ⩽ C ⩽ H. C и H — алгебры над R, но H — не C-алгебра,
i · j ̸= j · i.

Пусть f ∈ R[x], обозначим f = anx
n + · · ·+ a1x+ a0.

Определение 2.1.2 (Значение f в точке c ∈ A). Обозначим f(c) = anc
n + · · ·+ a1c+ a0 · 1A.

Замечание. Интересно заметить, что мы пользовались более слабым условием, чем ассоциатив-
ность A: мы пользовались тем, что A — алгебра с ассоциативными степенями:

ci+j = ci · cj , что не зависит от разложения i+ j в сумму

Зафиксируем f ∈ R[x].

Определение 2.1.3 (Полиномиальное отображение).

f̃ : A→ A c 7→ f(c)

Зафиксируем c ∈ A.
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Определение 2.1.4 (Гомоморфизм эвалюации).

evc : R[x]→ A f 7→ f(c)

Предложение 2.1.1. Гомоморфизм эвалюации — гомоморфизм, то есть (f + g)(c) = f(c) + g(c)
и (f · g)(c) = f(c) · g(c).

Замечание. Коммутативность R действительно важна:

c2 − ac− bc+ ab = evc(x
2 − (a+ b)x+ ab) =

= evc((x− a)(x− b)) =
= evc(x− a) · evc(x− b) = (c− a)(c− b) = c2 − ac− cb+ ab

Видим, что равенство выполняется, если и только если c коммутирует с b, где c ∈ A, b ∈ R —
любые элементы.

Определение 2.1.5 (Гомоморфизм R-алгебр). Отображение ϕ : A→ B, такое, что ∀x, y ∈ A, λ ∈ R:

1. ϕ(x · y) = ϕ(x) · ϕ(y).

2. ϕ(x+ y) = ϕ(x) + ϕ(y).

Унитальный гомоморфизм колец

3. ϕ(1A) = 1B .

4. ϕ(λx) = λϕ(x).

Пусть {∗} — произвольное одноэлементное множество, синглетон.

{∗} R[x]

A

evc∗7→c

∗7→x

Теорема 2.1.1. Кольцо многочленов R[x] обладает универсальным свойством: существует и
единственен гомоморфизм R-алгебр R[x]→ A, делающий диаграмму выше коммутативной.

Это гомоморфизм эвалюации evc.

Доказательство. Существование уже доказано, единственность следует из определения гомомор-
физма алгебр.

Эту теорему можно принять за определение кольца многочленов от одной переменной: кольцо
многочленов — такая R-алгебра, что, вложив R в произвольную R-алгебру A, останется ровно
один способ ввести гомоморфизм из кольца многочленов в алгебру.

Тем не менее, это не совсем правда — само кольцо R, разумеется, является R-алгеброй с данным
свойством. Точной формулировки я не нашёл.

2.2 Число корней многочлена над областью целостности

Пусть f ∈ R[x], где R — область целостности.

Определение 2.2.1 (Корень / нуль f). Такой элемент c ∈ R, что f(c) = 0.

Определение 2.2.2 (Кратность корня c многочлена f). Число m ∈ N0, такое, что (x− c)m∥f .

Теорема 2.2.1 (Безу). f(c) — остаток от деления f на x− c.

f = (x− c)g + f(c) ⇒ f(c) = 0 ⇐⇒ x− c | f

Следствие 2.2.1. c — корень f кратности m ⇐⇒ f = (x− c)mg, где g(c) ̸= 0.
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Следствие 2.2.2 (Обобщённая теорема Безу). Для R, являющейся областью целостности:

Пусть c1, . . . , cs — различные корни f кратностей m1, . . . ,ms соответственно. Тогда f =
(x− c1)m1 · . . . · (x− cs)ms · g, где g(c1), . . . , g(cs) ̸= 0.

Доказательство. Индукция по количеству различных корней, использующая при переходе теоре-
му Безу.

Следствие 2.2.3. У любого многочлена f ∈ R[x], где R — область целостности — количество
корней с учётом кратности не превосходит n.

Контрпримеры (Существенность условий, наложенных на кольцо).

• x2 − 5x ∈ (Z/6Z)[x] имеет корни 0, 2, 3, 5.

• В булевом кольце R = (2X ,△,∩) все элементы — идемпотенты, все — корни x2 − x.

• R =M(2, R). У многочлена x2 есть корень 0 кратности 2, есть корень
(
0 1
0 0

)
.

• R = H — над телом кватернионов у многочлена x2 + 1 даже не 6 корней (±i,±j,±k),
а целая сфера, континуум корней. Здесь проблема не в делителях нуля, а в отсутствии
коммутативности.

2.3 Формальное и функциональное равенство многочленов

Пусть f, g ∈ R[x]. Формальное равенство многочленов f = g — равенство всех коэффициентов —
равенство элементов кольца многочленов.

Всякий многочлен определяет полиномиальную функцию вычисления значения.

Определение 2.3.1 (Функциональное равенство многочленов). f̃ = g̃
def⇐⇒ ∀c ∈ R : f(c) = g(c).

Теорема 2.3.1. Для бесконечной области целостности R:

f = g ⇐⇒ f̃ = g̃

Доказательство.

⇒. Очевидно.

⇐. Если max(deg f, deg g) ⩽ n, и c0, . . . , cn ∈ R — попарно различные точки, то равенство
∀i : f(ci) = g(ci) влечёт равенство f = g.

В самом деле, разность f −g имеет степень не больше max(deg f, deg g), и обнуляется в n+1
точке.

2.4 Задача интерполяции с простыми узлами

Пусть K — поле, c0, . . . , cn ∈ K — попарно различные элементы, b0, . . . , bn ∈ K — произвольные
элементы.

Теорема 2.4.1 (Задача Лагранжа). Существует и единственен многочлен степени не выше n+ 1,
решающий интерполяционную задачу с простыми узлами.

x c0 c1 . . . cn
f(x) b0 b1 . . . bn

Доказательство Ньютона — Грегори. Индукция по n.
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Доказательство Вандермонда. Запишем систему уравнений относительно a0, . . . , an.

f(c0) = anc
n
0 + · · ·+ a1c0 + a0 = b0

. . .

f(cn) = anc
n + · · ·+ a1cn + a0 = bn

Заметим, что так как все ci различны, то определитель матрицы данной системы — определитель
Вандермонда V (c0, . . . , cn).∏
i>j

(ci − cj) ̸= 0⇒ система имеет единственное решение.

Доказательство. Решим задачу попроще:

x c0 . . . ci . . . cn
f(x) 0 . . . 1 . . . 0

Её решением будет многочлен

fi =
(x− c0) · . . . · ̂(x− ci) · . . . · (x− cn)
(ci − c0) · . . . · ̂(ci − ci) · . . . · (ci − cn)

Теперь можно просто взять линейную комбинацию: f =
n∑
i=0

bi · fi.

Лекция VIII
15 марта 2023 г.

2.5 Локализация или кольца частных

Пусть K — поле.

Хотим вложить кольцо многочленов K[x] в какое-то поле K(x).

Возьмём любое кольцо R, построим по нему поле частных Q(R). Если R — область целостности,
то всё тривиально, а если есть делители нуля, то чуть сложнее.

2.5.1 Мультипликативные системы

Пусть R — произвольное коммутативное кольцо с единицей. Строить кольцо частных некоммута-
тивного кольца можно, но намного сложнее.

Рассмотрим произвольное подмножество S ⊂ R.

Определение 2.5.1 (S — мультипликативная система).

• Аксиома полугруппы: S замкнуто относительно умножения, ∀u, v ∈ S : uv ∈ S.

• Аксиома моноида: 1 ∈ S.

• Аксиома нетривиальности: 0 /∈ S.

Мы собираемся сопоставить паре (R,S) кольцо, в котором элементы S обратимы — кольцо S−1R.

Примеры (Мультипликтивные системы).

• S ⩽ R∗ — тривиальная мультипликативная система.

• S = Reg(R) — множество элементов, на которые можно сокращать. В частности, если R —
область целостности, то Reg(R) = R \ {0}.
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• Пусть p ∈ Spec(R) — простой идеал: ∀xy ∈ p : (x ∈ p ∨ y ∈ p). Тогда R \ p является
мультипликативной системой.

В кольце (R \ p)−1R остался всего один максимальный идеал — p.

• Главная мультипликативная система. Рассмотрим s ∈ R \ Nil(R). Где Nil(R) =
⋂

p∈Spec(R)

p

(Nil(R) = {x ∈ R | ∃m ∈ N : xm = 0})

В качестве множества S рассмотрим ⟨1, s, s2, . . . ⟩. Это аналогично построению кольца де-
сятичных дробей Z

[
1
10

]
= Z

[
1
2 ,

1
5

]
. Вообще, обращение двух (конечного числа) элементов

s, t ∈ R равносильно обращению их произведения st.

2.5.2 Построение кольца частных

Обратимся к истокам: как строить дроби из множества Q? Это такие m
n , что n ̸= 0. m1

n1
= m2

n2
⇐⇒

m1n2 = m2n1.

Рассмотрим произведение R× S = {(u, v) | u ∈ R, v ∈ S}, где S — мультипликативная система.

Введём отношение эквивалентности (x, u) ∼ (y, v), если ∃w ∈ S : (xv − yu)w = 0. Напрашивающе-
еся решение xv − yu = 0 не соблюдает корректность: если (xv − yu) в новом кольце — не 0, то w
нельзя обратить.

Лемма 2.5.1. ∼ — отношение эквивалентности.

Доказательство. «Всё очевидно, кроме транзитивности. Но транзитивность тоже очевидна»

Пусть (x, u) ∼ (y, v) ∼ (z, w). Тогда ∃s, t ∈ S:

(xv − yu)s = 0 | · wt
(yw − zv)t = 0 | · us

}
+

(xw − zu)vst = 0

Определение 2.5.2 (Кольцо частных R относительно мультипликативной системы S). Так по-

строенное S−1R
def
= R × S/∼ с операциями, определёнными ниже. Запись S−1R здесь следует

понимать, как неделимый символ.

Пара (x, u) содержится в классе эквивалентности, обозначаемом x
u .

Операции определены следующим образом:

• x
u + y

v = xv+yu
uv .

• x
u ·

y
v = xy

uv .

• 1S−1R = 1
1 .

Лемма 2.5.2. Операции определены корректно.

Доказательство. Пусть x
u = x′

u′ . Тогда x
u + y

v = x′

u′ +
y
v , так как

xv + yu

uv
=
x′v + yu′

u′v
(xv + yu) · (u′v) = (x′v + yu′) · (uv)

∃w = (xu′ − x′u)w = 0, так как
x

u
=
x′

u′

((xv + yu)u′v − (x′v + yu′)uv)w = 0

(xu′ − x′u)v2w = 0 — сошлось
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Теорема 2.5.1. Эти операции превращают S−1R в коммутативное кольцо с единицей, и отобра-
жение ϕS : R→ S−1R; x 7→ x

1 является гомоморфизмом колец. При этом ϕS(S) ⊂ (S−1R)∗.

Гомоморфизм ϕS называется гомоморфизм локализации.

Доказательство. Проверка всех свойств — утомительное занятие, которое приведено не будет.

Если x ∈ S, то элемент x
1 действительно обратим, так как x

1 ·
1
x = 1R−1S .

2.5.3 Универсальное свойство кольца частных

Пусть S ⊂ R — мультипликативная система. Определим S−1R.

Например, найдём гомоморфизм ψ : R → A, где A — другое коммутативное кольцо с единицей.
Если ψ(S) ⩽ A∗, то подходящее кольцо частных нашлось.

Определение 2.5.3 (Кольцо S−1R). Коммутативное кольцо с единицей и гомоморфизмом ϕS : R→
S−1R, таким, что ϕS(S) ⊂ (S−1R)∗, обладающее универсальным свойством: ∀A — коммутативное
кольцо с единицей, ∀ψ : R→ A — гомоморфизм, такой, что ψ(S) ⊂ A∗,∃! гомоморфизм η : S−1R→
A, делающий диаграмму коммутативной.

R S−1R

A
ψ

ϕS

η

Таким образом, всякий гомоморфизм ψ : R→ A пропускается через кольцо частных.

Теорема 2.5.2. Построенное в предыдущем параграфе кольцо дробей действительно обладает
универсальным свойством.

Доказательство. S−1R =
{
x
u | x ∈ R, u ∈ S

}
. Определим гомоморфизм η : S−1R→ A как η

(
x
u

)
=

ψ(x)ψ(u)−1.

Проверим, что он определён корректно:
x

u
=
y

v
⇐⇒ ∃w ∈ S : (xv − yu)w = 0⇒ (ψ(x)ψ(v)− ψ(y)ψ(u))ψ(w) = 0

На ψ(w) можно сократить, получаем что надо:

ψ(x)ψ(y)−1 = ψ(u)ψ(v)−1

Проверим, что η — гомоморфизм.

η
(x
u
+
y

v

)
= η

(
xv + yu

uv

)
=

= (ψ(x)ψ(v) + ψ(y)ψ(u))ψ(u)−1ψ(v)−1 = ψ(x)ψ(u)−1 + ψ(y)ψ(v)−1 = η
(x
u

)
+ η

(y
v

)
Осталось проверить единственность: возьмём любой гомоморфизм η′, делающий диаграмму ком-
мутативной. Почему он равен η?

Так как диаграмма коммутативна, то η′(ψS(x)) = ψ(x), то есть η′
(
x
1

)
= ψ(x).

Проверим совпадение η = η′ для дроби x
u . Так как ψ(u) ∈ A∗, то ψ(x) = η′

(
x
1

)
= η′

(
x
u

)
· η′
(
u
1

)
=

η′
(
x
u

)
ψ(u). Сократив на ψ(u) (оно обратимо в A), действительно получаем η′

(
x
u

)
= ψ(x)ψ(u)−1.

Значит, η′ действительно совпадает с η.

Замечание. Воспользовавшись универсальным свойством, нетривиально (но можно, переходя к
пределам в теории категорий) доказать, что кольцо частных существует. Но мы уже его построили
в предыдущем параграфе, поэтому оно несомненно существует.
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2.5.4 Кольцо частных в терминах элементов

Определение 2.5.4 (Кольцо S−1R). S−1R — кольцо вместе с гомоморфизмом ϕS : R → S−1R,
таким, что

1. ϕS(S) ⊂ (S−1R)∗.

2. ∀y ∈ S−1R представим в виде y = ϕS(x)ϕS(u)
−1, где x ∈ R, u ∈ S.

3. Если ϕS(x) = 0, то ∃u ∈ S : xu = 0.

Теорема 2.5.3. Построенное кольцо S−1R (определение 2.5.2) обладает этими свойствами. Любое
кольцо A с гомоморфизмом ψ : R→ A, обладающее этими свойствами, изоморфно S−1R:

1. ψ(S) ⩽ A∗

2. ∀y ∈ A, y = ψ(x)ψ(u)−1

3. ψ(x) = 0 ⇐⇒ ∃u ∈ S : xu = 0.

2.5.5 Примеры колец частных

Примеры.

• S ⩽ R∗ — тривиальная мультипликативная система. S−1R = R.

• S = Reg(R). В таком случае S−1R = Q(R) — полное кольцо частных. Здесь выполнено
вложение R ↪→ Q(R). Если R — область целостности, то Reg(R) = R \ {0}, тогда Q(R) —
поле, поле частных.

Примеры полей частных: Q(Z) = Q, Q(Z[i]) = Q[i], Q(K[x]) = K(x), Q(K[[x]]) = K((x)).

Лекция IX
18 марта 2023 г.

Любое конечное число главных локализаций представимо в виде одной локализации — по их
произведению: Если Любая локализация — предел главных локализаций. Здесь должно быть по-
больше информации на эту тему.

2.6 Поле частных факториального кольца

R — UFD, K = Q(R) =
{
x
y | x, y ∈ R, y ̸= 0

}
.

Теорема 2.6.1. Всякий элемент Q(R) допускает представление в виде

upm1
1 · . . . · pms

s , mi ∈ Z

в единственном виде, где pi — попарно неассоциированные неприводимые элементы.

Доказательство. vp
(
x
y

)
= vp(x)− vp(y).

p-адические показатели обладают обычными свойствами:

1. vp
(
x
y ·

z
w

)
= vp

(
x
y

)
+ vp

(
z
w

)
.

2. vp
(
x
y + z

w

)
⩾ min

(
vp

(
x
y

)
+ vp

(
z
w

))
.

Любопытно заметить, что R = {x ∈ Q(R) | ∀p ∈ Irr(R) : vp(x) ⩾ 0}.

Пусть R ↪→ A.
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Определение 2.6.1 (x ∈ A — целое над R). x — корень многочлена f ∈ R[t], такого, что старший
коэффициент lc(f) = 1. Наименьшая степень f , имеющего своим корнем x, называется степенью
x.

Интересный факт. Множество целых над R образует кольцо.

Есть доказательство через тензорное произведение (сумму), есть — через симметрические много-
члены и кронекеровское произведение (сумму).

В частности, A — целые алгебраические числа над Z (а просто алгебраические числа можно
обозначить Q).

Определение 2.6.2 (Целозамкнутое кольцо R). Любой элемент x ∈ Q(R), являющийся целым над
R, принадлежит R.

Лемма 2.6.1 (Лемма Гаусса). R — UFD ⇒ R — целозамкнуто. В частности, кольцо Z целоза-
мкнуто, то есть Q ∩ A = Z.

Доказательство. Пусть x
y — корень f ∈ R[t]. Можно считать, что x и y взаимно просты — иначе

на общий множитель можно сократить.(
x

y

)n
+ an−1

(
x

y

)n−1
+ · · ·+ a1

(
x

y

)
+ a0 = 0

Умножив на yn, получим равенство в R:

xn + an−1x
n−1y + · · ·+ a1xy

n−1 + a0y
n = 0

Рассмотрим любой неприводимый p | y. Он делит все слагаемые, кроме первого, значит, делит
первое слагаемое тоже (типичное рассуждение).

Значит, y ∈ R∗, значит, xy ∈ R.

2.7 Рациональные дроби

Рассмотрим кольцо многочленов над полем K.

Оно является областью целостности (deg(f · g) = deg f +deg g), значит, определено Q(K[t]) = K(t)
— поле рациональных дробей над K. Часто его также называют полем рациональных функций.
Тем не менее, элементы, K(t) вообще говоря, функциями не являются, например, потому что
многие нетривиальные функции не определены на K.

А именно, f ∈ K[t] ⇝ (f̃ : K → K). Это единственный гомоморфизм из K[t] в K, и согласованно
определить аналогичный гомоморфизм на K(t) не представляется возможным. При сложении двух

функций f
g ∈ K(t)⇝

(
f̃
g : c 7→ f(c)

g(c)

)
их области определения пересекаются. Решением матанализа

является рассматривать рациональные функции, как частичные — определённые не везде.

Ещё проблемой является вопрос — равны ли рациональные «функции» 1
t и

t−1
t(t−1) ? Можно говорить

о равенстве в любой окрестности, которая может быть открыта как в стандартном смысле, так и
в топологии Зарисского. В таком случае разные рациональные функции (например, 1

t и t−1
t(t−1) )

объединяются в классы эквивалентности — ростки функций.

Ещё можно определить функции на одноточечной компактификации K, в народе называющейся

сферой Римана — проективной прямой P′(K) = K∪{∞}. В таком случае f
g (∞) =


0, deg(f) < deg(g)

∞, deg(f) > deg(g)
lc(f)
lc(g) , deg(f) = deg(g)

.

В точках же c ∈ K, таких, что (x− c)m1∥f, (x− c)m2∥g и m2 > m1,
f
g (c) =∞ по определению.

Определение 2.7.1 (Степень рациональной функции). deg
(
f
g

)
= deg f − deg g.

29



Определение 2.7.2 (Полуправильная дробь f
g ∈ K(t)). deg

(
f
g

)
⩽ 0.

Определение 2.7.3 (Правильная дробь f
g ∈ K(t)). deg

(
f
g

)
< 0.

Лемма 2.7.1. Степень удовлетворяет обычным условиям: ∀α, β ∈ K(t):

• deg(α · β) = deg(α) + deg(β).

• deg(α+ β) ⩽ max(deg(α),deg(β)).

Следствие 2.7.1. Правильные и полуправильные дроби образуют подкольцо (правильные —
кольцо без единицы).

Теорема 2.7.1. Пусть α ∈ K(t). Для любого представления α = f
g допускается единственное

представление в виде f
g = q + r

g , где q ∈ K[t], rg — правильная рациональная дробь.

Более того, для любого такого представления многочлен r один и тот же.

Доказательство. Запись эквивалентна f = qg+r (q, r ∈ K[t],deg r < deg g), а такое представление
единственно, так как деление с остатком в K[t] даёт единственный результат.

Единственность r следует от противного: f1
g1

+ r1 = f2
g2
⇒ f1

g1
− f2
g2︸ ︷︷ ︸

правильная дробь

= r2 − r1︸ ︷︷ ︸
многочлен

. Равенство

наступает только если r1 − r2 = 0

Определение 2.7.4 (Запись f
g несократима). f ⊥ g.

2.8 Разложение на простейшие дроби

Предположим, что мы в XVIII веке ищем интеграл
∫ f(x)
g(x) dx.

Определение 2.8.1 (Примарная дробь f
g ∈ K(t)). g = pm для p ∈ Irr(K[t]) и deg f < deg g.

Определение 2.8.2 (Простейшая дробь f
g ∈ K(t)). Примарная дробь, такая, что deg f < deg p.

В частности, простейшими дробями являются xi

pm для 0 ⩽ i < deg p.

Теорема 2.8.1. Любая рациональная дробь допускает единственное представление в виде суммы
многочлена и простейших дробей с различными знаменателями.

Доказательство.

• Выделим целую (полиномиальную) часть. Отныне считаем, что f
g — правильная.

• Если g ⊥ h и deg gh > deg f то f
gh представима, как сумма правильных дробей f1

g + f2
h :

Так как K[t] — PID, то g и h — комаксимальны: gK[t] + hK[t] = K[t], то есть ∃u, v ∈ K[t] :
gu+ hv = 1. Получаем

f

gh
=
fgu

gh
+
fhv

gh
=
fu

h
+
fv

g

Поделим fv на g с остатком: fv = qg+r. Равенство переписывается в виде f
gh =

(
fu
h + q

)
+ r
g .

В скобках стоит правильная дробь, как разность двух правильных дробей.

Получили разложение на правильные дроби.

Применив для g = pm1
1 · . . . · pms

s , получаем разложение на примарные дроби.
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• Покажем, что примарная дробь есть сумма простейших:

Рассмотрим примарную дробь f
pm . Поделим f на p с остатком: f = qp+ r.

f

pm
=
qp+ r

pm
=

q

pm−1
+

r

pm

Первая дробь по индукции разложима на простейшие, вторая — уже простейшая.

