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Глава 1

Дискретная теория вероятностей

Лекция I
14 февраля 2023 г.

1.1 Основные определения и понятия

1.1.1 Вероятностное пространство. События

Рассмотрим конечное или счётное множество Ω.

Элементы множества ω ∈ Ω называются элементарными исходами, само множество Ω называется
пространством элементарных исходов.

Всякое подмножество A ⊂ Ω является событием.

Введём функцию p : Ω → R⩾0, сопоставляющую элементарному исходу «его вероятность». Необ-
ходимым и достаточным условием является

∑
ω∈Ω

p(ω) = 1. Так как p(ω) ⩾ 0, то сумма конечного

или счётного числа слагаемых корректно определена. А именно, сумма счётного числа слагаемых
либо расходится при любой перестановке слагаемых, либо сходится к одному и тому же числу.

Определение 1.1.1 (Вероятностное пространство). Пространство элементарных исходов Ω с за-
данной на нём вероятностью p : Ω → R⩾0.

Определение 1.1.2 (Вероятность события). Сумма вероятностей элементарных исходов — его
элементов, как множества.

Пишут P : 2Ω → R; P(A) =
∑
ω∈A

p(ω).

Свойства (Свойства вероятностей).

• 0 ⩽ P(A) ⩽ 1.

• A ⊂ B ⇒ P(A) ⩽ P(B).

• P(A) + P
(
A
)
= 1, где A

def
= Ω \A.

• P

(
n⊔

j=1

Aj

)
=

n∑
j=1

P(Aj).

Для пересекающихся событий посчитать вероятность их объединения сложнее. Используя формулу
включений-исключений, можно записать

P(A ∪B) = P(A) + P(B)− P(A ∩B)

P(A ∪B ∪ C) = P(A) + P(B) + P(C)− P(A ∩B)− P(A ∩ C)− P(B ∩ C) + P(A ∩B ∩ C)
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и так далее.

Замечание. Иногда случается так, что все элементарные исходы равновероятны. Так как сумма их
вероятностей — 1, то в таком случае |Ω| < ∞, и ∀ω ∈ Ω : p(ω) = 1

|Ω| . Отсюда получаем, P(A) = |A|
|Ω| .

1.1.2 Взаимосвязь событий

Условная вероятность

Зафиксируем некоторое событие B ⊂ Ω, такое, что P(B) > 0.

Определение 1.1.3 (Условная вероятность события A (при условии B)). P(A|B) = P(A∩B)
P(B) .

Об этом удобно думать, как о вероятности того, что произошло A, при условии того, что произошло
B.

Рис. 1.1: Про условную вероятность

Красное событие довольно вероятно, что произойдёт, но при условии того, что произошло зелёное
событие, вероятность красного существенно понижается.

Интуиция за этим определением следующая: все элементарные исходы, содержащиеся в B могут
как произойти, так и не произойти, но все, не содержащиеся в B — точно не произошли.

Таким образом, вероятностное пространство «сузилось», ввели новую вероятностную функцию

p̃ : Ω → R⩾0; p̃ : ω 7→

{
α · p(ω), ω ∈ B

0, ω /∈ B

где α — коэффициент нормировки, необходимый для условия суммирования всех вероятностей в
единицу.

∑
ω∈B

p(ω) = P(B), поэтому α = 1
P(B) .

Независимость событий

Интуитивно, независимость событий — это когда происхождение одного события не влияет на
вероятность происхождения другого.

Воспользовавшись языком условной вероятности, P(A|B) = P(A). За определение принимают фор-
мулу, полученную из этой домножением на P(B) — без деления.

Определение 1.1.4 (События A и B независимы). P(A) · P(B) = P(A ∩B).

Замечание. Приятным бонусом формулы оказалась симметричность относительно A и B.

Можно доказать, что независимость A и B влечёт независимость A и B.

Независимость множества событий бывает попарная и в совокупности.

Попарная независимость — гораздо более слабое условие, оно означает лишь независимость любой
пары событий. Независимость множества событий A = {A1, A2, . . . } в совокупности означает

∀S ⊂ A :
∏

A∈S
P(A) = P

( ⋂
A∈S

A

)
.