• Единственность разложения: если представление не единственно, то существует нетривиаль-
ная линейная зависимость: ∑

i,j

fi,j

pji
= 0

где deg(fi,j) < deg(pi), pi — неприводимые многочлены.

Сконцентрируемся на pn. Пусть суммирование для i = n идёт по j = 1..m. Разобьём сумму:

−
∑
i ̸=n,j

fi,j

pji
−
∑
j<m

fn,j

pjn
=
fn,m
pmn

Посчитаем pn-адический показатель обеих частей, получим противоречие: ⩾ m1 + 1
/

= m1.

Следствие 2.8.1. Базис кольца многочленов счётен — 1, t, t2, . . . .

Базис кольца рациональных дробей K(t) счётен только если K не более, чем счётно. А именно,
это

{
ti | i ∈ N0

}
∪
{
ti

pm | 0 ⩽ i < deg p, p — нормированный
}
.

С аксиомой выбора это эквивалентно тому, что базис K(t) равномощен K для бесконечного
K.

Пример. Над C любой неприводимый нормированный многочлен — это x − c для c ∈ C. Базис
правильных дробей получается

{
1

(x−c)m | m ∈ N
}
.

2.9 Факториальность кольца многочленов

Теорема 2.9.2 (Теорема Гаусса). R — UFD ⇒ R[t] — UFD.

2.9.1 Примитивные многочлены

Пусть f ∈ R[t], f = anx
n + · · ·+ a1x+ a0.

Определение 2.9.1 (Содержание многочлена f). Cont(f)
def
= gcd(an, . . . , a0).

Определение 2.9.2 (Примитивный многочлен f). Cont(f) = 1.

Определение 2.9.3 (Сильно примитивный многочлен f). a0, a1, . . . , an — комаксимальны (возмож-
но, a1, . . . , an комаксимальны, я не справился узнать, где правда).

Лемма 2.9.1. Всякий многочлен представим в виде произведения его содержания и примитив-
ного многочлена.

Лемма 2.9.2. Если af ∼ bg, где a, b ∈ R \ {0}, f, g ∈ R[t] — примитивные многочлены, то
a ∼ b, f ∼ g.

Доказательство. af · u = bg, где u ∈ (R[t])∗ = R∗. Отсюда степени многочленов равны. Пусть
f = anx

n + · · ·+ a0; g = bnx
n + · · ·+ b0.

a gcd(an, . . . , a0) = gcd(aan, . . . , aa0) = gcd(bbn, . . . , bb0) = b gcd(bn, . . . , b0)

откуда a ∼ b. Отсюда f ∼ g.
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Лемма 2.9.3 (Лемма Гаусса). Если f, g ∈ R[t] — примитивные многочлены, то f ∼ g в R[t] ⇐⇒
f ∼ g в K[t].

Доказательство. f ∼ g в K[t]⇒
(
a
b

)
f = g ⇒ af = bg. По предыдущей лемме f ∼ g.

Лемма 2.9.4 (Лемма Гаусса). ∀f, g ∈ R[t] : ∀p ∈ Irr(R) : vp(fg) = vp(f) + vp(g) где vp(f) =
min(vp(a0), . . . , vp(an)).

В частности, Cont(f · g) = Cont(f) · Cont(g).

В частности, примитивные многочлены образуют мультипликативную систему.

Доказательство. Введём r — наименьший номер, такой, что pvp(f)+1 ̸ | ar и s — наименьший
номер, такой, что pvp(g)+1 ̸ | bs.

Рассмотрим f · g, а именно, его коэффициент при tr+s. Это

ar+sb0 + . . .︸ ︷︷ ︸
..
.

pvp(f)+vp(g)+1

+arbs + · · ·+ a0br+s︸ ︷︷ ︸

..
.

pvp(f)+vp(g)+1

Но средний коэффициент делится точно на pvp(f)+vp(g), значит, vp(f · g) ⩽ vp(f) + vp(g). (Оценка
снизу очевидна)

Пусть R — UFD, K = Q(R).

Теорема 2.9.1 (Теорема Гаусса). Для всякого f ∈ R[t]: f ∈ Irr(R[t])⇒ f ∈ Irr(K[t]).

Доказательство. Пусть f = gh в K[t]. Запишем

g =
am
bm

tm + · · ·+ a0
b0

; h =
cn
dn
tn + · · ·+ c0

d0

где ai, ci ∈ R; bi, di ∈ R \ {0}. Обозначим B =
∏
bi, D =

∏
di. Получаем

BD · f = Bg ·Dh = Cont(Bg) · Cont(Dh) · g̃ · h̃, где

{
g̃ = Bg/Cont(Bg)

h̃ = Dh/Cont(Dh)

Согласно предыдущей лемме g̃ · h̃ тоже неприводимый, а ещё тогда f ∼ g̃ · h̃ в R[t] (f неприводим
по условию теоремы). Так как f неприводим, то deg g = 0 или deg h = 0, то есть f неприводим и
в K[t].

Следствие 2.9.1. Для всякого примитивного f ∈ R[t]: f ∈ Irr(R[t]) ⇐⇒ f ∈ Irr(K[t]).

Замечание. Обратное следствие неверно для не примитивных многочленов: 2x− 2 ∈ Z[x] не явля-
ется неприводимым, но 2x− 2 ∈ Q[t] — неприводимый элемент.

2.9.2 Теорема Гаусса

Теорема 2.9.2 (Теорема Гаусса). R — UFD ⇒ R[t] — UFD.

Доказательство. Воспользуемся тем, что и R факториально, и K[t] факториально, где K = Q(R).

f = Cont(f) · f̃ . Разложим Cont(f) внутри UFD R.

Если f̃ разложим над K[t], то он разложим и над R[t] (теорема 2.9.1).

Так как кольцо K[t] нётерово, то процесс оборвётся, значит получили разложение f = up1 · . . . ·
prq1 · . . . · qs, где u ∈ R∗, pi ∈ Irr(R), qj ∈ Irr(R[t]).
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Единственность доказывается следующим образом:

up1 · . . . · prq1 · . . . · qs ∼ u′p′1 · . . . · p′rq′1 · . . . · q′s
⇓

up1 · . . . · pr ∼ u′p′1 · . . . · p′r
q1 · . . . · qs ∼ q′1 · . . . · q′s

R факториально, поэтому первые разложения совпадают. Вторые разложения — разложения и в
K[t], поэтому они ассоциированы в K (K[t] UFD, так как это евклидово кольцо. то есть PID). Но
согласно лемме Гаусса они ассоциированы и в R.

Следствие 2.9.2.

• K[t1, . . . , tn] — UFD

• Z[t1, . . . , tn] — UFD

Лекция X
28 марта 2023 г.

2.10 Дифференцирование алгебр

Пусть R — коммутативное кольцо с единицей, A — алгебра над R.

Определение 2.10.1 (Дифференцирование). Отображение D : A → A, являющееся аддитивным,
и удовлетворяющее тождеству Лейбница

D(xy) = Dx · y + x ·Dy

D называется R-дифференцированием, если, кроме того, оно согласовано с умножением на эле-
мент R: D(λx) = λDx.

Множество всех дифференцирований алгебры A обозначается Der(A), множество R-дифференцирований
— DerR(A).

Определение 2.10.2 (Константа дифференцирования D). Элемент x ∈ A : Dx = 0.

Замечание. Аксиома R-дифференцирования — о согласованности с домножением на элемент R —
утверждает, что все элементы R — константы при вложении в A.

Лемма 2.10.1. Константы дифференцирования образуют подкольцо с единицей в R.

Доказательство. Замкнутость относительно сложения и умножения; D(1·1) = D(1)·1+1·D(1)⇒
D(1) = 0

Факт 2.10.1. Любое дифференцирование полностью определяется своими значениями на какой-
то системе образующих x1, . . . , xn алгебры A над R.

Доказательство. Пусть ∀xi : D1(xi) = D2(xi). Введём D := D1 − D2. D(xi) = 0, так как xi —
система образующих, то KerD = A.

Примеры.

∞. C(∞)(R) — множество бесконечно дифференцируемых функций. d
dx — дифференцирование.

• Внутреннее дифференцирование: для какого-то a ∈ A:

da : A→ A; x 7→ [a, x] = ax− xa
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2.10.1 Операции над дифференцированиями

1. Сумма: D1 +D2 является дифференцированием.

2. Домножение на скаляр: ∀λ ∈ R : λD является дифференцированием.

-1. Произведение дифференцирований дифференцированием, вообще говоря не является: квад-
рат дифференцирования, например, не удовлетворяет тождеству Лейбница: (fg)′′ = f ′′g +
2f ′g′ + fg′′ ̸= f ′g + fg′. Вторая производная является дифференцированием только в кольце
характеристики 2.

3. Коммутирование: D1, D2 ∈ DerR(A) 7→ D1D2 −D2D1 = [D1, D2] ∈ DerR(A).

Доказательство.

[D1, D2](xy) = D1(D2(xy))−D2(D1(xy)) =

= D1(D2x · y + x ·D2y)−D2(D1x · y + x ·D1y) =

= [D1, D2]x · y + x · [D1, D2]y

Теорема 2.10.1. Для любой (не предполагается ассоциативность) алгебры A: DerR(A) является
алгеброй Ли над R относительно суммы и коммутирования.

Тождества алгебры Ли (+, [·, ·]):

1. [x1 + x2, y] = [x1, y] + [x2, y].

2. [x, y1 + y2] = [x, y1] + [x, y2].

3. [λx, y] = λ[x, y] = [x, λy].

4. [x, x] = 0 — тождество антикоммутативности.

5. [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 — тождество Якоби.

2.10.2 Дифференцирование кольца многочленов, теорема Лейбница — Бер-
нулли

Рассматриваем R-алгебру R[x].

Определение 2.10.3 (Формальная производная многочлена). Для многочлена f = anx
n + · · · +

a1x+ a0 (ai ∈ R) это многочлен f ′ = nanx
n−1 + · · ·+ a1.

Операция взятия производной часто обозначается d
dx : R[x]→ R[x], f 7→ f ′.

Теорема 2.10.2 (Лейбниц — Бернулли). DerR(R[x]) = R[x] · d
dx . Иными словами, для любого

дифференцирования D существует многочлен h ∈ R[x], такой, что D ≡ h · d
dx .

Доказательство.

• Эта формула задаёт дифференцирование:

В силу R-линейности достаточно проверять на стандартных мономах.

D(xm · xn) = D(xm+n) = h(x) · (m+ n)xm+n−1

D(xm · xn) = D(xm)xn + xmD(xn) = h(x)mxm−1 + xmh(x)nxn−1 = h(x) · (m+ n)xm+n−1

• Пусть D ∈ DerR(R[x]). Тогда D полностью определяется значением на какой-то системе
образующих алгебры, например, на элементе x. Пусть Dx = h, h ∈ R[x]. В силу линейности
достаточно доказать, что D = h · d

dx только на стандартных мономах.

Это верно, так как для f1, . . . , fn : D(f1 · . . . · fn) = D(f1)f2 · . . . · fn+ · · ·+ f1 · . . . · fn−1D(fn).
В частности, для коммутирующих f и Df : D(fn) = nfn−1 ·Df .
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Свойства (Свойства производной).

• D(f ◦ g) = (Df ◦ g) ·D(g).

• Тождество для дифференцирований высших порядков: f ′′ = (f ′)′, f ′′′ = (f ′′)′, (f · g)(n) =
n∑
k=0

(
n
k

)
f (k)g(n−k).

• Формула Фаа ди Бруно:

Dn(f ◦ g) =
∑ n!

m1!1!m1 · . . . ·mn!n!mn
D(m1+···+mn)(f ◦ g) ·

n∏
j=1

(Djg)mj

где сумма берётся по всем таким m1, . . . ,mn, что m1 · 1 + · · ·+mn · n = n.

• D(g−1) = −g−1 ·Dg · g−1. Для коммутативного кольца, например, K(x) :
(
f
g

)′
= f ′g−fg′

g2 .

Теорема 2.10.3. Константы дифференцирования K[x] у d
dx — это K[xp], где p = char(K).

2.11 Алгебраические и трансцендентные элементы; минималь-
ный многочлен

Пусть K — поле, A — необязательно коммутативная K-алгебра.

Гомоморфизм эвалюации определён ∀c ∈ A : evc : K[x]→ A, f 7→ f(c).

У гомоморфизма есть ядро Ker(evc) P K[x].

• Либо Ker(evc) = {0}. В таком случае c ∈ A — трансцендентный над K элемент.

• Либо Ker(evc) ̸= {0}. В таком случае c ∈ A — алгебраический над K элемент.

Определение 2.11.1 (Минимальный многочлен для c ∈ A). Многочлен θc, порождающий Ker(evc)

Все многочлены из ядра Ker(evc) называются аннулирующими. Так как K[x] — PID, то мини-
мальный многочлен существует (и все аннулирующие многочлены делятся на минимальный).

Определение 2.11.2 (Степень элемента c над K). Степень deg θc.

Теорема 2.11.1.

• Если c — трансцендентный над K, то K[c] ∼= K[x].

• Если c — алгебраический над K, то K[c] ∼= K[x]/(K[x]θc) — векторное пространство над K
размерности n := deg θc.

K[c] =
{
a0 + a1 + · · ·+ an−1c

n−1 +K[x]θc | ai ∈ K
}

Доказательство. Теорема о ядре и образе для evc.

Замечание. K[c] — наименьшая K-подалгебра, содержащая c.

2.11.1 Что можно сказать, если A — область целостности?

evc : K[x]→ A — область целостности. Если c — алгебраическое, то K[x]/K[x]θc ∼= K[c] ⩽ A.

Таким образом, θc неприводим в K[x]: если θc = ϕ · ψ, то ϕ, равно как и ψ — делители нуля в
K[x]/K[x]θc.

Обозначим поле частных K[c] как K(c)
def
= Q(K[c]) ⩽ Q(A).

Теорема 2.11.2. Если c трансцендентно, то K(c) ∼= K(x). Если c алгебраическое, то K(c) = K[c].

Доказательство.
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• Часть про трансцендентность очевидна, так как K[c] ∼= K[x].

• Необходимо проверить, что K[c] — поле. Это верно, так как K[x] — PID, значит, идеал,
порождённый неприводимым многочленом, максимален.
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Глава 3

Канонические формы линейных
операторов

1. Конечные задачи: Рассмотрим линейное отображение ϕ : U → V из первой главы. Его кано-

нической формой является матрица
(
e 0
0 0

)
при правильном выборе базиса в U и в V . Все

инварианты, возникавшие здесь, имели дискретную природу — размерность и ранг.

2. Ручные задачи: Сейчас мы рассмотрим более сложную задачу: каноническая форма линей-
ного оператора ϕ : U → U . Трудность состоит в том, что матрицу хочется выбрать так, чтобы
базисы в U слева и справа совпадали. Здесь будут возникать непрерывные инварианты.

3. Дикие задачи: классификация пар линейных операторов ϕ, ψ : U → U . Ответ на ту задачу не
найден, и, по-видимому, не будет получен, так как он позволяет классифицировать слишком
много всего.

3.1 Инвариантные подпространства

Рассмотрим линейный оператор над полем K: ϕ : V → V (ϕ ∈ EndK(V )).

Определение 3.1.1 (ϕ-инвариантное подпространство U ⩽ V ). Такое подпространство, что ϕ(U) ⊂ U .

ϕ можно ограничить на любом ϕ-инвариантном подпространстве U .

Примеры.

• Тривиальное ({0}) и несобственное (V ) подпространства инвариантны для любого оператора.

• Движение пространства R3 с неподвижной точкой 0 — поворот (и, возможно, отражение).
Ось вращения и ортогональная ей плоскость поворота инвариантны.

• K[x]⩽n для любого n ∈ N инвариантно для оператора дифференцирования d
dx .

• Оператор сдвига бесконечномерного пространства: пусть базис пронумерован целыми числа-
ми . . . , u−1, u0, u1, . . . Тогда оператор сдвига определён на базисе ϕ(ui) = ui+1. У него нет
инвариантных подпространств, а если бы было ϕ(ui) = ui+2, то были бы только бесконечно-
мерные.

Пусть dimV <∞, ϕ ∈ EndK(V ), ϕ(U) ⊂ U .

Теорема 3.1.1. В подходящем базисе ϕ имеет матрицу

( [
ϕ
∣∣
U

]
∗

0
[
ϕ
∣∣
V/U

] )

Доказательство. ϕ
∣∣
V/U

: V/U → V/U определено корректно: ϕ(v + U) = ϕ(v) + U .

37



Выберем в качестве базиса произвольный базис U — (v1, . . . , vm), а потом дополним его до базиса
всего пространства (vm+1, . . . , vn).

В этом базисе матрица действительно имеет такой вид. vm+1 + U, . . . , vn + U — базис V/U .

Определение 3.1.2 (Инвариантное дополнение ϕ-инвариантного пространства U ⩽ V ). Такое под-
пространство W ⩽ V , что оно тоже ϕ-инвариантно, причём V = U ⊕W .

Теорема 3.1.2 (Случай полной приводимости). Если U имеет инвариантное дополнение W , то в

подходящем базисе [ϕ] =

( [
ϕ
∣∣
U

]
0

0
[
ϕ
∣∣
W

] ).
Доказательство. Выберем в качестве базисов объединение базисов U и W .

3.2 Собственные подпространства. Собственные числа

Собственные подпространства инвариантны, но, к сожалению, инвариантно не дополняемы.

Считаем, что K — поле, dimK(V ) <∞.

Определение 3.2.1 (Собственный вектор оператора ϕ). Такой вектор v
̸=0
∈ V , что ⟨v⟩ = vK

инвариантно относительно ϕ. Иными словами, ϕ(v) = vλ для некоего λ ∈ K.

Определение 3.2.2 (Собственное число оператора ϕ). Такое число λ ∈ K, что существует v
̸=0
∈ V ,

такой, что ϕ(v) = vλ.

Примеры.

• Если [ϕ] =

λ1 0
. . .

0 λn

 в некотором базисе (v1, . . . , vn), то v1, . . . , vn — собственные

векторы с соответственно собственными числами λ1, . . . , λn. Оператор простой структуры
или диагонализуемый оператор.

•
(
0 1
1 0

)
имеет собственные числа 1 и −1 — для векторов

(
1
1

)
и
(

1
−1

)
соответственно.

•
(

0 1
−1 0

)
не имеет собственных чисел, как оператор над полем R. Как оператор над полем

C, оператор имеет собственные числа i и −i — для векторов
(
1
i

)
и
(

1
−i

)
соответственно.

Оператор диагонализуем над C, но не над R.

Лемма 3.2.1 (Частный случай леммы Дедекинда — Артина о линейной независимости характе-
ров). Пусть v1, . . . , vm ∈ V — ненулевые собственные векторы, отвечающие попарно различ-
ным собственным числам λ1, . . . , λm ∈ K.

Тогда v1, . . . , vm линейно независимы.

Доказательство. Пусть v1µ1+ · · ·+vmµm = 0 — самая короткая линейная зависимость (наимень-
шее m, такое, что все µi ̸= 0).

При m = 1 теорема верна, так как v1 ̸= 0.

При m ⩾ 2: запишем два равенства

0 = 0 · λm = (v1µ1 + · · ·+ vmµm)λm

0 = ϕ(0) = v1µ1λ1 + · · ·+ vmµmλm

Вычитая равенства, получаем линейную зависимость длины ровно m− 1:

0 = v1 · µ1(λ1 − λm) + · · ·+ vm−1 · µm−1(λm−1 − λm)
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Теорема 3.2.1. Если оператор ϕ ∈ EndK(V ) имеет n := dimV различных собственных чисел, то
он диагонализуем.

Доказательство. По определению существуют ненулевые v1, . . . , vn — собственные векторы для
данных собственных чисел.

По лемме они линейно независимы, значит, образуют базис. В этом базисе [ϕ] =

λ1 0
. . .

0 λn



3.3 Характеристический многочлен оператора

Пусть ϕ ∈ EndK(V ).

Определение 3.3.1 (Характеристический многочлен χϕ(t)). Многочлен, равный det([ϕ]−te), где [ϕ]
— матрица ϕ в каком-то базисе, e — единичная матрица, t — свободная переменная в многочлене.

Лемма 3.3.1. χϕ не зависит от выбора базиса.

Доказательство. Любые две матрицы ϕ в разных базисах, [ϕ]u и [ϕ]v сопряжены: для g = (u⇝ v)
выполняется g[ϕ]ug−1 = [ϕ]v.

Тогда det([ϕ]v − te) = det(g) det([ϕ]v − te) det(g−1) = det(g[ϕ]vg
−1 − tgeg−1) = det([ϕ]u − te).

Определение 3.3.2 (Сингулярные собственные числа). Корни χϕ. Не путать с сингулярными чис-
лами (пусть они и не определялись).

Множество λ, для которых ϕ− λe не является обратимым, называется спектром оператора ϕ.

Теорема 3.3.1. Для конечномерного пространства V над полем K сингулярные собственные числа
ϕ совпадают с собственными числами ϕ.

Доказательство. Зафиксируем базис и отождествим V = Kn. Также отождествим ϕ и [ϕ].

Для собственного числа λ ∈ K найдётся собственный вектор v ∈ V , такой, что ϕv = vλ ⇐⇒
(ϕ− λ id)v = 0.

По теореме Крамера ∃v ̸= 0 : (ϕ− λ id)v = 0 ⇐⇒ χϕ(λ) = det(ϕ− λ id) = 0.

Замечание. Выше определённые собственные числа — правые. Можно определить левые собствен-
ные числа: Kn → Kn ; u 7→ (u)ϕ. Всякий элемент λ ∈ K, такой, что (u)ϕ = λu является левым
собственным числом. Для поля левые собственные числа и правые собственные числа совпадают
с сингулярными собственными числами, то есть это всё одно и то же.

3.4 Геометрическая и алгебраическая кратности собственного
числа

Определение 3.4.1 (Собственное подпространство оператора ϕ, отвечающее собственному числу λ).
V (λ) = {v ∈ V | ϕ(v) = vλ}.

Очевидно, что V (λ) — это подпространство, причём его размерность равна числу различных ли-
нейно независимых векторов с собственным числом λ.

Определение 3.4.2 (Геометрическая кратность собственного числа λ). Размерность V (λ).

Определение 3.4.3 (Алгебраическая кратность собственного числа λ). Кратность λ как корня χϕ.

Лемма 3.4.1. Геометрическая кратность λ не превосходит алгебраической кратности.
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Доказательство. Пусть m — геометрическая кратность λ. Значит, ∃v1, . . . , vm — линейно незави-
симые собственные векторы для собственного числа λ.

Выберем базис V , дополнив (v1, . . . , vm). Теперь матрица ϕ имеет вид [ϕ] =


λ 0

. . .
0 λ

 ∗

0 ∗

.
Очевидно, характеристический многочлен делится на (t− λ)m.