Контрпример (Пирамидка Бернштейна). Покажем, что попарная независимость отличается от
независимости в совокупности. Рассмотрим четырёхгранную пирамидку (как кубик, только четыре
грани, а не шесть), у которой грани белая, синяя, красная, бело-сине-красная.
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При её броске возможны 4 элементарных исхода — выпала такая-то грань. Определим вероятност-
ное пространство на этом множестве, введя вероятности каждого исхода 1/4.

Рассмотрим три события W,B,R — выпала грань, на которой есть белое, синее или красное
соответственно. Несложно заметить, что

P(W ) = P(B) = P(R) =
1

2

P(W ∩B) = P(B ∩R) = P(W ∩R) =
1

4

P(W ∩B ∩R) =
1

4

1.2 Случайные величины

Определение 1.2.1 (Случайная величина). Отображение X : Ω → R.

Определение 1.2.2 (Независимость случайных величин X1, . . . , Xn). ∀r1, . . . , rn ∈ R: события
{X = r1}, . . . , {Xn = rn} независимы.

Запись {X = r1} является сокращением более длинной записи {ω ∈ Ω | X(ω) = r1}.

1.2.1 Схема Бернулли

Пусть n ∈ N, p ∈ [0, 1].

Введём независимые события A1, . . . , An, такие, что P(Aj) = p. Назовём их испытаниями, по-
смотрим, какие испытания завершились «успехом» (событие произошло), а какие — нет.

Пример (Схема Бернулли для n = 2). Обозначим A1 = {ω1, ω2}, A2 = {ω1, ω3}. Все вероятно-
сти элементарных исходов определены условием однозначно. Так, p(ω1) = P(A1 ∩ A2) =

независимость

P(A1)P(A2) = p · p = p2.

Рассмотрим случайную величины S(ω) — количество успехов.

ω A1 A2 p(ω) S(ω)
ω1 Успех Успех p2 2
ω2 Успех Неудача p(1− p) 1
ω3 Неудача Успех (1− p)p 1
ω4 Неудача Неудача (1− p)2 0

Посчитаем для произвольного n вероятность того, что количество успехов — ровно k. Из базовой
комбинаторики очевидно, что

P(S = k) =
∑

ω∈Ω:S(ω)=k

p(ω) =
∑

ω∈Ω:S(ω)=k

pk(1− p)n−k =

(
n

k

)
pk(1− p)n−k

Для всякой случайной величины S, удовлетворяющей формуле выше, говорят, что она подчинена
биномиальному распределению B(n, p).

Заметим, что Ω =
n⊔

k=0

{S = k}, откуда мы получаем тождество

n∑
k=0

P(S = k) = 1

n∑
k=0

(
n

k

)
pk(1− p)n−k = 1

Теорема 1.2.1 (Пуассон). Пусть k ∈ N⩾0, a ∈ R>0.

Рассмотрим последовательность схем Бернулли с параметрами (n, pn), где n · pn −→
n→∞

a.
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Тогда P(Sn = k) −→
n→∞

e−a ak

k! . Случайные величины, удовлетворяющие этой формуле, имеют рас-

пределение Пуассона P(a).

Доказательство.

P(Sn = k) =
n!

(n− k)!k!
pkn(1− pn)

n−k =
1

k!
· n!

(n− k)! · nk︸ ︷︷ ︸
→1

·(npn︸︷︷︸
→a

)k · (1− pn)
1

pn
·︸ ︷︷ ︸

e−1

pn(n−k)︸ ︷︷ ︸
→a

−→ e−a a
k

k!

Лекция II
20 февраля 2023 г.

Введём в схеме Бернулли ещё одну случайную величину T — момент первого успеха, наименьший
номер первого успешного события (и формальный элемент ∞ иначе).

T ∈ {1, . . . , n,∞}. (Эта запись не совсем формальна: она означает, что T , как отображение, при-
нимает значения в данном множестве). Несложно по определению почитать

P(T = k) = P
(
A1, . . . , Ak−1, Ak

)
= (1− p)k−1 · p, 1 ⩽ k ⩽ n

Если же ни одно испытание не закончилось успехом, то T = ∞, P(T = ∞) = (1− p)n.