Замечание. Если алгебраическая кратность собственного числа равна 1, то она равна геометриче-
ской кратности.

Примеры.

• Рассмотрим элементарную трансвекцию в каком-то базисе [ϕ] =

(
1 1
0 1

)
.

С одной стороны, χϕ(t) = (t− 1)2.

С другой стороны,
(
1 1
0 1

)(
a
b

)
=

(
a+ b
b

)
λ выполняется для произвольного λ только если

b = 0, то есть геометрическая размерность единицы как собственного числа — 1, что меньше
алгебраической кратности 2.

В частности, видим, что пространство не порождается собственными векторами, матрица не
диагонализуема.

• Рассмотрим пространство K[t]⩽n с оператором ϕ = d
dt . В стандартном базисе: [ϕ] =


0 1 . . . 0

0 2
...

. . .
. . .
0 n

0 . . . 0

.
Здесь χϕ(t) = (−t)n+1. Алгебраическая кратность n+ 1, геометрическая — 1.

• Жорданова клетка J(λ) =


λ 1 0

. . .
. . .
. . . 1

0 λ


n

. Геометрическая кратность собственного

числа λ этой клетки равна 1, алгебраическая — n.

3.5 Корневые векторы. Корневое подпространство

По-прежнему ϕ ∈ EndK(V ).

Определение 3.5.1 (Корневой вектор v ∈ V оператора ϕ, отвечающий собственному числу λ).
Существует m ∈ N : (ϕ − λ id)m(v) = 0. Такое наименьшее m называется высотой корневого
вектора.

В частности, собственный вектор — корневой вектор высоты 1.

Определение 3.5.2 (Подпространство корневых векторов высоты, не превосходящей m). Vm(λ) =
{v ∈ V | (ϕ− λ id)m(v) = 0}.

Очевидна цепочка вложений (V (λ) =)V1(λ) ⩽ V2(λ) ⩽ V3(λ) ⩽ . . .

Пространство конечномерно, цепочка стабилизируется. Можно заметить, что как только Vm(λ) =
Vm+1(λ), так сразу ∀k > m : Vk(λ) = Vm(λ).

Теорема 3.5.1. Над алгебраически замкнутым полем всё пространство раскладывается в прямую
сумму корневых подпространств, отвечающих собственному числу λ.
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Доказательство. См. (теорема 3.7.3).

Пример (Основной пример корневых векторов).

Определение 3.5.3 (Экспоненциальные многочлены). Конечная линейная комбинация мономов
tmeλt, где m ∈ N0, λ ∈ R, e — основание натурального логарифма.

Все мономы формально независимы и образуют кольцо экспоненциальных многочленов ExpR с
умножением, определённым как обычно:

tmeλt · tneµt = tm+ne(λ+µ)t

Также в данном кольце определено дифференцирование d
dt

(
tmeλt

)
= mtm−1eλt + λtmeλt.

Заметим, что (
d

dt
− λ id

)(
tmeλt

)
= mtm−1eλt(

d

dt
− λ id

)2 (
tmeλt

)
= m(m− 1)tm−1eλt(

d

dt
− λ id

)m (
tmeλt

)
= m! · eλt(

d

dt
− λ id

)m+1 (
tmeλt

)
= 0

Таким образом, tmeλt — корневой вектор, отвечающий собственному числу λ, высоты m+ 1.

3.6 Теорема Кэли — Гамильтона

Отождествим эндоморфизм ϕ c его матрицей [ϕ].

Заметим, что χϕ(ϕ) = 0, то есть(
a b
c d

)2

− (a+ d)

(
a b
c d

)
+ (ad− bc)

(
1 0
0 1

)
= 0

Для матриц 2× 2 это заметил Гамильтон, для матриц 3× 3 — Кэли, Фробениус обобщил.

3.6.1 Алгебраическое доказательство

Формально, пусть R — произвольное коммутативное кольцо, x ∈M(n,R).

Теорема 3.6.1 (Кэли — Гамильтон). χx(x) = evx(det(x− te)) = 0.

Алгебраическое доказательство. По теореме Крамера x# · x = x · x# = det(x)e, где x# = adj(x).
Запишем

(x− te)#(x− te) = χx(t)e

Это равенство в кольце M(n,R[t]) ∼=M(n,R)[t][
изоморфизм состоит в вынесении t за матрицы:

(
1− t 0
0 1− t

)
↔
(
1 0
0 1

)
+

(
−1 0
0 −1

)
t

]
В равенство хочется подставить t← x. Если получится нуль, то значит действительно χx(x) = 0.

При рассмотрении данного равенства, как равенства в M(n,R[t]) подстановка ничего интересно-
го, по-видимому, не даст: мы хотим, чтобы x − te стало нулём, а подстановка даст матрицу из
M(n,R[x]), где R[x] — многочлены от данной матрицы, факторкольцо кольца многочленов.x1,1 − t . . . x1,n

...
. . .

...
xn,1 . . . xn,n − t


∣∣∣∣∣∣∣
t←x

=

x1,1e− x . . . x1,ne
...

. . .
...

xn,1e . . . xn,ne− x


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Если же рассматривать данное равенство, как равенство в M(n,R)[t], то априори подставлять
t ← x нельзя, так как можно утверждать о сохранении равенства при эвалюации только если
коэффициенты коммутируют с элементом алгебры, который планируется подставить.

Пусть (x− te)# = bn−1t
n−1 + bn−2t

n−2 + · · ·+ b0, где bi ∈M(n,R).
Пусть χx(t) = cnt

n + · · ·+ c0, где ci ∈ R.
В этих терминах равенство переписывается в M(n,R)[t] следующим образом

(bn−1t
n−1 + bn−2t

n−2 + · · ·+ b0) · (x− te) = (cnt
n + · · ·+ c0)e

Лемма 3.6.1. Утверждается, что x коммутирует со всеми bi (поэтому его можно
подставить в данное равенство).

Доказательство леммы.

Докажем, что матрица bn−i является многочленом от x степени i − 1. Это доказывать
мы будем по индукции, причём пользоваться будем написанным выше равенством в
M(n,R)[t].

Записав равенство коэффициентов при tn−i, получаем

bn−ix− bn−1−ie = cn−ie для 0 ⩽ i < n (здесь формально bn = 0)

Сразу получаем bn−1 = −cne; bn−1−i = −cn−ie+ bn−ix.

Таким образом, эвалюация данного равенства t ← x сохранит его справедливость, а левая часть
очевидным образом обратится в нуль.

3.6.2 Геометрическое доказательство

Определение 3.6.1 (Алгебраическое замыкание). Такое поле K, что оно алгебраически замкнуто
и все элементы K алгебраичны над K.

Интересный факт (Теорема Штейница). Для любого K существует (и единственно с точностью
до изоморфизма) алгебраическое замыкание K.

Геометрическое доказательство теоремы Кэли — Гамильтона. Здесь будем рассматривать x как
матрицу некоего ϕ ∈ EndK(V ).

Рассмотрим многочлен χϕ(t) с коэффициентами в некотором расширении K — конкретно, в ал-
гебраическом замыкании. Будем считать K = K — если в K : χϕ(ϕ) = 0, то это же верно и в
K.

У χϕ есть корень, назовём его λ.

χϕ(t) = (t− λ)f(t), λ ∈ K, f ∈ K[t],deg f ⩽ n− 1.

Собственному числу λ соответствует вектор v
̸=0
∈ V , такой, что ϕ(v) = vλ. Разложим V в прямую

сумму V = vK ⊕ U .

[ϕ] =

(
λ ∗
0
[
ϕ
∣∣
V/vK

] )
ϕ
∣∣
V/vK

=: ψ ∈ EndK(U).

Дальше будем действовать по индукции по n. Индукционное предположение звучит так: ∀u ∈ U :
f(ϕ)(u) ∈ vK, то есть матрица f(ϕ) выглядит следующим образом:

[f(ϕ)] =

(
λ ∗
0 0

)
Теперь χϕ(ϕ) = (ϕ− λ id)f(ϕ) и ∀w ∈ V : (ϕ− λ id) · f(ϕ)(v)︸ ︷︷ ︸

vµ

= (ϕ− λ id)vµ = 0.
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Лекция XI
7 апреля 2023 г.

3.7 Примарное разложение

Самым сложным случаем оказывается тот, когда минимальный многочлен (или характеристиче-
ский) имеют примарный вид — степень неприводимого.

3.7.1 Минимальный многочлен вектора относительно оператора

ϕ ∈ End(V ), причём dimK V <∞. Рассмотрим v ∈ V, f ∈ K[t].

Определение 3.7.1 (Многочлен f аннулирует v относительно ϕ). f(ϕ)(v) = 0, то есть v ∈
Ker(f(ϕ)).

Теперь рассмотрим аннулятор Ann(ϕ, v)
def
= {f ∈ K[t] | f(ϕ)(v) = 0}. Напомним, что просто анну-

лятор Ann(ϕ)
def
= {f ∈ K[t] | f(ϕ) = 0}.

Лемма 3.7.1. Ann(ϕ, v) P K[t].

Определение 3.7.2 (Минимальный многочлен вектора v относительно ϕ). Нормированный много-
член θϕ,v, порождающий Ann(ϕ, v), как идеал.

Лемма 3.7.2. Ann(ϕ) =
⋂
v∈V

Ann(ϕ, v)

Следствие 3.7.1. Для любого v ∈ V минимальный многочлен θϕ,v делит минимальный много-
член θϕ.

Ещё можно заметить, что так как θϕ | χϕ, то θϕ,v | χϕ.

Следствие 3.7.2. Делителей многочлена конечное число, значит, {θϕ,v}v∈V конечно.

3.7.2 Ядро операторного многочлена

Рассмотрим оператор ϕ ∈ EndK(V ); зафиксируем многочлен f ∈ K[t]. Какие векторы он аннулиру-
ет?

Лемма 3.7.3. Если f, g ∈ K[t], то Ker(f(ϕ)) инвариантно относительно g(ϕ).

Доказательство. Рассмотрим v ∈ Ker(f(ϕ)). Покажем g(ϕ)(v) ∈ Ker(f(ϕ)):

f(ϕ)(g(ϕ)(v)) = (f(ϕ) · g(ϕ))(v) = (g(ϕ) · f(ϕ))(v) = g(ϕ)(f(ϕ)(0)︸ ︷︷ ︸
0

) = 0

Лемма 3.7.4. Если f, g ∈ K[t], f | g, то Ker(f(ϕ)) ⩽ Ker(g(ϕ)).

Доказательство. Пусть g = hf . Тогда если f(ϕ)(v) = 0, то g(ϕ)(v) = (hf)(ϕ)(v) = h(0) = 0.

Теорема 3.7.1. Пусть f, g, h ∈ K[t]; f = gh, где g ⊥ h — взаимно просты.

Тогда ∀ϕ ∈ EndK(V ) : Ker(f(ϕ)) = Ker(g(ϕ))⊕Ker(h(ϕ)).

Доказательство.

• Так как K[t] — PID, то есть кольцо Безу, то ∃p, q ∈ K[t] : pg + qh = 1.

Эвалюация в ϕ:
p(ϕ)g(ϕ) + q(ϕ)h(ϕ) = id

Применим к произвольному вектору v ∈ V :

v = p(ϕ)(g(ϕ)(v)) + q(ϕ)(h(ϕ)(v))
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• Покажем Ker(g(ϕ)) ∩Ker(h(ϕ)) = {0}.

В самом деле, если v ∈ Ker(g(ϕ)) ∩Ker(h(ϕ)), то v = 0 + 0.

• Покажем Ker(g(ϕ)) + Ker(h(ϕ)) = Ker(f(ϕ)).

Пусть v ∈ Ker(f(ϕ)). Опять же, запишем

v = p(ϕ)(g(ϕ)(v)) + q(ϕ)(h(ϕ)(v))

Первое слагаемое лежит в Ker(h(ϕ)), второе — в Ker(g(ϕ)).

Согласно лемме, применение p(ϕ) ничего не меняет — p(ϕ)(g(ϕ)(v)) тоже лежит в ядре
Ker(h(ϕ)).

3.7.3 Примарное разложение

ϕ ∈ EndK(V ), рассмотрим χϕ = (−1)npm1
1 · . . . · pms

s , где pi ∈ K[t] — неприводимые, нормированные
многочлены.

Определение 3.7.3 (Примарное подпространство). V pi = Ker(pmi
i (ϕ)) — аналог корневого подпро-

странства.

Теорема 3.7.2 (О примарном разложении). V = V p1 ⊕ · · · ⊕ V ps .

Доказательство. Теорема Гамильтона — Кэли (теорема 3.6.1) + (теорема 3.7.1) + индукция по
s.

Случай алгебраически замкнутого поля

Все неприводимые многочлены имеют степень 1. В таком случае χϕ(t) = (λ1− t)m1 · . . . · (λs− t)ms .

V t−λ — в точности корневое подпространство, отвечающее собственному числу λ.

Теорема 3.7.3 (О корневом разложении). Если χϕ разложим на линейные множители, как выше
(в частности, если K — алгебраически замкнутое поле), то V = V λ1 ⊕ · · · ⊕ V λs .

Для приведения оператора к каноническому виду достаточно привести его, ограниченного на кор-
невые подпространства.

3.8 Теорема о жордановой форме

Ограничим ψ := ϕ
∣∣
V λi

.

Ограниченный оператор имеет единственное собственное число; χψ = (λ− t)n.

Чтобы было ещё удобнее, будем считать, что λ = 0 — вместо ψ рассмотрим ψ − λ idV λ .

Теперь χψ(t) = (−t)n, то есть ψn = 0 или ψ — нильпотентен.

Как выглядит нильпотентный оператор? Например, так:0 ∗
. . .

0 0


Рассмотрим ещё более специфичный случай

Jn(0) =


0 1 0

. . .
. . .
. . . 1

0 0

 ; прибавим λ id обратно: Jn(λ) =


λ 1 0

. . .
. . .
. . . 1

0 λ


Оказывается, над полем ничего другого не бывает.
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Определение 3.8.1 (Жорданова клетка (жорданов блок) степени n с собственным числом λ).
Выше изображённая матрица Jn(λ).

Теорема 3.8.1. Если ϕ — оператор, такой, что его характеристический многочлен разложим над

K на линейные множители: χϕ =
s∏
i=1

(t − λi)ni , то в пространстве V существует базис, в котором

матрица ϕ имеет вид

Jm1
(µ1)⊕ · · · ⊕ Jmt

(µt) =

Jm1(µ1) 0
. . .

0 Jmt(µt)


где m1 + · · ·+mt = n = dimK(V ), а µi ∈ {λi}. Быть может, µi = µj , но типы жордановых клеток
— пары (mi, µi) — определены однозначно.

Определение 3.8.2 (Жорданов базис). Базис, в котором ϕ имеет вышеописанный вид.

Если многочлен не разложим на линейные множители, то возникнут Фробениусовы клетки в
разложении в прямую сумму. Впрочем, возникает трудный вопрос о единственности.

Лекция XII
11 апреля 2023 г.

3.8.1 Жорданов базис нильпотентного оператора

Пусть ϕ ∈ End(V ) над произвольным полем, нильпотентен: ∃m : ϕm = 0.

Обозначим за m ступень нильпотентности ϕ — наименьшее m, такое, что ϕm = 0. По опреде-
лению, Ker(ϕm−1) ≨ Ker(ϕm) = V .

Лемма 3.8.1. Если v1, . . . , vs ∈ Ker
(
ϕk+1

)
и линейно независимы относительно Ker

(
ϕk
)
, то

ϕ(v1), . . . , ϕ(vs) ∈ Ker(ϕk) (очевидно) и линейно независимы относительно Ker(ϕk−1).

Доказательство. Пусть ϕ(v1)λ1 + · · ·+ ϕ(vs)λs ∈ Ker(ϕk−1).

Тогда ϕ(v1λ1 + · · ·+ vsλs) ∈ Ker(ϕk−1), и v1λ1 + · · ·+ vsλs ∈ Ker(ϕk), откуда λ1 = · · · = λs = 0.

Рассмотрим цепочку {0} ≨ Ker(ϕ) ≨ Ker(ϕ2) · · · ≨ Ker(ϕm) = V .

m. Пусть vm1 , . . . , v
m
n1

— базис V относительно Ker(ϕm−1).

m− 1. Рассмотрим ϕ(vm1 ), . . . , ϕ(vmn1
) — линейно независимые векторы Ker(ϕm−1) относительно Ker(ϕm−2).

Дополним их до базиса Ker(ϕm−1) относительно Ker(ϕm−2), добавив векторы vm−11 , . . . , vm−1n2
.

m− 2. Ко всем векторам на предыдущем уровне ещё раз применим ϕ:

ϕ2(vm1 ), . . . , ϕ2(vmn1
), ϕ(vm−11 ), . . . , ϕ(vm−1n2

)

Дополним их до базиса Ker(ϕm−2) относительно Ker(ϕm−3), добавив векторы vm−21 , . . . , vm−2n3
.

⩽ m− 3. И так далее.

1. На данном шаге получается набор векторов ϕm−1(vm1 ), . . . , ϕm−1(vmn1
), ϕm−2(vm−11 ), . . . , ϕm−2(vm−1n2

), . . . ,
независимых в V относительно {0}.

Дополним их до абсолютного базиса Ker(ϕ), он же — относительный базис Ker(ϕ) относи-
тельно {0}.

Теорема 3.8.2. Полученные векторы ϕi(vkj ) — базис V .

Доказательство. Очевидно из того, что (для U ⩽ V ) объединение базиса U и базиса V относи-
тельно U — базис V .
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Получили жордановы башенки следующего вида:

v11

• v12 v22

• • •

• • • v14

• • • • v15

ϕ

ϕ ϕ

ϕ

ϕ

ϕ

ϕ

ϕ ϕ

ϕ

ϕ

где цепочек высоты k будет nm−k. Башне высоты k соответствует жорданова клетка Jk(0) =
0 1 0

. . .
. . .
. . . 1

0 0

. Клеток Jk(0) будет nm−k, а ϕ = Jm(0)⊕ · · · ⊕ Jm(0)︸ ︷︷ ︸
n1

⊕ · · · ⊕ . . .

Осталось доказать единственность в некотором смысле.

Это видно из следующей выкладки:

n1 = codim(Ker(ϕm−1), V )

n2 = codim(Ker(ϕm−2),Ker(ϕm−1))− n1
n3 = codim(Ker(ϕm−3),Ker(ϕm−2))− n1 − n2

Таким образом, количество жордановых клеток данного размера зависит только от коразмерностей
ядер, не зависят от выбора базиса.

Замечание. Для разложения оператора ϕ с характеристическим многочленом (t − λ)n надо рас-
смотреть оператор ϕ− λ id, после чего прибавить λ id обратно.

3.9 Сепарабельные многочлены, совершенные поля

Пусть f ∈ K[t].

Определение 3.9.1 (f — сепарабельный). f ⊥ f ′. Так как K[t] — PID, то K[t]f +K[t]f ′ = K[t].

Пример. Допустим, f(x) = (x− c)2g(x). Тогда f ′(x) = 2(x− c)g(x) + (x− c)2 · g′(x). Это же можно
записать для f = p2g — все многочлены такого вида не сепарабельны.

Таким образом, сепарабельный многочлен не имеет кратных корней (ни в одном расширении поля
K).

Обратно, если f = p1 · . . . · pm, где pi ∈ K[t], различны (с точностью до ассоциированности) и
неприводимы и все pi сепарабельны, то f сепарабелен.

Определение 3.9.2 (Совершенное поле K). Все неприводимые многочлены над K[t] сепарабельны.

Примеры (Совершенные поля).

• Любое поле характеристики 0.

• Алгебраически замкнутое поле. (Все неприводимые многочлены — (x− c), они сепарабельны
по определению).

• Все конечные поля.
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Контрпример (Не все поля совершенны).

Пусть char(K) = p > 0. Поле K(x) несовершенно:

Рассмотрим y := x1/p — элемент какого-то расширения K(x). Он является корнем своего мини-
мального многочлена θy(t) := tp − x ∈ K(x)[t].

θ′y = 0, значит, gcd(θy, θ′y) = θy, откуда θy не является сепарабельным.

Многочлен θy неприводим (x1/p не является рациональной функцией), но в расширении поля, где
есть y, многочлен θy разложим на линейные множители: θy(t) = (t− y)p.

К счастью, этот пример является единственным в некотором роде.

Интересный факт. Все совершенные поля — поля, для которых эндоморфизм Фробениуса (Frobp :
K → K,Frobp(x) = xp) сюръективен.

3.10 Разложение Жордана — Шевалле

Пусть K — совершенное поле.

Рассмотрим x ∈M(n,K).

Определение 3.10.1 (Полупростая матрица). Диагонализуемая над каким-то расширением матри-
ца. Над совершенным полем достаточно взять алгебраическое замыкание.

Определение 3.10.2 (Унипотентная матрица). Такая матрица x, что x − e — нильпотентна, то
есть все собственные числа x− e равны 0.

Интересный факт (Аддитивное разложение Жордана — Шевалле). ∀x ∈ M(n,K) : ∃!xs, xn ∈
M(n,K), такие, что

1. xs — полупростая.

2. xn — нильпотентна.

3. x = xs + xn.

4. xsxn = xnxs.

Утверждается, что, более того, такие матрицы xs и xn являются многочленами от x.

Доказательство. Перейдём к алгебраическому замыканию K, разложим Jn(λ) = λ id+Jn(0).
Доказательство единственности сложнее.

Интересный факт (Мультипликативное разложение Жордана — Шевалле). ∀x ∈ GL(n,K) :
∃!xs, xu ∈M(n,K), такие, что

1. xs — полупростая.

2. xu — унипотентна.

3. x = xsxu.

4. xsxu = xuxs.

Утверждается, что, более того, такие матрицы xs и xu являются многочленами от x.

Лекция XIII
12 апреля 2023 г.
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3.11 Вещественные жордановы формы

Пусть V — векторное пространство над R.

Рассмотрим VC = V ⊗R C. Что такое это в общем случае — непонятно, но здесь это значит, что
для базиса V (e1, . . . , en) над R у пространства VC базис — (e1, . . . , en) над C.

Это называется комплексификация V . Вещественный базис комплексификации — (e1, e1i, . . . , en, eni),
где i — мнимая единица. Можно сказать, что комплексификация имеет двойную размерность.

Всякому оператору ϕ : V → V сопоставляется комплексификация оператора ϕ : VC → VC. Вос-
пользовавшись тем, что мы зафиксировали базис, мы определим комплексификацию, как оператор
с той же матрицей: M(n,R) ↪→M(n,C).

Можно привести матрицу ϕ к жордановому виду над C. Вспомнив, что ϕ — вещественный опе-
ратор, получаем χϕ(t) ∈ R[t]. Таким образом, его корни — либо вещественные числа, либо пары
сопряжённых комплексных.

Лемма 3.11.1. Если u — корневой вектор ϕ, отвечающий собственному числу λ ∈ C\R высоты
m, то u — корневой вектор той же высоты и собственного числа λ.

Доказательство. (ϕ−λ id)m(u) = 0 ⇒
(
ϕ− λ id

)m
(u) = 0 — пользуемся тем, что комплексное

сопряжение — автоморфизм.

Следствие 3.11.1. Жордановы клетки комплексно сопряжённых пар тоже бьются на пары
одной размерности.

Значит, для приведения комплексной жордановой формы к какой-то хорошей вещественной, надо
преобразовать Jm(λ)⊕ Jm(λ).

Вспомним, что
(
λ 0

0 λ

)
∼
(
a b
−b a

)
для λ = a+ bi.

λ 0
. . .

0 λ

⊕
λ 0

. . .
0 λ

 =


a b
−b a

1 0
0 1

0

. . . 1 0
0 1
a b
−b a


Эти матрицы тоже сопряжены:

Доказательство. Если Jm(λ) отвечает базису u1, . . . , um, то Jm(λ) отвечает базису u1, . . . , um.

Тогда матрица из M(2m,R) отвечает базису (u1+u1

2 , u1−u1

2i , . . . ) = (ℜ(u1),ℑ(u1), . . . ).

Зафиксируем результат.

Теорема 3.11.1. Матрица любого оператора ϕ ∈ EndR(V ) приводится к виду прямой суммы клеток
двух типов — Jm(λ) для λ ∈ R и клеток Jm(a, b) : a, b ∈ R, b ̸= 0.

При этом числа и размеры клеток определены однозначно.

3.12 Циклические подпространства, фробениусовы клетки

Пусть ϕ ∈ EndK(V ), v ∈ V .

Определение 3.12.1 (Циклическое подпространство оператора ϕ, порождённое вектором v). Наи-
меньшее ϕ-инвариантное подпространство в V , содержащее v.

Лемма 3.12.1. Циклическое подпространство, порождённое v — это
〈
v, ϕ(v), ϕ2(v), . . .

〉
.
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Если n = dimV , то v, ϕ(v), . . . , ϕn(v) линейно зависимы. Возьмём наибольшее m ∈ N : ϕ0(v), . . . , ϕm−1(v)
линейно независимы:

Значит, ϕm(v) ∈
〈
ϕ0(v), . . . , ϕm−1(v)

〉
:

ϕm(v) = ϕ0(v)α0 + · · ·+ ϕm−1(v)αm−1

откуда циклическое подпространство —
〈
ϕ0(v), . . . , ϕm−1(v)

〉
.

Лемма 3.12.2. ϕ
∣∣
⟨ϕ0(v),...,ϕm−1(v)⟩ в этом базисе имеет матрицу

B(f)
def
=


0 0 α0

1 α1

. . .
...

0 1 αm−1


(сопровождающая матрица многочлена f , фробениусова клетка)

где f = tm − αm−1tm−1 − · · · − α1t− α0.

Замечание. χB(f) = (−1)mf .

Разложим характеристический многочлен ϕ на произведение примарных множителей pm1
1 · . . . ·pms

s .
Пространство разложится в сумму примарных подпространств V = V p1 ⊕ · · · ⊕ V ps , на которых
χϕ|V pi

= ±pmi
i .

Интересный факт. Любое примарное пространство раскладывается в прямую сумму циклических.

Любой оператор приводится к прямой сумме фробениусовых клеток, отвечающих примарным мно-
гочленам.
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Глава 4

Классификация модулей над PID

4.1 Нормальная форма Смита

Доказана Смитом над Z, над произвольным PID — Фробениусом.

4.1.1 Над евклидовым кольцом

x ∈M(m,n,R), где R — евклидово кольцо с нормой δ : R→ N0 ∪ {−∞}.

Если бы вместо кольца было поле, то матрицу можно было бы привести к окаймлённому виду(
e 0
0 0

)
Теорема 4.1.1. Если R евклидово, то ∀x ∈ M(m,n,R) : ∃h ∈ E(m,R), g ∈ E(n,R), такие, что

hxg =


ε1 0

. . .
0 εk

0

0 0

, где ε1 | ε2 | · · · | εk, причём εi определены однозначно с точностью

до ассоциированности.

Доказательство. Рассмотрим множество

M := {hxg | h ∈ E(m,R), g ∈ E(n,R)}

и множество элементов матриц изM

D := {mi,j | m ∈M, 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ m}

• Либо x = 0, тогда она уже приведена к необходимому виду.

• Либо в множестве D есть элементы кроме 0. Выберем среди них элемент с минимальной
нормой δ. Так как перестановки содержатся в E(n,R) и в E(m,R), то можно считать, что
для неких h, g этот элемент — (hxg)1,1.

Заменим для удобства x на эту матрицу, теперь x1,1 имеет минимальную норму в D.
x1,1 x1,2 . . . x1,n
x2,1
... ∗

xm,1


Заметим, что x1,1 делит все остальные x1,j и xi,1, так как иначе можно было бы получить элемент
меньшей нормы, чем δ(x1,1) с помощью одного шага алгоритма Евклида (y = x1,1q + r, где δ(r) <
δ(x1,1), значит, с помощью трансвекции получаем r = y − x1,1q).
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Применим элементарные преобразования, получим
x1,1 0 . . . 0
0
... ∗
0


Дальше по индукции ненулевые числа останутся только на неком префиксе главной диагонали.

Тот факт, что x1,1 | x2,2 можно видеть, если прибавить вторую строчку к первой — в противном
случае опять можно было бы получить элемент в D меньшей нормы, чем x1,1.

Единственность разложения следует из того, что результирующие xi,i можно найти из формул:

x1,1 = gcd(D) = gcd(xi,j , 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ m) = gcd(миноры первого порядка)

x2,2 =
gcd(миноры второго порядка)

x1,1

x3,3 =
gcd(миноры третьего порядка)

x1,1 · x2,2

Эти инварианты не меняются (с точностью до ассоциированности) при домножении на элементы
E(n,R) или E(m,R), а ещё однозначно задают нормальную форму.

Следствие 4.1.1. Над евклидовым кольцом

SL(n,R) = E(n,R) — матрицы с единичным определителем и группа, порождённая элемен-
тарными трансвекциями.

GL(n,R) = GE(n,R) — обратимые матрицы и матрицы, порождённые элементарными транс-
векциями и псевдоотражениями.

Контрпример (Хитрая PID). Возьмём локализацию Z[t] относительно мультипликативной системы
S := ⟨Φn|n ∈ N⟩, где Φn — круговой многочлен номера n, то есть минимальный многочлен над Q,
делящий x− ωn, (ωnn = 1).

В данном кольце главных идеалов E(n,R) ̸= SL(n,R).

4.1.2 Над PID

Пусть R — PID.

Теорема 4.1.2. Для матрицы x ∈ M(m,n,R) существует h ∈ SL(m,R), g ∈ SL(n,R), такие, что

hxg =


ε1 0

. . .
0 εk

0

0 0

 где ε1 | ε2 | · · · | εk, причём εi определены однозначно с точностью

до ассоциированности.

Лемма 4.1.1. Любая унимодулярная строчка (строка с комаксимальными элемента-
ми) длины 2 дополняется до матрицы с определителем 1.

Доказательство леммы.

aR+ bR = R⇒ ∃u, v ∈ R : au+ bv = 1. Матрица
(
a b
−v u

)
искомая:

∣∣∣∣ a b
−v u

∣∣∣∣ = 1

Лемма 4.1.2. Если R — PID, то a ⊥ b⇒ aR+bR = R. ∃g ∈ SL(2, R) :
(
a b

)
g =

(
d 0

)
где d = gcd(a, b).
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Доказательство леммы.

Строчку
(
a/d b/d

)
надо достроить до SL(2, R): пусть

∣∣∣∣ a/d b/d
−u v

∣∣∣∣ = 1. Тогда

(
a b

)
·
(
v −b/d
u a/d

)
=
(
d 0

)
, причём

(
v −b/d
u a/d

)
∈ SL(2, R)

Лекция XIV
18 апреля 2023 г.

Доказательство формы Смита для PID. По индукции.

Пусть

 x1,1 . . . x1,n
... ∗

xn,1

 = x ∈M(m,n,R).

Умножая справа, её можно привести к виду

 d · · · 0
... ∗

yn,1

, где d = gcd(x1,1, . . . , x1,n).

Дальше, умножив слева, мы приводим все к виду

 d′ · · · z1,n
... ∗
0

, где d′ = gcd(d, y2,1, . . . , yn,1).

Так, умножая то справа, то слева, мы (так как PID⇒ нётерово кольцо, и всякий раз идеал растёт),

мы в какой-то момент придём к матрице

 ε1 · · · 0
... ∗
0

.
Дальше по индукции, приводим оставшуюся матрицу к диагональной.(
ε1 0
0 ε2

)
∼
(
ε1 ε2
0 ε2

)
∼
(
gcd(ε1, ε2) 0

∗ ∗

)
∼

все преобразования были с определителем 1

(
gcd(ε1, ε2) 0

0 lcm(ε1, ε2)

)
,

поэтому после приведения нижнего правого прямоугольника к хорошему виду можно добиться пре-
образования, такие, что ε1 | ε2.

4.2 Подмодули кручения, модули без кручения

Пусть M — модуль над коммутативным кольцом R.

Обычно будем предполагать, что R — область целостности.

Определение 4.2.1 (Элемент кручения x ∈M). ∃λ ∈ RegR — не делитель 0 — такой, что λx = 0.
Также такой элемент называют периодическим.

Обозначим T (M)
def
= {x ∈M | ∃λ ∈ RegR : λx = 0} — множество элементов кручения.

Лемма 4.2.1. T (M) ⩽ M — подмодуль. T (M/T (M)) = {0}, то есть M/T (M) — модуль без
кручения.

Доказательство.

• Пусть x, y ∈ T (M). ∃λ, µ ∈ RegR : λx = µy = 0. Тогда λµ(x+ y) = 0, но λµ ∈ RegR.

Теперь покажем, что x ∈ T (M)⇒ µx ∈ T (M): λ(µx) = µ(λx) = 0.

• От противного: пусть ∃x /∈ T (M),∃λ ∈ RegR : λx ∈ T (M). Значит, ∃µ ∈ RegR : µλx = 0.
Тогда x ∈ T (M) с множителем µλ.

Определение 4.2.2 (Модуль M без кручения). T (M) = {0}
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Определение 4.2.3 (Модуль кручения, периодический модуль). T (M) =M .

4.3 Формулировка основных теорем о строении конечнопорож-
дённых модулей над PID

Пусть R — PID, M — свободный модуль.

Теорема 4.3.1.

1. Подмодуль N свободного модуля свободен и rkN ⩽ rkM .

2. Конечнопорождённый модуль без кручения свободен.

3. Если M — конечнопорождён, то M ∼= Rn ⊕ T (M).

Доказательство. (теорема 4.3.4) и ниже.

Определение 4.3.1 (Циклический модуль M). M порождён одним элементом: M = Rx.

Посмотрим на отображение ϕ : R → M : λ 7→ λx. У гомоморфизма есть ядро AnnR(x)
def
= Ker(ϕ)

— аннулятор x.

По теореме о гомоморфизме M ∼= R/AnnR(x).

• Если AnnR(x) = {0}, то модуль свободен и изоморфен R.

• Если AnnR(x) ̸= {0}, то M — модуль кручения. Так как R — PID, то AnnR(x) = Rλ для
некоего λ ∈ R — для порождающего AnnR(x).

Теорема 4.3.2. Любой конечнопорождённый периодический модуль является прямой суммой цик-
лических подмодулей.

Следствие 4.3.1. Любой конечнопорождённый периодический модуль является прямой суммой
примарных циклических подмодулей. Примарный циклический модуль — модуль вида R/pm1

1 R.

Доказательство. Китайская теорема об остатках:

R/(pm1
1 · . . . · pms

s )R ∼= (R/pm1
1 R)⊕ · · · ⊕ (R/pms

s R)

Теорема 4.3.3 (О существовании согласованных базисов для подмодулей свободного модуля).
Пусть N ⩽ M ∼= Rn. Тогда ∃(e1, . . . , en) — базис в M , ∃λ1, . . . , λm ∈ R : λ1 | · · · | λm, причём
N = ⟨λ1e1, . . . , λmem⟩ ∼= Rm.

Доказательство. См. (теорема 4.4.1).

4.3.1 Вложение конечнопорождённых модулей без кручения в свободные
модули

Теорема 4.3.4. Пусть R — область целостности, M — конечнопорождённый модуль без кручения.
Тогда для некоего n: M можно вложить в Rn так, чтобы он имел ненулевое пересечение со всеми
координатными осями.

Доказательство. M порождено элементами ⟨x1, . . . , xm⟩. Пусть y1, . . . , yn ∈ M — максимальная
линейно независимая система. Построим Rn на системе образующих ⟨e1, . . . , en⟩.

Рассмотрим подмодуль в M ⩾ ⟨y1, . . . , yn⟩ =: N . Построим вложение M
ϕ→ N . N ∼= Rn — просто

переводим базис {yi} в базис {ei} — поэтому данное вложение изоморфно искомому M → Rn.

∀xi : (xi, y1, . . . , yn) — линейно зависимая система. Тогда ∃λi ̸= 0 : λixi ∈ N .
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Устроим вложение следующим образом: для λ = λ1 · . . . · λm ̸= 0 положим

ϕ :M → N ; x 7→ λx

Оно инъективно, так как модуль M — без кручения. ϕ(M) ∩Ryi ̸= {0}, так как там есть λyi.

Следствие 4.3.2. 1. в (теорема 4.3.1). Если R — PID, M — свободный модуль конечного ранга,
то ∀N ⩽M : N свободен, причём rkN ⩽ rkM .

Доказательство. Индукция по рангу M .

База: rkM = 1, M ∼= R. Все подмодули имеют ранг 0 или 1 — это идеалы в кольце.

Переход: M ∼= Rn. Построим проекцию π : Rn → Rn−1,


x1
...

xn−1
xn

 7→
 x1

...
xn−1

 .

N ⩽ M ⇒ π(N) ⩽ Rn−1,Ker
(
π
∣∣
N

)
⩽ Kerπ ∼= R. Подмодули в R мы знаем, Ker

(
π
∣∣
N

)
= {0}, либо

Ker
(
π
∣∣
N

) ∼= R.

Воспользовавшись индукционным предположением, получаем, что π(N) ∼= Rl, где l ⩽ n− 1. Если
Ker

(
π
∣∣
N

)
= {0}, то N ∼= Rl. Иначе Ker(π) ∼= R, тогда N ∼= Rl+1.

Следствие 4.3.3. Конечнопорождённый модуль без кручения над PID свободен.

Теорема 4.3.5. Если M — конечнопорождённый, то M = Rn ⊕ T (M).

Доказательство. M/T (M) — модуль без кручения, причём тоже конечнопорождён. Значит,M/T (M) ∼=
Rn для некоего n ∈ N. Пусть Rn = ⟨e1, . . . , en⟩, поднимем базис до некоторых f1, . . . , fn ∈ M
(то есть для всех i образ fi внутри M/T (M) ∼= Rn равен ei). Несложно проверить, что M ∼=
T (M)⊕ ⟨f1, . . . , fn⟩, при этом f1, . . . , fn линейно независимы.

Предостережение. Если M ∼= A/B, где B ⩽ A — подмодуль, то совсем необязательно A ∼=M ⊕B.
Скажем, Z/(2Z) ∼= Z/2Z, но, конечно, неправда, что Z ∼= Z⊕ Z/2Z. Однако, как мы видели выше,
это правда, если M свободен.

Таким образом, (теорема 4.3.1) полностью доказана.

4.4 Согласованный выбор базисов в свободном модуле и его
подмодуле

Теорема 4.4.1. Пусть N ⩽ M ∼= Rn. Тогда ∃(e1, . . . , en) — базис в M , ∃λ1, . . . , λm ∈ R :
λ1 | · · · | λm, причём N = ⟨λ1e1, . . . , λmem⟩ ∼= Rm.

Доказательство. Пусть u1, . . . , un — базис в M , v1, . . . , vm — базис в N . Разложим v по базису
u:  v1

...
vm

 = x

u1...
un


где x ∈ M(m,n,R). При замене базиса векторы v, u домножаются слева на матрицы из h ∈
SL(m,R) и g ∈ SL(n,R) соответственно.
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При этом над x будут совершаться преобразования x ⇝ h−1xg, то есть x можно привести к
нормальной форме Смита: λ1e1

...
λmem

 =

 λ1 0
. . .

0 λn

0


e1...
en

 , λ1 | · · · | λm

Лекция XV
19 апреля 2023 г.

Теорема 4.4.2. Любой конечнопорождённый модуль M = ⟨u1, . . . , un⟩ над PID является прямой
суммой циклических.

Доказательство. Рассмотрим сюръекцию ϕ : Rn →M, ei 7→ ui. Положим N := Ker(ϕ).

N — подмодуль свободного модуля, он свободен. Пусть (v1, . . . , vm) — базис N .

Выразим базисы через матрицу перехода:

 v1
...
vm

 = x

e1...
en

, x ∈ M(m,n,R). Воспользовавшись

для x канонической формой Смита, можно выбрать согласованные базисы, так, что ∀i = 1..m : vi =
eiλi, причём λ1 | · · · | λn.

Таким образом, M ∼= Rn−m ⊕ (R/λ1R)⊕ (R/λmR).

По китайской теореме об остатках получаем, что любой модуль является прямой суммой свободных
и примарных модулей.

4.4.1 Частные случаи

1. R = Z — конечнопорождённые абелевы группы.

Согласно ранее доказанной теореме, любая абелева группа

G ∼= Zm ⊕ Z/pm1
1 Z︸ ︷︷ ︸

cp1
m1

⊕ · · · ⊕ Z/pms
s Z

где pi ∈ P,mi ∈ N, pi могут повторяться, но пары (pi,mi) определены однозначно.

Такие группы, соответствующие примарным числам, называются элементарными абелевыми
группами.

К сожалению, классифицировать что-то более сложное, даже метабелевые группы (группы,
содержащие абелеву подгруппу, фактор по которой абелев) — задача несоизмеримо боль-
шей сложности. Классификация метабелевых групп влечёт классификацию пары матриц над
полем, а это — дикая задача.

2. R = K[t] — форма Фробениуса. Пусть V — конечномерное векторное пространство над K,
ϕ ∈ EndK(V ).

(V, ϕ) имеет структуру K[t] модуля: t · v = ϕ(v). Модуль, очевидно — модуль кручения
(например, по теореме Кэли — Гамильтона).

Значит, V ∼=
⊕
K[t]/ (pmK[t]), на каждом подпространстве ϕ имеет примарный характери-

стический многочлен.

Значит, любой оператор имеет базис, в котором его матрица — прямая сумма фробениусовых
клеток.
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Глава 5

Геометрия пространств со
скалярным произведением

5.1 Скалярные произведения

K — поле, V — векторное пространство над K (dimV <∞).

Определение 5.1.1 (Скалярное произведение). Отображение B : V × V → K, удовлетворяющее
следующим свойствам:

1. Билинейность.

2. Рефлексивность B(u, v) = 0 ⇐⇒ B(v, u) = 0.

Определение 5.1.2 (Ортогональные векторы). u ⊥ v ⇐⇒ B(u, v) = 0.

Определение 5.1.3 (Симметрическое скалярное произведение). ∀u, v ∈ V : B(u, v) = B(v, u).

Определение 5.1.4 (Кососимметрическое скалярное произведение). ∀u, v ∈ V : B(u, v) = −B(v, u).

Замечание. Если характеристика 2, то кососимметрическое скалярное произведение — симметри-
ческое.

Определение 5.1.5 (Симплектическое скалярное произведение). Любой вектор изотропен: ∀u ∈
V : B(u, u) = 0.

Замечание. В эрмитовом скалярном произведении B(u, v) = B(v, u), например, в гильбертовом
пространстве над C.

Факт 5.1.1. Симплектическое и кососимметрические произведения связаны:

симплектическое всегда кососимметрическое, обратное верно не в характеристике 2.

0 = B(u+ v, u+ v) = B(u, u) +B(u, v) +B(v, u) +B(u, u) = B(u, v) +B(v, u)

B(u, u) = −B(u, u)⇒ 2B(u, u) = 0

Определение 5.1.6 (Невырожденное скалярное произведение). ∀u ∈ V : u ̸= 0⇒ ∃v : B(u, v) ̸= 0.

Примеры.

• (Kn, B), где B

((
u1

...
un

)
,

(
v1
...
vn

))
= u1v1 + · · ·+ unvn = utv.

Если K = R, то это евклидово скалярное произведение, обладающее свойствами

– Анизотропность: B(u, u) ̸= 0 для u ̸= 0.

– Положительная определённость: B(u, u) ⩾ 0, причём B(u, u) = 0 ⇐⇒ u = 0.
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• Можно выбрать базис и r, в котором скалярное произведение имеет вид:

B(u, v) = u1v1 + · · ·+ urvr − ur+1vr+1 − · · · − unvn

Такое скалярное произведение пишут в пространстве Rr,s (r + s = n), самое известное —
пространство Минковского R3,1.

• B(u, v) = u1vn + u2vn−1 + · · ·+ unv1 — расщепимое скалярное произведение.

• Пусть n = 2m.

B(u, v) = (u1v2 − u2v1) + · · ·+ (u2m−1v2m − u2mv2m−1)

Это пример симплектического скалярного произведения.

• V =M(n,K). Здесь можно выбрать B(x, y) = tr(xty)

5.1.1 «Классификация» билинейных скалярных произведений

Теорема 5.1.1. Любое билинейное рефлексивное B : V ×V → K — симметрическое или симплек-
тическое (в характеристике 2 может выполняться одновременно и то, и то).

Доказательство. Рассмотрим u, v, w ∈ V , вычислим

B(u, vB(u,w)− wB(u, v)) = B(u, v)B(u,w)−B(u,w)B(u, v) = 0

Из рефлексивности в другом порядке тоже 0:

0 = B(vB(u,w)− wB(u, v), u) = B(v, u)B(u,w)−B(w, u)B(u, v) (5.1)

Подставим w = u:
B(u, u)(B(u, v)−B(v, u)) = 0 (5.2)

Таким образом, если B(u, u) ̸= 0, то ∀v : B(u, v) = B(v, u), а если B(u, v) ̸= B(v, u), то B(u, u) =
B(v, v) = 0.

Докажем, что если найдутся такие u, v ∈ V : B(u, v) − B(v, u) ̸= 0, то все векторы изотропны.
Пусть нашлись. Тогда выберем w ∈ V , предположим, что B(w,w) ̸= 0.

Посчитаем

B(v, u+ w) = B(v, u) +B(v, w)

B(u+ w, v) = B(u, v) +B(w, v)

Первые слагаемые неравны по предположению, вторые — равны, так как B(w,w) ̸= 0 (5.2). Значит,
B(v, u+ w) ̸= B(u+ w, v), откуда (5.2) B(u+ w, u+ w) = 0.

Кроме того, из (5.1) видим, что так как B(u, v) ̸= B(v, u), но B(u,w) = B(w, u), то B(u,w) =
B(w, u) = 0. Отсюда, раскрыв скобки в B(u+w, u+w) = 0 действительно получаем, что B(w,w) =
0.

5.2 Матрица Грама скалярного произведения

V, (e1, . . . , en) — пространство и базис.

Определение 5.2.1 (Симплектическое пространство). Пара (V,B) «пространство — скалярное
произведение», если B — симплектическое.

Определение 5.2.2 (Квадратическое пространство). Пара (V,B) «пространство — скалярное про-
изведение», если B — симметрическое.

Замечание. Термин симметрическое пространство уже зарезервирован под что-то другое, а в
связи с симметрическим скалярным произведением будут возникать квадратичные формы, поэтому
термин таков.
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Определение 5.2.3 (Матрица Грама). Ge(B) = (B(ei, ej))1⩽i,j⩽n.

Лемма 5.2.1. Записав векторы столбцами координат в данном базисе, получаем B(u, v) =
utGe(B)v.

Доказательство.

B(u, v) = B(u1e1 + · · ·+ unen, v1e1 + · · ·+ vnen) =
∑
i,j

uiB(ei, ej)vj = utGe(B)v

Лемма 5.2.2. B — симметрическое ⇐⇒ Ge(B) симметрическая (Ge(B) = Ge(B)t).

B — симплектическая ⇐⇒ Ge(B) антисимметрическая (Ge(B)t = −Ge(B) ∧Ge(B)i,i = 0).

Лемма 5.2.3. Скалярное произведение B невырождено ⇐⇒ Ge(B) невырождена.

Доказательство. B вырождено ⇐⇒ ∃v ̸= 0 : ∀u : B(u, v) = 0 ⇐⇒ ∀u : utGe(B)v = 0 ⇐⇒
Ge(B)v = 0 ⇐⇒ Ge(B) вырождена.

Лекция XVI
24 апреля 2023 г.

Лемма 5.2.4. При замене базиса матрица Грама преобразуется по формуле Ge′(B) = gtGe(B)g,
где g — матрица перехода.

Доказательство. Пусть g — матрица перехода от базиса (ei)
n
i=1 к базису (e′i)

n
i=1:(

e1 . . . en
)
g =

(
e′1 . . . e′n

)

Тогда координаты преобразуются контравариантно: g−1

u1...
un

 =

u
′
1
...
u′n

 ;

u1...
un

 = g

u
′
1
...
u′n

.
Получаем, что (gu′)t ·Ge(B) · (gv′) = (u′)t · gtGe(B)g · v′.

Замечание. Если матрица x симметрическая (xt = x), то gtxg — тоже симметрическая:

(gtxg)t = gtxtgtt = gtxg

Замечание. Задача поиска канонической формы матриц x относительно преобразований gtxg не
решена, хотя, казалось бы, должна быть того же уровня сложности, что и каноническая форма
относительно поиска базиса — сопряжения g−1xg.

Это связано с тем, что идейно матрица Грама — не матрица; она имеет два индекса, оба описыва-
ющие столбцы (или оба строки). Отсюда и появляется транспонирование первого вектора.

5.3 Скалярное произведение и двойственные пространства

V ∗ = HomK(V,K) — множество ковекторов (линейных функционалов).

Базису (e1, . . . , en) сопоставляется двойственный базис (e∗1, . . . , e
∗
n), такой, что e

∗
i (ej) = δi,j .

Рассмотрим пространство всех билинейных отображений L(V, V ;K) = {B : V × V → K | B — билинейно}.
Оказывается, есть канонический изоморфизм между L(V, V ;K) и Hom(V, V ∗).

Пусть B : V × V → K — билинейно. Сопоставим ему парциальные отображения

Bu
def
= B(u, ·) : V → K; Bv

def
= B(·, v) : V → K
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Полученные парциальные отображения линейны.

Значит, отображение B̃ : u 7→ Bu бьёт из V в V ∗. Более того, оно само линейно, и задаёт биекцию,
не зависящую от выбора базисов.

Теорема 5.3.1. L(V, V ;K)→ Hom(V, V ∗); B 7→ B̃ задаёт канонический изоморфизм L(V, V ;K) ∼=
Hom(V, V ∗).

Доказательство. Проверим, что отображение — гомоморфизм: ˜B1 +B2 = B̃1 + B̃2 и λ̃B = λB̃.

Проверим, что B 7→ B̃ обратимо: B(u, v) = B̃(u)(v). Отсюда получаем инъективность, а сюръ-
ективность следует из теоремы о размерности ядра и образа — мы работаем с конечномерными
пространствами.

dim(L(V, V ;K)) = dim(V ) · dim(V ) = dim(V ) · dim(V ∗) = dim(Hom(V, V ∗)).

Теорема 5.3.2. B : V × V → K невырождено ⇐⇒ B̃ : V → V ∗ — изоморфизм.

Доказательство. ∀u ̸= 0 : ∃v ∈ V : B(u, v) ̸= 0

⇕
∀u ̸= 0 : B(u, ·) ̸= 0

Замечание. Получается, всякий раз, когда пишут транспонирование, задают изоморфизм V ∼= V ∗,
который никак не является каноническим. Это уже не линейная алгебра, а евклидова геометрия.
Транспонированию не место в канонической линейной алгебре!

Замечание. Если билинейная форма симметрическая, то ∀u ∈ V : B(u, ·) = B(·, u), то есть изомор-
физмы фиксирования первого и второго аргумента одинаковы.

Если билинейная форма симплектическая, то ∀u ∈ V : B(u, ·) = −B(·, u).

5.4 Классификация пространств со скалярным произведением

Первый шаг классификации: скалярное произведение бывает симметрическим или симплектиче-
ским.

Пусть (U,BU ) и (V,BV ) — два пространства со скалярными произведениями.

Определение 5.4.1 (Изометрия пространств). Изоморфизм векторных пространств ϕ : U → V ,
сохраняющий скалярное произведение: BU (u, v) = BV (ϕ(u), ϕ(v)).

Задача 5.4.1. Когда (U,BU ) ∼= (V,BV )?

Очевидные инварианты:

1. Размерность n = dimU = dimV — если равенства нет, то нет изоморфизма.

2. Ранг r := rkU
def
= rk(G(BU )) — не зависит от выбора базиса, замена базиса — обратимая

матрица.

Можно также заметить, что rk(G(BU )) = rk
(
B̃U

)
.

3. Определение 5.4.2 (Дискриминант). disc(V ) =
(
det(G(BV )) · (K∗)2

)
— элемент K/(K∗)2.

В частности, R∗/R∗2 ∼= {±1}; F∗q/F∗2q ∼= {±1} для q ∈ P⩾3.

Определение 5.4.3 (Радикал V ). Rad(V ) = {u ∈ V | ∀v ∈ V : B(u, v) = 0}. Иначе говоря, V ⊥.

Пусть V = Rad(V ) ⊕ U , где U – произвольное прямое слагаемое. Заметим, что Rad(U) = {0},
иначе Rad(V ) больше, чем предполагался.

Значит, классификацию подпространств можно свести к классификации невырожденных подпро-
странств.
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Теорема 5.4.1 (О классификации симплектических пространств). U ∼= V ⇐⇒

{
dimU = dimV

rkU = rkV
.

Доказательство. См. (теорема 5.6.2)

Следствие 5.4.1. Для любой чётной размерности существует единственное невырожден-
ное симплектическое пространство. Примерами матриц Грама для этих изоморфных про-
странств являются следующие матрицы

0

1 0
. . .

0 1
−1 0

. . .
0 −1

0


так пишут физики


0 1
−1 0

0

. . .

0
0 1
−1 0


так пишут топологи


0

0 1

. .
.

1 0
0 −1

. .
.

−1 0

0


так пишут алгебраисты

Определение 5.4.4 (Квадратически замкнутое поле K). Такое поле, что (K∗)2 = K∗, то есть
∀x ∈ K : ∃y ∈ K : y2 = x.

Теорема 5.4.2. Если K квадратически замкнуто и char(K) ̸= 2, то квадратические пространства

U ∼= V ⇐⇒

{
dim(U) = dim(V )

rk(U) = rk(V )
.

Доказательство. См. (теорема 5.8.1).

Следствие 5.4.2. В частности, над квадратически замкнутым полем в любой размерности
существует единственное невырожденное квадратическое пространство.

Интересный факт. Над конечными полями — ровно два пространства, с дискриминантом, явля-
ющимся и не являющимся полным квадратом.

Теорема 5.4.3 (Закон инерции Сильвестра). Над R поля со скалярным произведением определя-
ются тремя инвариантами

1. dim(V ) = n.

2. rk(V ) = r = r+ + r−.

3. Сигнатура s = r+ − r−.

Здесь r+ и r− — количества положительных и отрицательных квадратов.

В матрице Грама на главной диагонали стоит r+ единиц, r− минус единиц, остальные — нули.

Доказательство. См. (теорема 5.8.4)

Лекция XVII
25 апреля 2023 г.

5.5 Ортогональное дополнение

U ⩽ V — подпространство, B : V × V → K — скалярное произведение.

Определение 5.5.1 (Ортогональное дополнение). U⊥
def
= {v ∈ V | ∀u ∈ U : B(u, v) = 0}.

Замечание. Рефлексивность скалярного произведения влечёт, что можно не различать U⊥ и U⊥ .
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Предостережение. Ортогональное дополнение не является дополнением: совсем не факт, что U ⊕
U⊥ = V .

Свойства.

• ∀U ⩽ V : U ∩ U⊥ = Rad(U)
def
= {u ∈ U | ∀u′ ∈ U : B(u, u′) = 0}.

• Rad(V ) = V ⊥; {0}⊥ = V .

• U⊥ ⩽ V .

• U ⩽ U⊥⊥ (равенство в случае невырожденного V : следствие (лемма 5.5.3)).

• U ⇝ U⊥ обращает включения: U ⩽W ⇒W⊥ ⩽ U⊥.

• (U +W )⊥ = U⊥ ∩W⊥.

• (U ∩W )⊥ ⩾ U⊥ +W⊥ (равенство в случае невырожденного V : следствие (лемма 5.5.3)).

5.5.1 Ортогональная прямая сумма

(U,BU ), (V,BV ) — два произвольных пространства (но либо оба симметрические, либо оба сим-
плектические).

Определим скалярное произведение на U ⊕ V следующим образом:

BU⊕V : (U ⊕ V )× (U ⊕ V )→ K; (u1, v2), (u2, v2) 7→ BU (u1, u2) +BV (v1, v2)

Так как B((u, 0), (0, v)) = 0 в данном определении, то (U ⊕ V,BU⊕V ) — ортогональная прямая
сумма.

Лемма 5.5.1. Определённая выше BU⊕V — скалярное произведение на U ⊕ V .

Будем обозначать ортогональную прямую сумму U ⊞ V
def
= (U ⊕ V,BU⊕V ).

Если U,W ⩽ V — лежат в одном объемлющем пространстве, то прямая сумма U⊞W — внутренняя
ортогональная прямая сумма — существует если

1. U ∩W = {0}

2. U ⊥W здесь эквивалентно⇐⇒ U ⩽W⊥
здесь эквивалентно⇐⇒ W ⩽ U⊥.

Лемма 5.5.2. Пусть U — любое дополнение к Rad(V ) : U ⊕ Rad(V ) = V .

Тогда V = U ⊞ Rad(V ), причём BU невырождено.

Доказательство. Докажем лишь часть про невырожденность, первое очевидно.

Если ∃u ∈ U, u ̸= 0 : ∀v ∈ U : B(u, v) = 0, то ∀v ∈ V : v ∈ U +Rad(V )⇒ B(u, v) = 0 по линейности
B, противоречие — BU невырождено.

5.5.2 Теорема об ортогональном дополнении

Лемма 5.5.3. Если U невырождено, либо V невырождено, то имеет место dim(U)+dim(U⊥) =
dim(V ).

Доказательство. Вложению U
i
↪→ V отвечает V ∗ i∗→ U∗ — двойственное линейное отображение.

Воспользуемся отображением B̃ : V → V ∗. Найдём Ker(V
B̃−→ V ∗

i∗−→ U∗) =

{
v ∈ V |

(
u
∈U
7→ B(v, u)

)
= 0

}
.

Это U⊥ по определению.

Кроме того, V B̃−→ V ∗
i∗−→ U∗ сюръективно:

• Если U невырождено, то даже U i−→ V
B̃−→ V ∗

i∗−→ U∗ сюръективно — BU невырождено.
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• Иначе это верно, так как V невырождено и V B̃−→ V ∗ — сюръекция (i∗ — просто сужение).

Используя теорему о размерности ядра и образа получаем, что dim(U) + dim(U⊥) = dim(V ).

Предостережение. Если U ⩽ V , V невырождено, то совсем необязательно U невырождено. На-

пример, dim(V ) = 2, G(B) =

(
0 1
−1 0

)
. Оба пространства размерности 1, натянутые на базисные

векторы, вырождены.

Теорема 5.5.1. Если U ⩽ V,BU невырождено, то V = U ⊞ U⊥.

Доказательство.

• U ∩ U⊥ = Rad(U) = {0}.

• По определению U ⊥ U⊥.

• dim(U) + dim
(
U⊥
)
= dim(V ) согласно (лемма 5.5.3).

Замечание. Может быть, что скалярное произведение на U невырождено, но на U⊥ — вырождено.
Тем не менее,

Теорема 5.5.2. Если V невырождено, то ∀U ⩽ V : U = U⊥⊥.

Доказательство. Согласно (лемма 5.5.3) получаем dim(U) = dim(U⊥⊥).

Теорема 5.5.3. Если из пространств V,U, U⊥ два невырождены, то и третье тоже, в этом случае
разложения V = U ⊞ U⊥ = U⊥ ⊞ U⊥⊥ симметричны по U и U⊥.

Доказательство.

• Если V невырождено, то (тривиально) U⊥⊥ ⩾ U , но согласно (лемма 5.5.3) наблюдается
равенство.

Если U⊥ невырождено, то заменим

{
U⊥ ⇝ U⊥⊥

U ⇝ U⊥
, в дальнейшем доказательстве невырож-

дено U .

Таким образом, ∀ u
̸=0
∈ U⊥ : ∃v ∈ U⊥ : B(u, v) ̸= 0 (иначе данный u лежит в U⊥⊥). Но это по

определению невырожденность U⊥.

• Если U⊥, U невырождены, то dim(U) + dim(U⊥) = dim(V ). Из невырожденности их пересе-
чение пусто, откуда V = U ⊕ U⊥.

∀v ∈ V : ∃u ∈ U, u′ ∈ U⊥ : v = u+ u′ ⇒ B(v, ·) = B(u, ·) +B(u′, ·)

Так как U невырождено, то найдётся w ∈ U : B(u,w) ̸= 0. B(u′, w) = 0⇒ B(v, w) ̸= 0.

Следствие 5.5.1. Если в V нашлось невырожденное подпространство, то можно взять к нему
ортогональное дополнение, матрица Грама разложится на блоки в базисах U и U⊥:

G(B) =

(
∗ 0
0 ∗

)
Дальше можно пытаться раскладывать пространство по индукции в прямую сумму одномер-
ных.
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5.5.3 Теорема Лагранжа о существовании ортогонального базиса в квадра-
тичном пространстве

Определение 5.5.2 (Ортогональный базис). Базис (e1, . . . , en) пространства V , такой что i ̸= j ⇒
B(ei, ej) = 0.

В ортогональном базисе матрица Грама диагональна: G(B) =

a1 0
. . .

0 an

 , ai ∈ K.

Теорема 5.5.4 (Лагранж). B : V × V → K — симметрическая форма. Если char(K) ̸= 2, то в
любом пространстве над K существует ортогональный базис.

Доказательство.

Лемма 5.5.4. Если char(K) ̸= 2, то в пространстве с ненулевым симметрическим
скалярным произведением найдётся неизотропный вектор v : B(v, v) ̸= 0.

Доказательство леммы.

Пусть B(u, v) ̸= 0. Тогда среди векторов u, v, u + v хотя бы один неизотропен: B(u, v) =
1
2 (B(u+v, u+v)−B(u, u)−B(v, v)) и здесь существенно, что характеристика — не 2.

Если B = 0, то всякий базис ортогонален, доказывать нечего.

Если B ̸= 0, то проведём индукцию по размерности.

База: В одномерном пространстве любой базис ортогонален.

Переход: Найдётся неизотропный e1 ∈ V , тогда согласно (теорема 5.5.3) V = e1K ⊞ (e1K)⊥, по
индукционному предположению (e1K)perp = ⟨e2⟩⊞ · · ·⊞ ⟨en⟩.

5.6 Введение в теорию (Диксона — ) Витта. Классификация
симплектических пространств

Теория опубликована Виттом примерно в 1936 году, но Диксон показал примерно то же в 1905, в
год рождения Витта. К сожалению, работа Диксона осталась незамеченной.

5.6.1 Выделение гиперболических плоскостей

B : V × V → K — произвольное скалярное произведение.

Пусть u ∈ V — изотропный вектор.

Определение 5.6.1 (Анизотропное скалярное произведение). ∀u ∈ V, u ̸= 0⇒ B(u, u) ̸= 0.

Замечание. Анизотропные скалярные произведения изучаются в матанализе, и там хорошо, что
они положительно определены. А в алгебре — это, наоборот, мешает.

Определение 5.6.2 (Гиперболическая плоскость H). Двумерное пространство над K с матрицей

Грама G(BH) =

(
0 1
1 0

)
или G(BH) =

(
0 1
−1 0

)
.

Лемма 5.6.1. Пусть B невырождено, нашёлся u ∈ V, u ̸= 0, B(u, u) = 0. Если B симметрическое,
то дополнительно предположим, что char(K) ̸= 2.

Тогда u можно вложить в гиперболическую плоскость, то есть ∃v ∈ V : B(u, v) = 1, B(v, v) = 0.

Доказательство. В силу невырожденности ∃w ∈ V : B(u,w) ̸= 0. Домножением w на скаляр
можно добиться того, что B(u,w) = 1.
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Так как B(u, u) = 0 ̸= B(u,w), то ⟨u,w⟩ — пространство размерности 2. Матрица Грама данного

пространства в базисе (u,w) — это
(

0 1
±1 ∗

)
.

Если пространство симплектическое, то матрица уже имеет искомый вид.

Иначе (B симметрическое) элементарным преобразованием получаем, что искомая гиперболиче-
ская плоскость натянута на векторы u,w + αu, где α подобрано таким образом, что

B(w + αu,w + αu) = 0⇒ B(w,w) + 2αB(u,w) = 0⇒ α = −1

2

B(w,w)

B(u,w)

Замечание. Условие невырожденности B можно ослабить до u /∈ Rad(V ).

Лекция XVIII
26 апреля 2023 г.

Теорема 5.6.1. Пусть u ∈ V \ Rad(V ) — изотропный вектор, причём если V квадратично, то
дополнительно предполагаем, что char(K) ̸= 2.

Тогда u можно включить в гиперплоскость H ⩽ V , такую, что H ⊞H⊥ = V .

Доказательство. По лемме H существует; H невырождена, значит достаточно сослаться на (лем-
ма 5.6.1).

5.6.2 Классификация симплектических пространств

Пусть K — произвольное поле, V — симплектическое пространство над K. Тогда V = H ⊞ · · ·⊞H︸ ︷︷ ︸
l

⊞Rad(V ).

Теорема 5.6.2. Два симплектических пространства U ∼= V ⇐⇒ dim(U) = dim(V ) и rk(U) = rk(V ).

Доказательство. Количество гиперплоскостей — это 1
2 rk. Размерность радикала — это dim− rk,

причём все радикалы одной размерности изометричны.

Следствие 5.6.1. Ранг симплектического пространства чётен.

Следствие 5.6.2. Невырожденные симплектические пространства существуют только в чёт-
ных размерностях.

5.7 Квадратические пространства. Квадратичные формы

V — векторное пространство над K. Будем предполагать, что char(K) ̸= 2, иначе всё намного
сложнее.

Определение 5.7.1 (Квадратичная форма). Отображение Q : V → K, такое, что

1. Q — однородно степени 2: Q(vλ) = Q(v)λ2.

2. Поляризация формы Q — билинейное (симметрическое автоматически) скалярное произведе-
ние.

Определение 5.7.2 (Поляризация квадратичной формы Q). Скалярное произведение

B(u, v)
def
=

1

2
(Q(u+ v)−Q(u)−Q(v))

Факт 5.7.1. Квадратичная форма — скалярный квадрат: Q(v) = B(v, v).
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Теорема 5.7.1. Существует биективное соответствие между квадратичными формами и симмет-
рическими скалярными произведениями.

Доказательство. В одну сторону — поляризация, в другую — скалярный квадрат.

5.7.1 Квадратичная форма в координатах

Пусть V ∋ x = x1e1 + · · ·+ xnen. Тогда квадратичная форма — однородный многочлен степени 2:

Q(x) = B(x, x) = xtG(B)x =

n∑
i,j=1

ai,jxixj =
∑
i<j

2ai,jxixj +

n∑
i=1

ai,ix
2
i

Теорема 5.7.2 (Лагранж). Пусть char(K) ̸= 2. Любая квадратичная форма Q : V → K линейно
невырожденной заменой переменных приводится к сумме квадратов:

Q(x) = a1x
2
1 + · · ·+ anx

2
n, ai ∈ K

Доказательство. Есть ортогональный базис: (теорема 5.5.4)

5.8 Классификация квадратичных пространств

5.8.1 Над квадратично замкнутым полем

K∗ = (K∗)2, char(K) ̸= 2.

Определение 5.8.1 (Ортонормированный базис V ). Ортогональный базис V , такой, что B(ei, ei) ∈
{0, 1}.

Теорема 5.8.1. В любом квадратичном пространстве над квадратично замкнутым полем характе-
ристики не 2 выполнимы следующие условия:

1. Существует ортонормированный базис.

2. У квадратичных пространств ровно 2 инварианта: размерность и ранг.

3. Любая квадратичная форма приводима к виду

Q(x1, . . . , xn) = x21 + · · ·+ x2r, r ⩽ n

4. Всякое пространство приводимо к виду

V = H ⊞ · · ·⊞H ⊞ Rad(V )⊞ ⟨1⟩︸︷︷︸
если rkV нечётен

Доказательство. Согласно теореме Лагранжа (теорема 5.5.4) найдётся ортогональный базис
(e1, . . . , en). Переупорядочим базисные векторы так, что первые r имеют ненулевой скалярный
квадрат, остальные — нулевой.

После этого заменим ei ⇝
ei√

B(ei,ei)
, i ⩽ r.

Пункт 4 следует из того, что над таким полем (например, K = C): ( 1 0
0 1 ) ∼ ( 0 1

1 0 ).

А именно рассмотрим сначала матрицу
(
1 0
0 −1

)
:

B(e, e) = 1

B(f, f) = −1
B(e, f) = 0
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Выберем новый базис
(
e+f√

2
, e−f√

2

)
. Для него

B
(
e+f√

2
, e+f√

2

)
= 0

B
(
e+f√

2
, e−f√

2

)
= 1

B
(
e−f√

2
, e−f√

2

)
= 0

Таким образом, например, над полем R :
(
1 0
0 −1

)
∼ ( 0 1

1 0 ). Над квадратичным полем можно
заменить вектор v ⇝

√
−1 · v, получается, над K : ( 1 0

0 1 ) ∼ ( 0 1
1 0 ).

5.8.2 Над полем вещественных чисел (закон инерции Сильвестра)

Пусть V — пространство над R c симметрическим скалярным произведением.

Замечание. Доказать также можно доказать для формально вещественных полей — числа бывают
отрицательные и положительные, а множество квадратов — множество положительных чисел.

Определение 5.8.2 (Ортонормированный базис (e1, . . . , en)). Ортогональный базис, такой, что
B(ei, ei) ∈ {+1,−1, 0}.

Теорема 5.8.2. В V существует ортонормированный базис.

Доказательство. Согласно теореме Лагранжа (теорема 5.5.4) найдётся ортогональный базис (e1, . . . , en).
Переупорядочим базисные векторы так, что первые r имеют ненулевой скалярный квадрат, осталь-
ные — нулевой.

После этого заменим ei ⇝
ei√

|B(ei,ei)|
, i ⩽ r.

Таким образом, ортонормированный базис есть, характеризуется тремя числами — r+, r−, n. Явля-
ются ли они инвариантами?

Ограничимся невырожденными пространствами:

V1 = U1 ⊞ Rad(V1) ∼= U2 ⊞ Rad(V2) = V2 ⇒ U1
∼= U2

(из-за единственности ранга dimRad(V1) = dimRad(V2); разные прямые слагаемые к одному ра-
дикалу изометричны, так как в них можно выбрать базисы, где соответствующие векторы разли-
чаются на вектор из радикала).

Теорема 5.8.3 (Сильвестр). Обозначим Rp,q как пространство с матрицей Грама

1 0
. . .

0 1

0

0

−1 0
. . .

0 −1


где размеры блоков p и q соответственно.

Пространства Rp,q ∼= Rs,t изометричны ⇐⇒ (p, q) = (s, t).

Доказательство. Обозначим за U+, U−, V +, V − пространства, натянутые на соответствующие
базисные векторы.

Предположим, что p > s. Рассмотрим отображение U+ ↪→ U ∼= V
pr−→ V +, где pr — проекция на

V + вдоль (параллельно) V −.

Пусть ϕ : U ∼= V , тогда ϕ(U+) ⩽ V , но так как s < p, то проекция pr(ϕ(U+)) имеет ненулевое
ядро.
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Ker(pr) = V −, значит, Ker
(
pr
∣∣
ϕ(U+)

)
⩽ V −. Значит, нашёлся вектор из U+, который при изо-

метрии попал в V −. Но так не бывает при изометрии — значит, ядро на самом деле нулевое,
противоречие.

Теорема 5.8.4 (Закон инерции Сильвестра). Любое квадратичное пространство над R изометрич-
но ровно одному пространству вида

⟨1, . . . , 1︸ ︷︷ ︸
r+

,−1, . . . ,−1︸ ︷︷ ︸
r−

, 0, . . . , 0︸ ︷︷ ︸
n−r+−r−

⟩ def= ⟨1⟩⊞ ⟨1⟩︸ ︷︷ ︸
r+

⊞ ⟨−1⟩⊞ ⟨−1⟩︸ ︷︷ ︸
r−

⊞ ⟨0⟩⊞ ⟨0⟩︸ ︷︷ ︸
n−r+−r−

Заметим, что пространства ⟨1, . . . , 1⟩ и ⟨−1, . . . ,−1⟩ — евклидово и антиевклидово соответственно,
значит, они анизотропны.

Лекция XIX
2 мая 2023 г.

Положим m = min(r+, r−). Получается, всякое квадратичное пространство над R изометрично
ровно одному пространству вида

H ⊞ · · ·⊞H︸ ︷︷ ︸
m

⊞
⟨1, . . . , 1⟩
или

⟨−1, . . . ,−1⟩
⊞ Rad(V )

5.9 Теория (Диксона — ) Витта

Теорема 5.9.1 (Витт о разложении). Пусть V — пространство над K, char(K) ̸= 2. Тогда

V = H ⊞ · · ·⊞H︸ ︷︷ ︸
s

⊞V0 ⊞ Rad(V )

причём s определено однозначно, V0 — анизотропно и определено однозначно с точностью до
изометрии.

Доказательство. См.(теорема 5.9.7)

Теорема 5.9.2 (Витт о продолжении). Пусть V — пространство над K, char(K) ̸= 2, пусть
U,W ⩽ V . Если ψ : U ∼= W — изометрия, то ∃ϕ ∈ Isom(V ) : ϕ

∣∣
U

= ψ. Дополнительно потре-
буем невырожденности либо U (тогда и W ), либо V .

Доказательство. См. (теорема 5.9.4 and ??).

Если всё невырождено, то эта теорема эквивалентна следующей:

Теорема 5.9.3 (Витт о сокращении). Пусть U,W, V — невырожденные пространства над K,
char(K) ̸= 2. Если U ⊞ V ∼=W ⊞ V , то U ∼=W .

Доказательство. Пусть ϕ : U⊞V ∼=W⊞V ; согласно теореме Витта о продолжении можно считать,
что ϕ оставляет V на месте (V ∼= ϕ(V )). Тогда U ∼= W , как ортогональные дополнения V в одном
и том же пространстве.
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5.9.1 Ортогональные отражения

Пусть V — квадратичное пространство, char(K) ̸= 2. Дополнительно предположим, что B ̸= 0,
выберем v ∈ V : B(v, v) ̸= 0 (такой есть, так как char(K) ̸= 2).

Определение 5.9.1 (Ортогональное отражение относительно v). wv : V → V, wv(x) = x− 2B(x,v)
B(v,v)v.

Обозначим Lv = ⟨v⟩⊥ — зеркало отражения. Так как V = ⟨v⟩⊞Lv — v анизотропен — то ортого-
нальное отражение переводит v 7→ −v, а каждая точка ортогональной гиперплоскости остаётся на
месте.

Лемма 5.9.1. Пусть char(K) ̸= 2, B(u, u) = B(v, v) ̸= 0. Тогда ∃ϕ ∈ Isom(V ) : ϕ(u) = v.

Доказательство. u+ v, u− v ∈ ⟨u, v⟩. Один из этих двух векторов анизотропен:

B(u+ v, u− v) = B(u, u)−B(v, v) = 0

откуда

0 ̸= 4B(u, u) = B((u+ v) + (u− v), (u+ v) + (u− v)) = B(u+ v, u+ v) +B(u− v, u− v)

Если u− v анизотропен, то wu−v(u) = v. Иначе u+ v анизотропен, тогда wu+v(u) = −v, домножив
преобразование на -1 получим необходимое. Можно написать выкладку, а можно посмотреть на
картинку:

• •

•

u

v

зеркало отражения

wu−v(u)

u−v

• •

• •

u

v

u+v

wu+v(u)

зеркало отражения

Предостережение. Если B(u, u) = B(v, v) = 0, то необязательно ∃ϕ ∈ Isom(V ) : ϕ(u) = v. Это
верно только если пространство невырождено.

Контрпример. Пусть u ∈ V \Rad(V ), v ∈ Rad(V ). v ортогонален всему, u — не всему, нет изомет-
рии, переводящей один в другой.

Лемма 5.9.2. Если V невырождено, то для любых ненулевых изотропных векторов u, v ∈ V :
∃ϕ ∈ Isom(V ) : ϕ(u) = v.

5.9.2 Доказательство теоремы Витта о продолжении для невырожденных
подпространств

Теорема 5.9.4. Если U,W ⩽ V, ψ : U ∼= W , причём U,W невырождены (B симметрическое,
char(K) ̸= 2). Тогда ∃ϕ : V ∼= V : ϕ

∣∣
U
= ψ.

Доказательство. Индукция по dim(U) = dim(W ).

База: (лемма 5.9.1).

Переход: Согласно (лемма 5.5.4), в U найдётся неизотропный вектор u ∈ U . Положим v = ψ(u) ∈
W .
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Выберем θ ∈ Isom(V ), θ(u) = v — такая есть согласно (лемма 5.9.1).

Заменим W на θ−1(W ), а ψ — на θ−1ψ. Достаточно доказать теорему после замены, изначально
искомое ϕ получится домножением полученного на θ слева. После замены u = ψ(u).

Применим трижды теорему об ортогональном разложении (теорема 5.5.1):

U = ⟨u⟩⊞ ⟨u⟩⊥U
W = ⟨u⟩⊞ ⟨u⟩⊥W
V = ⟨u⟩⊞ ⟨u⟩⊥V

Понятно, что ⟨u⟩⊥U , ⟨u⟩
⊥
W ⩽ ⟨u⟩

⊥
V .

Ограничение ψ
∣∣
⟨u⟩⊥U

: ⟨u⟩⊥U → ⟨u⟩
⊥
W — изометрия. По индукционному предположению ∃η ∈ Isom

(
⟨u⟩⊥V

)
,

такая, что η
∣∣
⟨u⟩⊥U

= ψ
∣∣
⟨u⟩⊥U

.

Тогда ϕ = id⟨u⟩⊕ η подойдёт.

5.9.3 Доказательство теоремы Витта о продолжении для невырожденного
пространства

Теорема 5.9.5. Пусть U,W ⩽ V, ψ : U ∼= W , причём V невырождено (B симметрическое,
char(K) ̸= 2). Тогда ∃ϕ : V ∼= V : ϕ

∣∣
U
= ψ.

Доказательство. Сначала докажем следующее:

Теорема 5.9.6. Пусть V невырождено, U ⩽ V , U = U0 ⊞ Rad(U) (U0 невырождено).
Тогда ∃ невырожденное U : U ⩽ U ⩽ V , такое, что

U = U0 ⊞ H ⊞ · · ·⊞H︸ ︷︷ ︸
d(U):=dim(Rad(U))

Доказательство. Индукция по d(U) — дефекту U .

Пусть e1, . . . , es — базис Rad(U). Из невырожденности V следует dim(U) + dim(U⊥) =
dim(V ).

Назовём W = U0⊞⟨e1, . . . , es−1⟩ ⩽ U . dim(W ) = dim(U)−1, dim(W⊥) = dim(U⊥)+1.

Значит, ∃v ∈ W⊥ \ U⊥. Тогда B(es, v) ̸= 0. Согласно (лемма 5.6.1) (подпространство
⟨es, v⟩ невырождено, так как B(es, v) ̸= 0, но es изотропен) найдётся e−s ∈ ⟨es, v⟩ :
B(e−s, e−s) = 0, B(es, e−s) = 1.

Получили равенство U ⊕ ⟨e−s⟩ =W ⊞H, дальше действуем по индукции.

Согласно доказанной теореме найдутся U,W :

U ⩽ U ⩽ V dim
(
U
)
= dim(U) + d(U)

W ⩽W ⩽ V dim
(
W
)
= dim(W ) + d(W )

Пространства изоморфны, значит, их дефекты равны, то есть dim
(
U
)
= dim

(
W
)
. С другой сторо-

ны,
U = U0 +Rad(U) W =W0 +Rad(W )

Заметим, что ограничение ψ — тоже изометрия: ψ
∣∣
U0

: U0
∼= W0. Достроим эту изометрию до ψ :

U ∼=W — все гиперболические плоскости изометричны, понятно, что можно достроить так, чтобы
ψ(U0) = W0. Согласно предыдущей теореме (теорема 5.9.4) эту изометрию можно продолжить на
всё V .
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Теорема 5.9.7 (Витт о разложении). (V,B) — пространство над K, (B симметрическое, char(K) ̸= 2).
Тогда V представимо в виде

V0 ⊞ H ⊞ · · ·⊞H︸ ︷︷ ︸
s — индекс Витта

⊞Rad(V )

где V0 анизотропно, причём класс изометрий V0 и s определены однозначно.

Доказательство. Индукция по dimV . Для начала избавимся от радикала, включив его прямым
слагаемым.

Пока существуют ненулевые изотропные векторы, будем включать их в гиперболические гипер-
плоскости. В результате останутся только анизотропные векторы, образующие V0.

Единственность разложения следует из теоремы Витта о сокращении: все гиперболические плос-
кости изометричны, на них можно сокращать.

Такое разложение пространства на анизотропную, гиперболическую, и вырожденную части назы-
вается разложением Витта. Естественно выбирать ортогональный базис в анизотропной части,
гиперплоскостной базис в гиперболической части (и любой — в радикале, всё равно там B ≡ 0) —
это базис Витта.

Пусть V = H1 ⊞ · · ·⊞Hs. Выберем полученный гиперплоскостной базис Hi = ⟨ei, e−i⟩.

Определим U = ⟨e1, . . . , es⟩ , U ′ = ⟨e−1, . . . , e−s⟩. Получим разложение V = U ⊕U ′, причём BU ≡ 0
и BU ′ ≡ 0.

Определение 5.9.2 (Вполне изотропное пространство U). Все векторы U изотропны.

Если характеристика не 2, то во вполне изотропных пространствах BU ≡ 0 (иначе (лемма 5.5.4)).

Следствие 5.9.1. Если V невырождено, то V ∼= V0 ⊞ (U ⊕ U ′), где V0 анизотропно, U,U ′ —
вполне изотропны.

Факт 5.9.1. U,U ′ — максимальные (и по размерности, и по включению) вполне изотропные
подпространства в V .

Доказательство. Максимальность по включению очевидна — никакой вектор не добавить.

Согласно теореме Витта о сокращении, в невырожденном V все максимальные по включению
вполне изотропные подпространства изометричны.

А именно, пусть U, Ũ ⩽ V — вполне изотропные подпространства, причём dim(U) < dim(Ũ). Тогда
U изометрично некому подпространству в Ũ . Изометрию можно продолжить на всё V , получается,
U содержится в бо́льшем вполне изотропном подпространстве. Противоречие.

Лекция XX
3 мая 2023 г.

5.10 Полуторалинейные скалярные произведения

Иноязычно полуторалинейные называют sesquilinear, полулинейные — semilinear.

5.10.1 Полулинейные отображения, инволюции

Раньше было так: R — кольцо, U, V — два модуля над ним, ϕ : U → V — линейное отображение:

ϕ(u+ v) = ϕ(u) + ϕ(v)

ϕ(vλ) = ϕ(v)λ
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Пусть теперь U — R-модуль, V — S-модуль. Что естественно понимать под морфизмом U → V ?
Первое свойство удобно сохранить: ϕ(u + v) = ϕ(u) + ϕ(v). Так как V — не R-модуль, то при
вынесении скаляра из R надо его преобразовать в скаляр из S.

Зададим унитальный гомоморфизм колец ψ : R→ S.

Определение 5.10.1 (ψ-полулинейное отображение). Такое аддитивное ϕ : U → V , что

∀u ∈ U, λ ∈ R : ϕ(uλ) = ϕ(u)ψ(λ)

Линейное отображение можно понимать, как полулинейное, где R = S. До сих пор ψ было тожде-
ственным.

Определение 5.10.2 (Инволюция). Антиавтоморфизм порядка 2. Часто обозначается чертой:

· : R→ R, λ 7→ λ

Свойства.

• λ+ µ = λ+ µ — определение антиавтоморфизма.

• λ · µ = µ · λ — определение антиавтоморфизма.

• 1 = 1.

• λ = λ — порядок 2.

Примеры.

• Комплексное сопряжение — ещё и автоморфизм, так как кольцо коммутативно.

• Кватернионное сопряжение: a+ bi+ cj + dk 7→ a− bi− cj − dk.

w + w = 2a ∈ R
ww = a2 + b2 + c2 + d2 ∈ R

• Инволюция на Q
(√

2
)
: a+ b

√
2 7→ a− b

√
2.

• Инволюция на Fq2 :
Frob : Fq2 → Fq2 ; x 7→ xq

• Пусть R — коммутативное кольцо. Тогда R = Ro и транспонирование — инволюция:M(n,R)→
M(n,Ro); x 7→ xt.

• Главная инволюция группового кольца K[G]→ K[G]; g 7→ g−1.

Пусть U, V — модули над коммутативным кольцом R с инволюцией.

Определение 5.10.3 (Полулинейное отображение ϕ : U → V по отношению к инволюции). Адди-
тивное ϕ, такое, что ϕ(uλ) = ϕ(u)λ.

В 1840-е годы Эрмит ввёл это для комплексных чисел, Гамильтон — для кватернионов.

5.10.2 Полуторалинейные скалярные произведения

Никаких билинейных анизотропных скалярных произведений (кроме одномерных) над C нет: все-
гда уравнение z2 + w2 = 0 имеет решение.

А анизотропность иногда бывает удобна. Поэтому над C билинейные скалярные произведения не
позволяют построить такую же геометрию, как над R. Эрмит предложил заменить сумму квадратов
на сумму zz+ww, которая никогда не 0 (разве что z = w = 0). Для этого пришлось отказаться от
линейности по одному из аргументов.

Пусть K — поле с инволюцией, V — векторное пространство над K.
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Определение 5.10.4 (Полуторалинейная форма B : V ×V → K). B, линейное по одному аргумен-
ту, и полулинейное — по второму:

B(u+ v, w) = B(u,w) +B(v, w)

B(u, v + w) = B(u, v) +B(u,w)

B(uλ, vµ) = λ ·B(u, v) · µ — для правых модулей

B(λu, µv) = λ ·B(u, v) · µ — для левых модулей

Определение 5.10.5 (Полуторалинейное скалярное произведение). Полуторалинейная форма, в
которой ортогональность симметрична: B(u, v) = 0 ⇐⇒ B(v, u) = 0.

Определение 5.10.6 (Эрмитова полуторалинейная форма). Такая форма B, что B(u, v) = B(v, u).
Также называется эрмитовски симметричной формой.

Замечание. Казалось бы, можно ввести эрмитовски антисимметричную форму: B(u, v) = −B(v, u).
Но смысла в этом нет: если B эрмитовски симметрична, то i ·B — эрмитовски антисимметрична.

Интересный факт. Все полуторалинейные скалярные произведения с точностью до нормировки
— эрмитовски симметричны.

Определение 5.10.7 (Унитарное пространство). (V,B), где B — полуторалинейное эрмитово ска-
лярное произведение.

Определение 5.10.8 (Унитарная группа). Группа изометрий унитарного пространства: {ϕ | B(ϕu, ϕv) = B(u, v)}.

Пример (Классический пример). V = Cn, · : C→ C, z 7→ z B(u, v) = u1v1 + · · ·+ unvn.

B здесь положительно определено:

• B(u, u) ⩾ 0 — положительная полуопределённость.

• Равенство наступает при u = 0.

Пространство называют конечномерным гильбертовым или классическим унитарным простран-
ством.

Для таких пространств можно заново переизложить теорию, описанную в данной главе.

Так, матрица Грама G(B) — такая матрица, что B(u, v) = utG(B)v.

Теорема 5.10.1. Любое эрмитово скалярное произведение над C имеет вид

B(u, v) = u1v1 + · · ·+ upvp − up+1vp+1 − · · · − up+qvp+q

Это аналог теоремы Сильвестра: всякое скалярное произведение определяется тремя числами,
n, p, q.

Набросок доказательства. B(u, u) = B(u, u) ⇒ B(u, u) ∈ R. Домножая вектор u на λ получаем
B(uλ, uλ) = λλB(u, u), то есть можно заменить число на любое того же знака — привести в
{−1, 0,+1}.

Предостережение (Гильбертово пространство намного сложнее евклидова). Гильбертово простран-
ство включает в себя и симметрическое, и симплектическое произведения, причём они связаны.
Об этом ниже.

5.10.3 Вещественная и мнимая часть эрмитова скалярного произведения

Пусть K = C, рассмотрим единственную непрерывную нетривиальную инволюцию z 7→ z.

Пусть V = Cn, B : V × V → C — скоро будет полуторалинейным скалярным произведением

Можно «забыть про комплексную структуру»: VR ∼= R2n.

Введём два новых отображения: A(u, v) = ℜ(B(u, v));C(u, v) = ℑ(B(u, v)). Они скоро будут били-
нейными вещественными скалярными произведениями: A,C : VR × VR → R.
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Теорема 5.10.2. Следующие условия эквивалентны:

1. B — эрмитово скалярное произведение (полулинейное по первому аргументу, линейное — по
второму).

2. (a) A симметрическое, C симплектическое.

(b) A(ui, vi) = A(u, v); C(ui, vi) = C(u, v).

(c) A(ui, v) = C(u, v); C(ui, v) = −A(u, v).

Доказательство.

⇒. (a) B(u, v) = B(v, u).

(b) B(ui, vi) = iiB(u, v) = B(u, v).

(c) A(ui, v) + iC(ui, v) = B(ui, v) = iB(u, v) = i(A(u, v) + iC(u, v)) = C(u, v)− iA(u, v).

⇐. Из определения B(u, v) = A(u, v) + iC(u, v) видно, что форма линейна по отношению к
вещественным числам. Запишем{

A(u, vi) = A(vi, u) = C(v, u) = −C(u, v)
C(u, vi) = −C(vi, u) = A(v, u) = A(u, v)

Теперь проверим линейность по второму аргументу, полулинейность по первому, эрмитовость:

B(u, vi) = A(u, vi) + iC(u, vi) = −C(u, v) + iA(u, v) = i(A(u, v) + iC(u, v)) = iB(u, v)

B(ui, v) = A(ui, v) + iC(ui, v) = C(u, v)− iA(u, v) = i(A(u, v) + iC(u, v))

B(u, v) = B(v, u)
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Глава 6

Теория групп

Лекция XXI
10 мая 2023 г.

6.1 Действия групп

6.1.1 Действия групп на множествах

Пусть G — группа, X — множество.

Определение 6.1.1 (G действует на X слева). Задано отображение (левое действие)

act : G×X → X g, x 7→ gx или xg (или ещё как-то обозначается)

При действии группы должны быть выполнены аксиомы:

• Внешней ассоциативности: h(gx) = (hg)x.

• Унитальности: 1G · x = x.

Также говорят «X — G-множество».

При правом действии x(hg) = (xh)g.

Замечание. Для групп любое левое G-множество можно превратить в правое и наоборот:

xg↭ g · x = xg−1

Чаще будем рассматривать левые действия — действия группы аналогичны применениям функций,
а функции мы применять привыкли слева. Например, левым действиям будут соответствовать
гомоморфизмы, а не антигомоморфизмы.

Замечание. Возникавшие у нас группы на самом деле возникали уже вместе с действиями.

Примеры.

• Естественное действие Sn
def
= Bij (n), где n

def
= {1, . . . , n}. Значит, Sn естественно действует

на n:
Sn × n→ n π, i 7→ π(i)

Вообще, для любого множества X (необязательно конечного): SX действует на X.

Лемма 6.1.1. Других действий нет. При фиксированных G,X действиям G↷ X биек-
тивно сопоставляются гомоморфизмы ϕ : G → SX g 7→ (x 7→ gx). Отображения
Lg : X → X,x 7→ gx называются левыми трансляциями на g.

74



Доказательство. Определение очевидно корректно, проверим, что ϕ — гомоморфизм. Акси-
омами действия являются Lgh = LgLh и L1 = idX , откуда следует, что (Lg)

−1 = Lg−1 .

Обратно: гомоморфизму ϕ : G → SX сопоставим ему левое действие G на X: gx = ϕ(g)(x).

Как раз-таки правые действия соответствовали бы не гомоморфизмам, а антигомоморфизмам.

Определение 6.1.2 (Перестановочное представление). Выше рассмотренный гомоморфизм
ϕ : G→ SX .

• Естественное действие GL(n,R) ↷ Rn:

GL(n,R)×Rn → Rn g, u 7→ gu

Левое действие — векторное представление GL(n,R) на Rn.

Также есть правое действие Rn ↶ GL(n,R), которому можно сопоставить GL(n,R)×Rn →
Rn, g, u 7→ g−tu — ковекторное представление.

Определение 6.1.3 (Линейные действия). Действия G×V → V , удовлетворяющие аксиомам
g(u+ v) = gu+ gv и g(uλ) = (gu)λ.

Лемма 6.1.2. При фиксированных G,Rn линейным действиям G ↷ Rn биективно соот-
ветствует гомоморфизмы ϕ : G→ GL(n,R).

Определение 6.1.4 (Линейное представление). Вышеописанный гомоморфизм G→ GL(n,R).

• Действие группы SL(2,C) × C → C, где C — одноточечная компактификация C, сфера
Римана, C ∪ {∞}.(
a b
c d

)
, z 7→ az+b

cz+d . Если знаменатель обнуляется, то (так как ad− bc = 1) числитель не обнуля-

ется, по определению z 7→ ∞. Если z =∞, то
(
a b
c d

)
z =

{
a
b , b ̸= 0

∞, b = 0
. Проверка того, что это

действие, оставляется читателю в качестве упражнения.

6.1.2 Действие группы на себе. Теорема Кэли

Давайте для группы G считать, что множество X = G, посмотрим, что получится.

Определение 6.1.5 (Левое регулярное представление). Действие G на себе левыми сдвигами:
G×G→ G g, x 7→ gx.

Lg : G→ G, x 7→ gx — левая трансляция. Так как в группе есть сокращение, то Lg ∈ SG

Теорема 6.1.1 (Кэли). Отображение G→ SG, g 7→ Lg задаёт вложение G в SG.

Доказательство.

• Lg ∈ SG.

• Это гомоморфизм.

• Lh = Lg ⇒ h = g — проверим в любой точке, например, в 1: h = Lh(1) = Lg(1) = g.

Следствие 6.1.1. |G| = n⇒ G ⩽ Sn.

Это ни в коем случае не биекция, например, так как порядок S|G| = |G|!, что бы это не значило
для бесконечных групп.
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Определение 6.1.6 (Правое регулярное представление). Действие G на себе правыми сдвигами:
G×G→ G g, x 7→ xg−1.

Rg : G→ G, x 7→ xg−1 — правая трансляция. Так как в группе есть сокращение, то Rg ∈ SG

Замечание. И правое представление, и левое представление — левые действия. Мы рассматриваем
левые действия, потому что они соответствуют гомоморфизмам, а не антигомоморфизмам.

Теорема 6.1.2 (Кэли). Отображение G→ SG, g 7→ Rg задаёт вложение G в SG.

Замечание. Любая левая трансляция коммутирует с любой правой трансляцией: LhRg(x) = h(xg−1) =
(hx)g−1 = RgLh(x). Таким образом, на G действует даже не сама группа G, а

G×G↷ G (G×G)×G→ G (h, g), x 7→ hxg−1

Это, правда, уже необязательно вложение, например, в абелевой группе вообще Lg = Rg−1 .

В частности, совместив с диагонализацией diag : G→ G×G, g 7→ (g, g) получим действие сопря-
жения: G×G→ G, g, x 7→ xg = gxg−1.

Это отображение называется Ig : G→ G, x 7→ gxg−1 = xg — внутренний автоморфизм G. Отобра-
жение G→ Sg, g 7→ Ig уже не является вложением, его ядро — центр группы, Cent(G).

6.1.3 Действие группы на однородных пространствах. Обобщённая теорема
Кэли

Зафиксируем подгруппу H ⩽ G — в предыдущем разделе H = {1}. Ей соответствует G/H =
{xH | x ∈ G}.

Определение 6.1.7 (Стандартное действие G на G/H). Lg : G×G/H → G/H, g, xH 7→ gxH.

Аналогично H\G×G→ H\G, Hx, g 7→ Hxg−1.

Получили гомоморфизм G→ SG/H , g 7→ Lg, не обязательно являющийся вложением. Найдём ядро
этого гомоморфизма.

Ядро любого гомоморфизма, вообще-то — нормальная подгруппа, а ещё ядро должно быть как-то
связано с H. С H связаны две нормальные подгруппы G: HG ⩽ H ⩽ HG — сердцевина H (наи-
большая нормальная подгруппа G, содержащаяся в H) и нормальная подгруппа G, порождённая
H (наименьшая нормальная подгруппа G, содержащая H) соответственно. А именно,

HG =
⋂
g∈G

Hg HG = ⟨hg|h ∈ H, g ∈ G⟩

Теорема 6.1.3 (Обобщённая теорема Кэли). Ядро гомоморфизма L : G → SG/H , g 7→ Lg равно
сердцевине — HG.

Доказательство. Мы знаем, что L — гомоморфизм, вычислим его ядро.

g ∈ Ker(L) ⇐⇒ Lg = idG/H ⇐⇒ ∀x ∈ G : Lg(xH) = xH ⇐⇒ ∀x ∈ G : gxH = xH ⇐⇒

⇐⇒ ∀x ∈ G : x−1gx ∈ H ⇐⇒ ∀x ∈ G : gx ∈ H ⇐⇒ ∀x ∈ G : g ∈ Hx−1

Отсюда действительно получается, что g ∈ Ker(L) ⇐⇒ ∀x ∈ G : g ∈ Hx ⇐⇒ x ∈ HG.

Это очень сильная теорема.

Следствие 6.1.2. |G : H| = n⇒ |G : HG|
∣∣∣ n!.

Доказательство. G/HG ↪→ SG/H . Так как |G/H| = n, то |SG/H | = n!.
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Следствие 6.1.3 (Теорема Пуанкаре). Подгруппа конечного индекса содержит нормальную под-
группу конечного индекса, то есть |G : H| <∞⇒ |G : HG| <∞.

Следствие 6.1.4. Если p — наименьшее простое, делящее порядок G и |G : H| = p, то H P G.

Доказательство. Согласно (следствие 6.1.2): |G : HG|
∣∣∣ p!; помимо этого, |G : HG|

∣∣∣ |G|, откуда
|G : HG|

∣∣∣ gcd(p!, |G|) = p⇒ HG = H

Пусть X,Y — два G-множества. Гомоморфизмом G-множеств ϕ : X → Y называют отображение
ϕ(gx) = gϕ(x). Должна быть коммутативна диаграмма

G×X X

G× Y Y

idG×ϕ ϕ

actX

actY

Если же на множествах действуют разные группы, G↷ X,H ↷ Y , то надо ввести ещё эквивари-
антное отображение ψ : G→ H, тогда коммутативной должна быть диаграмма

G×X X

H × Y Y

ψ×ϕ ϕ

actX

actY

ϕ(gx) = ψ(g)ϕ(x)

Лекция XXII
13 мая 2023 г.

Пусть G↷ X. Рассмотрим x ∈ X, с ним можно связать две вещи.

Определение 6.1.8 (Орбита x). Gx
def
= {gx | g ∈ G} ⊂ X.

Определение 6.1.9 (Стабилизатор x). Gx
def
= {g ∈ G | gx = x} ⩽ G. В зависимости от конкретной

природы действия его также называют централизатор, нормализатор, подгруппа изотропии.

Определение 6.1.10 (G действует на X транзитивно). X состоит из одной орбиты:

∃x ∈ X : Gx = X
здесь эквивалентно⇐⇒ ∀x ∈ X : Gx = X

здесь эквивалентно⇐⇒ ∀x, y ∈ X : ∃g ∈ G : gx = y

Ещё говорят X является однородным G-множеством.

Теорема 6.1.4. Gx ∼= G/Gx — изоморфизм G-множеств.

Доказательство. Рассмотрим y ∈ Gx ⇐⇒ ∃g ∈ G : y = gx. Так как ∀h ∈ Gx : x = hx, то
∀h ∈ Gx : y = (gh)x.

Обратно: y = g1x = g2x⇒ g−12 g1x = x⇒ g−12 g1 ∈ Gx, то есть g1Gx = g2Gx.

Таким образом, g1x = g2x ⇐⇒ g1Gx = g2Gx. Значит, можно сопоставить

Gx←→ G/Gx gx←→ gGx

Теперь проверим, что это не просто изоморфизм множеств, а изоморфизм G-множеств:

∀f ∈ G : fy = f(gx) = (fg)x

Другими словами, теорема утверждает, что никаких других однородных G-множеств, кроме фак-
торов по стабилизаторам, нет.
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Следствие 6.1.5. |Gx| = |G : Gx|.

Лемма 6.1.3. Две орбиты либо не пересекаются, либо совпадают.

Доказательство. ∃h, g ∈ G : hx = gy ⇒ y = g−1hx ⇒ y ∈ Gx ⇒ Gy ⊂ Gx. Аналогично
Gx ⊂ Gy.

Предостережение. Пусть S — моноид, действующий на X. Тогда нужно различать орбиты и
траектории. Sx = {sx | s ∈ S} — траектория.

Из того, что нашлись h, g ∈ G : hx = gy совсем не следует, что траектории x и y совпадают —
преобразование необратимо. Чтобы получить орбиты, надо взять транзитивное замыкание траек-
торий:

• • y

x • •

g1
gn x и y здесь в одной орбите.

Согласно аксиоме выбора существует система представителей — трансверсаль к действию G на
X.

Теорема 6.1.5. X =
⊔
x∈Y

Gx, где Y — трансверсаль.

Для конечного трансверсаля X = X1 ⊔ · · · ⊔Xm, где Xi — однородные G-множества.

Примеры.

• Подгруппа H ⩽ G может действовать на группе трансляциями: H ↷ G;h, g 7→ hg. В этом
случае орбиты — смежные классы H\G, стабилизатор любого элемента — {1}. Можно вы-
брать трансверсаль T,G =

⊔
x∈T

xH.

Каждая орбита изоморфна H ↷ H.

Определение 6.1.11 (X — главное однородное пространство для G). X ∼= G как G-множество,
то есть

∀x, y ∈ X : ∃!g : gx = y

Как только изоморфизм фиксируется: 1 7→ x для конкретного x, X перестанет отличаться от
G.

Прослеживается аналогия с евклидовым пространством, в котором не выбрали начало коор-
динат.

• G ↷ G, g, x 7→ xg = gxg−1. В данном частном случае орбиты — классы сопряжённых,
стабилизатор — централизатор: CG(x) = {g ∈ G | xg = x}.

Согласно предыдущей теореме xG ∼= G/CG(x).

• Группа G может действовать на 2G. В данном частном случае стабилизаторы — нормализа-

торы: для Y ⊂ X: NG(Y )
def
= {g ∈ G | Yg = Y }.

Замечание. Вычисление жордановой формы — задача вычисления трансверсаля орбит группы
GL(n,R), на которой она сама (GL(n,R)) действует сопряжением.

6.2 Классификация G-множеств

Как мы уже знаем, ∀G-множества X: X =
⊔
i

Xi, где Xi — однородное G-множество.

Всякое же однородное G-множество изоморфно G/H для H ⩽ G.

Когда для двух подгрупп F,H ⩽ G : G/F ∼= G/H — изоморфизм G-множеств?
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Выберем произвольный x ∈ G. Пусть X = Gx, y ∈ X. Значит X ∼= G/Gx, но так как X = Gy, то
ещё и X ∼= G/Gy. Рассмотрев h ∈ Gy (используя, что y = gx для некоего g ∈ G) получаем, что
g−1hg ∈ Gx.

Лемма 6.2.1. ∀g ∈ G :
(
y = gx⇒ g−1Gyg = Gx

)
, то есть стабилизаторы точек в одной орбите

сопряжены.

Следствие 6.2.1. F сопряжено с H ⇒ G/F ∼= G/H — изоморфизм G-множеств.

Теорема 6.2.1 (Классификация однородных пространств). Пусть F,H ⩽ G. Тогда G/F ∼= G/H
изоморфизм G-множеств

⇐⇒

F ∼ H (F и H сопряжены).

Доказательство.

⇐. Доказано выше.

⇒. Пусть G/F ∼= G/H. Выберем g ∈ G : F 7→ gH. Стабилизатор точки F (при действии
G ↷ G/F ) — это F , стабилизатор точки gH (при действии G ↷ G/H)— gHg−1. Значит,
F ∼ H.

Таким образом, чтобы описать все G-множества, надо описать все подгруппы с точностью до
сопряжения. Это, правда, дикая задача.

6.3 Конечные группы

Будем рассматривать конечные группы, действующие на конечных множествах.

6.3.1 Центр p-группы, теоремы Коши

Обозначим FixG(X) = XG def
= {x ∈ X | ∀g ∈ G : gx = x}. К сожалению, XG уже ранее было задей-

ствовано в другом смысле. Очень жаль. . .

Пусть p ∈ P — простое.

Лемма 6.3.1. Пусть ∀H ⩽ G : H ̸= G⇒ |G : H| ... p. При действии G↷ X:
∣∣XG

∣∣ ≡ |X| (mod p).

Доказательство. Посмотрим на орбиты. XG =
⊔
X̃i, где X̃i — одноэлементные орбиты. Значит,

X = XG ⊔X1 · · · ⊔Xm, где Xi — различные орбиты, такие, что |Xi| > 1. Так как |Gxi| = |G : Gxi |,
то |Gxi| ... p.

Определение 6.3.1 (G — p-группа). |G| = pm для некоего m ∈ N0.

Теорема 6.3.1 (Доказал Силов, но пока ещё не теорема Силова). Если G — p-группа, то её центр
нетривиален.

Доказательство. Рассмотрим G↷ G — действие сопряжением. Центр — множество инвариантов
(неподвижных точек) этого действия. Значит, |Cent(G)| ≡ |G| (mod p).

Следствие 6.3.1 (Нетте). Группы порядка p и p2 абелевы.

Доказательство. Для |G| = p её центр — она сама. Предположим, что |G| = p2, |Cent(G)| =
p. Тогда |G/Cent(G)| = p, то есть G/Cent(G) ∼= Cp, откуда G — абелева (всякий элемент G
представим в виде gih, где 0 ⩽ i < p, h ∈ Cent(G). Легко видеть, что они коммутируют)

Теорема 6.3.2 (Коши). Пусть |G| ... p. Тогда количество решений уравнения xp = 1 делится на p.
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Доказательство Маккея. Положим X = {(x1, . . . , xp) | xi ∈ G;x1 · . . . · xp = 1} ∼=
как множество

Gp−1.

|X| ... p.

Рассмотрим действие Cp ↷ X оператором RotateRight : X → X; RotateRight(x1, . . . , xp−1, xp) =
(xp, x1, . . . , xp−1) — это действие произвольной образующей Cp, остальные определяются однознач-
но.

Неподвижные точки XCp — это в точности {(x, . . . , x) | xp = 1}. Поэтому количество решений
уравнения сравнимо с |X| по модулю p.

Интересный факт (Теорема Фробениуса). Если |G| ... n, то количество решений уравнения xn = 1
в G делится на n.

Следствие 6.3.2. В частности, в группе порядка, делящегося на p, существует x ̸= 1 : xp =

1
здесь эквивалентно⇐⇒ o(x) = p.

Следствие 6.3.3. В p-группе нормализатор любой собственной подгруппы строго больше чем
она.

6.3.2 Теоремы Силова

Если G — абелева, то G =
⊕

p∈P,p | |G|
Gp, где Gp — примарные компоненты. В неабелевых группах

будет что-то отдалённо похожее.

Определение 6.3.2 (Gp ⩽ G — силовская p-подгруппа).

1. Gp — p-группа.

2. |G : Gp| ⊥ p.

Теорема 6.3.3 (Силов, Ep (existence)). Пусть G — конечная группа. Для любого p ∈ P : ∃H ⩽ G
— силовская p-подгруппа.

Теорема 6.3.4 (Силов, Cp (conjugancy)). Для данного p любые две силовские p-подгруппы сопря-
жены в G.

Теорема 6.3.5 (Силов, Dp). Если H ⩽ G, H = pl, то найдётся силовская p-подгруппа, содержащая
H.

Теорема 6.3.6 (Силов — Фробениус, Fp (Anzahlsatz)). Для любого l ∈ N0 : pl | |G| ⇒
∣∣{H ⩽ G | |H| = pl

}∣∣ ≡
1 (mod p).

В частности, количество силовских p-подгрупп делится на p с остатком 1.

Пример. Рассмотрим GL(n, q)
def
= GL(n,Fq), где q = pm.

|GL(n, q)| = (qn − 1)(qn − q) · . . . · (qn − qn−1) = q
n(n−1)/2(qn − 1) · . . . · (q − 1)

так как каждый столбец необходимо выбирать так, что он не лежит в линейной оболочке преды-
дущих.

Рассмотрим подгруппу U(n, q), состоящую из верхних унитреугольных матриц

1 ∗ ∗
1 ∗

0 1

. |U(n, q)| =

qn(n−1)/2. Значит, U(n, q) — силовская p-подгруппа в GL(n, q).

Первое доказательство Фробениуса теоремы Силова

Доказательство Ep. G ↪→
теорема Кэли

S|G| ↪→
матрицы перестановки

GL(|G|, p). Пусть H = U(|G|, p) — силов-

ская p-подгруппа в GL(|G|, p).
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Рассмотрим двойные смежные классы G\GL(|G|, p)/H. Пусть {x1, . . . , xm} — трансверсаль. Со-
гласно формуле индекса Фробениуса

|GL(|G|, p) : H| = |G : (G ∩ x1Hx−11 )|+ · · ·+ |G : (G ∩ xmHx−1m )

Так как левая часть взаимно проста с p, то ∃xi : |G : (G∩xiHx−1i )| ⊥ p. Таким образом, G∩xiHx−1i
— силовская p-подгруппа в G.

Замечание. У Фробениуса вместо GL(|G|, p) была симметрическая группа, в которой p-подгруппу
построить весьма нетривиально.

Доказательство Cp и Dp. Пусть H,P ⩽ G причём |P | = |G|p, где |G|p — p-часть числа, наиболь-
шая степень p, делящая |G|.

Докажем, что если |H| = pm, то ∃g ∈ G : Hg ⩽ P .

H\G/P = Hx1P ⊔ · · · ⊔HxsP .

p ⊥ |G : P | = |H : (H ∩ x1Px−11 )|+ · · ·+ |H : (H ∩ xsPx−11 )|

Так как H — p-группа, то в правой части — степени p. Значит, ∃xi : H = H ∩ xiPx−1i ⇒ Hxi ⩽
P .

Доказательство частного случая Fp — для pl = |G|p. Рассмотрим множество силовских p-подгрупп
Sylp(G). Пусть P ∈ Sylp(G), рассмотрим действие сопряжениями P ↷ Sylp(G). Если Q — непо-
движная точка действия, то P нормализует Q, то есть PQ = QP , откуда PQ ⩽ G.

Согласно формуле произведения |PQ|
∣∣∣ |P | · |Q|. Значит, PQ — p-группа. Если P ̸= Q, то P .⩽PQ,

силовская p-подгруппа не максимальна, противоречие.

Значит, у действия ровно одна неподвижная точка, откуда |Sylp(G)| ≡ 1 (mod p).

Формула классов, второе доказательство Фробениуса

Доказательство Ep. Пусть |G| <∞, p
∣∣∣ |G|. Значит, ∃x ∈ G : o(x) = p.

Рассмотрим действие сопряжением G↷ G, выберем трансверсаль X к орбитам.

X = Cent(G) ∪ {x1, . . . , xm}
представители нецентральных классов

Формула классов:
|G| = |Cent(G)|+ |G : CG(x1)|+ · · ·+ |G : CG(xm)|

Индукция по |G|.

• Либо |Cent(G)| ... p, тогда ∃x ∈ Cent(G) : xp = 1, тогда |G/ ⟨x⟩ | ⩽ |G|. В факторгруппе
силовская p-подгруппа уже есть, |Q| = ph−1, где ph = |G|p. Прообраз Q в G — группа
π−1(Q) ⟨x⟩, её порядок — как нужно.

• Либо |Cent(G)| ̸ ... p. Значит, из формулы классов выше ∃xi : CG(xi) .⩽G, но |G : CG(xi)| ⊥ p.
Тогда получается, что |CG(xi)|p = |G|p, найдём силовскую p-подгруппу по индукции.

Пример (Силовские p-подгруппы в Sn). Силовская подгруппа в Sp — это Cp. Силовская подгруппа
в Sp2 порядка |pp+1| — это сплетение Cp ≀ Cp —можно переставлять элементы в каждом столбце
таблицы p× p, а ещё — переставлять сами столбцы.

Определение 6.3.3 (H ⩽ G — холловская подгруппа). |H| ⊥ |G : H|.
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Пусть π ⊂ P.

Определение 6.3.4 (G — π-группа). p | |G| ⇒ p ∈ π.

Определение 6.3.5 (H — холловская π-подгруппа в G). H — π-группа и |G : H| взаимно прост
со всеми p ∈ π.

Оказывается, Eπ, Cπ, Dπ, Fπ — ничего из этого неверно.

Но можно добавить условие разрешимости G (определение было в I семестре, есть цепочка под-
групп, фактор следующей по предыдущей абелев, последняя подгруппа тривиальна). В разрешимых
группах Eπ, Cπ, Dπ, Fπ выполнены.

Более того, если для каждых двух простых существует холловская π-подгруппа, то сама группа
разрешима??

6.4 Тождества с коммутаторами

Пусть G — произвольная группа.

Определение 6.4.1 (Левонормированный коммутатор). [x, y] = xyx−1y−1

Определение 6.4.2 (Коммутант). [G,G] = ⟨[x, y]|x, y ∈ G⟩.

Из I семестра мы помним, что [G,G] P G, G/[G,G] = Gab — абелева группа (абелианизация G),
причём если H ⩽ G,G/H — абелева, то H ⩾ [G,G].

Определение 6.4.3 (Взаимный коммутант). [F,H] = ⟨[f, h]|f ∈ F, h ∈ H⟩.

Предложение 6.4.1. H P G ⇐⇒ [H,G] ⩽ H.

1.
[x, y]−1 = xyx−1y−1 = yxy−1x−1 = [y, x]

2.
[xy, z] = xyzy−1 ︸︷︷︸

z−1x−1xz

x−1z−1 = [y, z]x · [x, z]

соответствует дистрибутивности аддитивного коммутатора [x, y]
def
= xy− yx по первому аргу-

менту.

3.
[x, yz] = xy ︸︷︷︸

x−1y−1yx

zx−1z−1y−1 = [x, y] · [x, z]y

соответствует дистрибутивности аддитивного коммутатора по второму аргументу.

4.

Определение 6.4.4 (Тройной коммутатор). [x, y, z] = [[x, y], z] = xyx−1y−1zyxy−1x−1z−1.

Определение 6.4.5 (Кратный коммутатор). [x1, . . . , xn] = [[x1, . . . , xn−1], xn].

Лемма 6.4.1 (Холл — Витт).

[x, y−1, z−1]x · [z, x−1, y−1]z · [y, z−1, x−1]y = 1

Доказательство. «Мы оставляем читателю в качестве упражнения расписать тройные ком-
мутаторы»

Определение 6.4.6. [A,B,C] = [[A,B], C].

Лемма 6.4.2 (О трёх подгруппах). Пусть A,B,C ⩽ G;H P G. Если две из трёх

[A,B,C] [B,C,A] [C,A,B]

содержатся в H, то и третья — тоже.

Доказательство. Тождество Холла — Витта.
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Лекция XXIII
16 мая 2023 г.

6.5 Прямое произведение двух подгрупп

Если F,H — произвольные группы, то определено внешнее прямое произведение — группа, в
которую они обе вкладываются.

Определение 6.5.1 (Внешнее прямое произведение). F,H ⇝ F ×H def
= {(f, h) | f ∈ F, h ∈ H}, где

операции покомпонентны.

F ↪→ F ×H ←↩ H; f 7→ (f, 1) (1, h)←[ h

Пусть теперь F,H ⩽ G. Когда G ∼= F ×H? Нас даже интересует естественный изоморфизм, когда
вложения F,H ↪→ F ×H тождественные.

Теорема 6.5.1. G является прямым произведением F и H, если выполнены условия

1. ⟨F,H⟩ = G.

2. F ∩H = {1}.

3. F,H P G.

Доказательство. Если G — прямое произведение F,H, то условия выполнены. Докажем в другую
сторону.

Из 1+3 вытекает G = FH = HF , то есть ∀g ∈ G : ∃f, h, f ′, h′ : g = fh = h′f ′.

Из 2+3 вытекает [F,H] = {1}. В самом деле,

[f, h] = (fhf−1)︸ ︷︷ ︸
∈H

h−1 = f (hf−1h)︸ ︷︷ ︸
∈F

Далее получаем, что все элементы F,H коммутируют, поэтому ∀g ∈ G : ∃!f ∈ F, h ∈ H : g = fh =
hf . Единственность легко показать от противного.

Сопоставим всякому g ∈ G : (f, h) ∈ F,H : fh = g (такая пара единственна).

g1 = f1h1, g2 = f2h2 ⇒ g1g2 = (f1h1)(f2h2) = (f1f2)(h1h2)

Теперь займёмся ослаблением условий теоремы.

Определение 6.5.2 (G — центральное произведение F,H ⩽ G).

1. ⟨F,H⟩ = G.

2. [F,H] = {1}.

3. F,H P G.

Доказательство остаётся прежним, по-прежнему каждому элементу g ∈ G можно (но уже необя-
зательно единственным образом) сопоставить (f, h) ∈ F × H : fh = g. Центральные элементы
z ∈ F ∩H можно перебрасывать: g = (fz)(z−1h) (они центральные, так как они коммутируют и с
F , и с H).

Определение 6.5.3 (G — почти прямое произведение F,H ⩽ G).

1. ⟨F,H⟩ = G.

2. |F ∩H| <∞.

3. F,H P G.
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Определение 6.5.4 (G — подпрямое произведение F,H ⩽ G).

1. G ⩽ F ×H.

2. Проекции G на F и H сюръективны.

6.5.1 Прямое произведение нескольких подгрупп

Пусть H1, . . . ,Hm ⩽ G. Когда G ∼= H1 × · · · × Hm естественным образом, то есть естественные
включения — вложения?

Теорема 6.5.2. G является прямым произведением H1, . . . ,Hm, если выполнены условия

1. ⟨H1, . . . ,Hm⟩ = G.

2. Hi ∩
〈
H1, . . . , Ĥi, . . . ,Hm

〉
= {1} ⇐⇒ Hi ∩

(
H1 · . . . · Ĥi · . . . ·Hm

)
= {1}.

3. H1, . . . ,Hm P G.

Доказательство. Оставлено читателю в качестве упражнения. Легче всего по индукции.

6.5.2 Прямое произведение многих подгрупп

Что такое
∏
i∈I

Gi, где Gi ⩽ G, I — произвольное множество индексов?

Элементы произведения — {(gi)i∈I | gi ∈ Gi}, либо {(gi)i∈I | gi ∈ Gi, почти все gi = 1}. В алгебре
«почти все» — все кроме конечного числа.

Обе конструкции — частный случай ограниченного прямого произведения:∏
i∈I

Hi

Gi = {(gi)i∈I | gi ∈ Gi, почти все gi ∈ Hi}

6.6 Полупрямое произведение

Пусть F,H ⩽ G.

Определение 6.6.1 (G — полупрямое произведение нормальной подгруппы H и дополнительной
подгруппы F ).

1. ⟨F,H⟩ = G.

2. |F ∩H| = {1}.

3. H P G.

Обозначают G = F ⋌H = H ⋋ F .

По-прежнему G = FH = HF , но они уже необязательно коммутируют: известно лишь, что
[F,H] ⩽ H.

∀g ∈ G : ∃!f, f ′ ∈ F, h, h′ ∈ H : g = fh = h′f ′

Так как коммутант лежит в H, то на самом деле f = f ′: h′f ′ = (fhf−1)f .

Как эти элементы перемножать?

g1 = h1f1, g2 = h2f2 ⇒ g1g2 = (h1f1)(h2 ︸︷︷︸
f−1
1 f1

f2) = (h1f1h2f
−1
1 )(f1f2) = (h1 · h2

f1 )(f1f2)

Замечание. При перемножении f1h1 · f2h2 появляется сопряжение не элементом f1, а элементом
f−11 , что потом породит не гомоморфизмы, а антигомоморфизмы.
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Пусть нам даны

1. Группы F и H.

2. Гомоморфизм θ : F → Aut(H).

Определение 6.6.2 (Полупрямое произведение, отвечающее «действию автоморфизмами» θ). H⋋θ
F

def
= {(h, f) | h ∈ H, f ∈ F} с действием, определённым так:

(h1, f1) · (h2, f2) = (h1θ(f1)(h2), f1f2)

Теорема 6.6.1. H ⋋θ F — группа, изоморфная полупрямому произведению своих подгрупп H1 =
{(h, 1) | h ∈ H} и F 1 = {(1, f) | f ∈ F}.

Пусть H P G — нормальная подгруппа. G является полупрямым произведением H и какой-то
дополняющей подгруппы, если факторгруппа G/H вкладывается в G, и композиция этого вложе-
ния и факторпроекции G/H → G → G/H тождественна. Иными словами, существует сечение у
факторпроекции G→ G/H.

Более общим примером, примером расширения (одной группы, изоморфной нормальной подгруп-
пе, при помощи другой, изоморфной факторгруппе) является случай, когда сечение не обязательно
существует. Например, рассмотрим подгруппу десятков в группе остатков Z/100Z: есть вложение
Z/10Z → Z/100Z, где a ∈ Z/10Z соответствует 10a ∈ Z/100Z. Образ — нормальная подгруппа
(в абелевой группе все подгруппы нормальны), но Z/100Z не разваливается в полупрямое произ-
ведение Z/10Z и факторгруппы, так как нет сечения. Расширения изображают в виде короткой
точной последовательности следующего вида:

1→ Z/10Z→ Z/100Z→ Z/10Z→ 1

Здесь левая стрелка соответствует вложению нормальной подгруппы Z/10Z в группу Z/100Z (и
1 слева говорит, что это действительно вложение, то есть что гомоморфизм инъективен), правая
— факторизации по образу (и правая 1 говорит, что это действительно факторпроекция, то есть
гомоморфизм сюръективен).

Замечание. Для нетривиального действия полупрямое произведение двух абелевых групп вполне
может стать неабелевым.

Примеры (Полупрямое произведение).

• Рассмотрим следующие подгруппы в GL(n,K):

B(n,K) =

∗ ∗
. . .

0 ∗


Борелевские — (верхне) треугольные матрицы

D(n,K) =

∗ 0
. . .

0 ∗


диагональные матрицы

U(n,K) =

1 ∗
. . .

0 1


(верхние) унитреугольные матрицы

B = D ⋌ U

• N(n,K) — группа мономиальных матриц, то есть N =

{
x ∈ GL(n,K) |

{
∀i : ∃!j : xi,j ̸= 0

∀j : ∃!i : xi,j ̸= 0

}
.

Wn — матрицы перестановки, то есть Wn = {x ∈ N(n,K) | ∀i, j : xi,j = 0 ∨ xi,j = 1}. Wn
∼=

Sn.
N =Wn ⋌D

• Группа аффинных матриц Aff(n,K) =

{(
g u
0 1

)
| g ∈ GL(n,K), u ∈ Kn

}
. Группа отвечает

аффинным движениям, то есть композиции вращения относительно начала координат (за это
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отвечает GL(n,K)) и параллельного переноса (за это отвечает Kn).(
g1 u1
0 1

)
·
(
g2 u2
0 1

)
=

(
g1g2 g1u2 + u1
0 1

)

GL(n,K)⋌Kn = Aff(n,K)

6.7 Группы порядка pq

Пусть p < q — различные простые числа, G — группа (|G| = pq). Как она выглядит?

В ней совершенно точно есть силовские подгруппы P,Q ⩽ G, |P | = p, |Q| = q. Число силовских q-
подгрупп сравнимо с 1 (mod q), но так как это число — делитель pq (число классов сопряжённости
к Q), то оно равно 1. Значит, в G ровно одна силовская q-подгруппа, она инвариантна относительно
сопряжения, то есть Q P G⇒ G = P ⋌Q.

Как известно, группа простого порядка p единственна с точностью до изоморфизма — все по-
рядки элементов делят размер группы, таким образом, есть элемент порядка p, то есть группа
циклическая.

G определяется действием P ↷ Q автоморфизмами θ : P → Aut(Q). Автоморфизмы Cq отправляют
произвольную образующую в произвольную, они изоморфны Cq−1.

Очевидно, есть тривиальный θ : P → id. Он соответствует абелевой группе Cp × Cq.

Заметим, что нетривиальный гомоморфизм θ существует, если p | q − 1.

Зафиксируем результат:

Теорема 6.7.1. Неабелевые группы порядка pq, где p < q, p, q ∈ P существуют только если p | q−1.

Примеры.

• Все группы порядка 15 абелевые.

• Есть неабелевая группа (группа Фробениуса) порядка 21.

Вообще, верен более общий факт:

Интересный факт (Теорема Диксона). gcd(n, ϕ(n)) = 1 ⇐⇒ ∃!|G| = n (и эта группа абелева).

Лекция XXIV
17 мая 2023 г.

6.8 Крохотный кусок комбинаторной теории групп

6.8.1 Свободные группы

Пусть X — множество.

Определение 6.8.1 (Свободная группа FX со свободным множеством образующих X). Группа
вместе с вложением X ↪→ FX , такая, что ∀ группы G,∀ϕ : X → G: ∃!ψ : FX → G — гомоморфизм
групп, делающий следующую диаграмму коммутативной.

X FX

G

ϕ ψ

η
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Обычно X конечно, мы будем рассматривать конечнопорождённые свободные группы. В таком
случае если |X| = n, то пишут Fn вместо FX .

Замечание. Если бы в определении были абелевы группы, то это были бы в точности свободные
модули над Z.

Замечание. Если свободная группа существует, то она единственна, причём с точностью до един-
ственного изоморфизма.

В самом деле, если есть две свободные группы FX и F̃X со вложениями η : X ↪→ FX , η̃ : X ↪→ F̃X ,
то существуют и единственны гомоморфизмы групп ψ : FX → F̃X , ψ̃ : F̃X → FX , такие, что

∀x ∈ X : ψ(η(x)) = η̃(x) ψ̃(η̃(x)) = η(x)

Таким образом, видно (например, из конструкции свободной группы, которая приведена ниже), что
ψ и ψ̃ взаимно обратные отображения, то есть ψ : FX → F̃X — изоморфизм. Он единственный, так
как единственный гомоморфизм групп ψ : FX → F̃X .

Определение 6.8.2 (Свободный моноид WX со свободным множеством образующих X). Моноид
вместе с вложением X ↪→WX , такой, что ∀ моноида S,∀ϕ : X → S: ∃!ψ :WX → G — гомоморфизм
моноидов, делающий следующую диаграмму коммутативной.

X WX

S

ϕ ψ

η

Лемма 6.8.1. Свободный моноид уж точно существует.

Доказательство. Моноид с множеством образующих X — это просто набор слов. Так, для X =

{a, b}: WX
def
= {∧, a, b, aa, ab, ba, bb, aba, . . .}.

Операцией в моноиде является конкатенация: (x1 . . . xn) ∗ (y1 . . . ym) = x1 . . . xny1 . . . ym. Эта опе-
рация ассоциативна, но некоммутативна.

Таким образом, (WX , ∗,∧) — свободный моноид (слова равны, если они физически равны; для
отображения ϕ : X → S гомоморфизмом ψ : Wn → X является тот, который отправляет слово
x1 . . . xn ∈WX в ϕ(x1) · . . . · ϕ(xn) ∈ S).

Теорема 6.8.1. Для любого множества образующих X существует свободная группа.

Доказательство. Удвоим алфавит: выберем множество X ′ : |X ′| = |X| вместе с биекцией X ↔
X ′;x ↔ x′ и построим свободный моноид WX⊔X′ . Введём на WX⊔X′ отношение эквивалентности
∼, являющееся транзитивным замыканием отношения предэквивалентности

∀u, v ∈WX⊔X′ , x ∈ X : uxx′v ∼ uv ∼ ux′xv

Определим FX
def
= (WX⊔X′)/ ∼ с наследованной от моноида операцией. Очевидно, она определена

корректно: w1 ∼ w′1;w2 ∼ w′2 ⇒ w1w2 ∼ w′1w
′
2. Более того, она осталась ассоциативной, а класс

эквивалентности пустого слова [∧] — нейтральный элемент. Операция взятия обратного в группе
работает так: (x1 . . . xn)−1 = x′n . . . x

′
1.

Определим ψ :WX⊔X′ → G аналогично: ψ(x1 . . . xn) = ϕ(x1) · . . . ·ϕ(xn) (правда для этого придётся
доопределить ϕ на X ′: ϕ(x′i) := ϕ(xi)

−1).
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Так как отношение эквивалентности лежит в ядре (множество элементов, эквивалентных триви-
альному слову лежит в Ker(ψ)), то ψ пропускается через фактор:

WX⊔X′

X FX

G
ϕ

∼

ψ

Пропущенный через фактор ψ и есть искомый гомоморфизм групп — он сохраняет произведе-
ние, единицу и обратные. Более того, из построения видно, что это — единственный способ его
построить, поэтому гомоморфизм групп действительно единственный.

Определение 6.8.3 (Редуцированное (приведённое) слово w ∈ WX⊔X′). Слово, в котором нет
фрагментов вида xx′ или x′x.

Теорема 6.8.2. В каждом классе эквивалентности слов есть единственное редуцированное.

Доказательство. Пусть есть два редуцированных слова w1 ∼ w2. Они эквивалентны, так как есть
цепочка отношений предэквивалентностей w1 = u1 ∼ · · · ∼ un = w2.

• пик

• • • •

w1 w2

врисовывание xx′ вычёркивание xx′

Выберем среди всех таких цепочек цепочку с минимальной длиной максимального слова, а среди
этих — с минимальным количеством слов максимальной длины.

Так как слова редуцированные, то в цепочке отношений предэквивалентности первый шаг был
вверх — в удлинение слова, а последний — вниз. Значит, где-то был пик. Надо рассмотреть три
варианта:

1. Врисовали и вычеркнули одну и ту же пару — эти два шага можно взаимоуничтожить.

2. Врисовали и вычеркнули соседнюю пару букв — лишь один символ задействован в обоих
операциях. Эти два шага тоже можно взаимоуничтожить.

3. Врисовали и вычеркнули различную пару букв. Эти два шага можно поменять местами.

Во всех случаях получили новую цепочку, у которой либо длина максимального слова меньше,
либо та же, но слов такой длины меньше. Противоречие — мы выбрали уже минимальную. Значит,
пика нет, слова просто равны: w1 = w2.

Существование редуцированного слова очевидно, так как можно взять самое короткое в классе —
его не укоротить.

Обозначим w — приведённое слово в классе [w].

Следствие 6.8.1. В качестве FX можно выбрать не фактормоноид, а множество редуциро-
ванных слов. Тогда вместо конкатенации ∗ надо ввести операцию на группе w1, w2 7→ [w1 ∗w2].

Из единственности редуцированного слова можно проверить, что новая операция тоже ассо-
циативна: u ∗ v = u ∗ v

Основная свободная группа, которая нам встретится в топологии — фундаментальная группа бу-
кета окружностей (или плоскости с выколотыми точками), котёнок с катушкой.
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Ещё свободную группу можно мыслить так:

yy

yx−1 y yx

x−1y xy

x−1x−1 x−1 ∧ x xx

x−1y−1 xy−1

y−1x−1 y−1 y−1x

y−1y−1

Эту картинку надо рисовать не на евклидовой плоскости, а на гиперболической, тогда все стрелки
будут одинакового размера и всё поместится.

Если же отождествить xy и yx, так как на ровной картинке они попадают в одну точку, то это
будет уже абелева группа.

6.8.2 Задание группы образующими соотношениями

Пусть G = ⟨g1, . . . , gn⟩, X = {x1, . . . , xm}.

По определению свободной группы существует и единственный гомоморфизм ψ : FX → G, xi 7→ gi.
Значит, G является факторгруппой свободной группы.

1→ R→ FX → G→ 1

R — первая буква слова relations, соотношения, gi — generators, образующие.

Значит, G ∼= FX/R, как же описать R? Проблема в том, что кроме тривиальных случаев R
бесконечно велико.

Хочется взять образующие для R, но оказывается, что в общем случае даже их бесконечно много.
Однако R — ядро гомоморфизма, то есть нормальная подгруппа в FX . Значит, можно взять её
образующие, как образующие нормальной подгруппы.

Если ψ(w) = 1G, то ψ(uwu−1) = ψ(u)ψ(w)ψ(u)−1 = 1G, то есть соотношения выписываются с точ-
ностью до сопряжения. Любая такая система образующих — система определяющих соотношений
(defining relations).

Определение 6.8.4 (Группа с образующими g1, . . . , gn и определяющими соотношениями w1, . . . , wm).
G ∼= ⟨g1, . . . , gn|w1, . . . , wm⟩

Сама такая запись группы — presentation, копредставление или задание образующими соотноше-
ниями.

Примеры.

• Свободная абелева группа Zn ∼= ⟨x1, . . . , xn|xixj = xjxi⟩ ∼= ⟨x1, . . . , xn|[xi, xj ]⟩. Часто удобно
писать соотношения в виде w1 = w2, это по определению то же самое, что и соотношение
w1w

−1
2 .

• Cn = ⟨g|gn⟩ = ⟨g|gn = 1⟩ — возможно, вторая запись нагляднее.
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• Dn =
〈
x, y|x2 = y2 = (xy)n = 1

〉
— группа симметрий правильного n-угольника. Образующие

x и y отвечают отражениям относительно двух прямых. Скажем, x отвечает прямой, прохо-
дящей через диаметрально противоположные вершины, а y — проходящей через середины
противоположных сторон, и угол между этими прямыми π

n . Тогда xy — поворот на угол 2π
n ,

и порядок этого элемента n.

• Q8 =
〈
x, y|x4 = y4 = 1, x2 = y2, xy = yx3

〉
. Здесь есть ровно восемь слов: 1, x, y, x2 = y2, xy =

yx3, . . .

• Sn = ⟨s1, . . . , sn−1|(s2i = 1) ∧ (∀i, j : |i − j| > 2 ⇒ [si, sj ] = 1) ∧ sisi+1si = si+1sisi+1︸ ︷︷ ︸
(sisi+1)3=1

⟩,

где si = ([i][i + 1]) — фундаментальная транспозиция, они же кокстеровские образующие.
Соотношение xyx = yxy носит название braid relation, отношение в группе кос (косы имеются
в виду те, которые девушки заплетают).

• • •

• • •

• • •

• • •

·

·

·

• • •

• • •

• • •

• • •

·

·

·

Эти косы гомотопически изоморфны.

Если в копредставлении Sn забыть про отношение s2i = 1, то получим группу кос

Bn = ⟨s1, . . . , sn−1|(∀i, j : |i− j| > 2⇒ [si, sj ] = 1) ∧ sisi+1si = si+1sisi+1⟩

Факт 6.8.1. Группа с большим множеством соотношений — факторгруппа группы с меньшим
числом соотношений:

⟨X|R⟩ → ⟨X|R ∪ S⟩ → 1

Доказательство. Теорема фон Дика.

Следствие 6.8.2. Bn → Sn → 1: симметрическая группа — факторгруппа группы кос.

Примеры.

• PSL(2,Z) =

[
a b
c d

]
= ±

(
a b
c d

)
— фактор SL(2,Z) по центру. x =

[
0 1
−1 0

]
, y =[

1 1
−1 0

]
. PSL(2,Z) =

〈
x, y|x2 = y3 = 1

〉
. Что здесь произошло? Определяющие соотноше-

ния бьются на соотношения по разным образующим, это называют свободным произведением:

⟨X ⊔ Y |R ⊔ S⟩ = ⟨X|R⟩ ⋆ ⟨Y |S⟩

где R — соотношения только на X, S — соотношения только на Y .

Получается, PSL(2,Z) ∼= C2 ⋆ C3 — свободное произведение двух очень маленьких групп —
бесконечно.

• Для SL(2,Z) фактора по центру нет. SL(2,Z) = C4 ⋆C2
C6 — уже не свободное произведение,

а какое-то хитрое.
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