Рассмотрим случай n = ∞. Тогда событие «ни одно испытание не закончилось успехом» исключа-
ется, а сумма вероятностей остальных событий равна 1:

∞∑
k=1

P(T = k) =

∞∑
k=1

(1− p)k−1p =
1

1− (1− p)
· p = 1

Говорят, что T имеет геометрическое распределение.

На самом деле дискретная теория вероятностей не позволяет создать схему Бернулли со счётным
(любым бесконечным) количеством испытаний (при 0 < p < 1). Таким образом, рассматривая
случай n = ∞, мы ведём себя неформально, в любом случае выходя за рамки дискретной теории
вероятностей.

Доказательство невозможности счётной схеме Бернулли в дискретной теории вероятностей.
Рассмотрим произвольный элементарный исход ω. Если ему соответствует бесконечное число успе-
хов, то для любого m рассмотрим m успешных событий. Пусть это какие-то фиксированные
Ai1 , . . . , Aim . Так как они произошли, то P(m) ⩽ pm, то есть на самом деле P(ω) = 0. (В слу-
чае бесконечного числа неуспехов опять же можно оценить ∀m ∈ N : P(ω) ⩽ (1 − p)m). Но раз
вероятность каждого элементарного исхода равна 0, то они не могут суммироваться в 1, противо-
речие.

Это произошло из-за того, что в схеме Бернулли со счётным числом испытаний континуум воз-
можных исходов.

Чтобы это обойти, можно рассматривать последовательность конечных схем, как в теореме Пуассо-
на, или же просто закрыть на это глаза — в непрерывной теории вероятностей такое распределение
возможно.

1.2.2 Случайные блуждания

Введём случайные величины Sn : S0 = 0, Sn+1 = Sn +Xn, где Xn =

{
1, с вероятностью p

−1, с вероятностью 1− p
,

и все {Xn} независимы.
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Это та же схема Бернулли, просто успехам соответствуют движения в положительную сторону
оси, и неуспехам — в отрицательную.

Исследуем распределение Sn. Очевидно, возможные значения Sn — это [−n;n], причём k ≡ n
(mod 2).

Событие {Sn = k} эквивалентно событию «m величин равны 1 (остальные -1)», где k = m− (n−
m) ⇒ m = n+k

2 .

Отсюда согласно схеме Бернулли получаем P(Sn = k) =
(

n
(n+k)/2

)
p(n+k)/2(1− p)(n−k)/2.

В симметричном случае, при p = 1/2 формула упрощается, P(Sn = k) =
(

n
(n+k)/2

)
· 1
2n .

1.2.3 Про условные вероятности

Вероятность происхождения A при условии B: P(A|B) = PB(A) = P(A∩B)
P(B) (при P(B) > 0).

Применение условных вероятностей:

• Вычисление вероятностей вложенных событий. Пусть A1 ⊃ A2 ⊃ . . . An.

P(An) = P(A1) · P(A2|A1) · . . . · P(An|An−1)

Доказательство. По индукции.

P(An) =
события вложены

P(An ∩An−1) = P(An−1) · P(An|An−1)

• Формула полной вероятности Пусть вероятностное пространство Ω разбито на конечное (или
счётное) число дизъюнктных события H1, . . . ,Hn.

H
H

H

H

H

1
2

3

4

5

Рис. 1.2: Разбиение вероятностного пространства

Рассмотрим произвольное событие A ⊂ Ω.

P(A) =

n∑
i=1

P(A ∩Hi) =

n∑
i=1

P(A|Hj)P(Hi)

• Формула Байеса. Пусть вероятностное пространство Ω разбито на конечное (или счётное)
число дизъюнктных события H1, . . . ,Hn. Теперь мы хотим узнать вероятность Hi для некоего
i при условии наступления события A.

Запишем

P(Hi|A) =
по определению

P(Hi ∩A)

P(A)
=

P(A|Hi)P(Hi)

P(A)
=

P(A|Hi)P(Hi)
n∑

j=1

P(A|Hi)P(Hi)
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1.3 Матожидание, дисперсия

Говорят, что X и Y одинаково распределены, если ∀r ∈ R : P(X = r) = P(Y = r). Например, в схе-
ме Бернулли из 6 испытаний случайные величины «количество успехов на первых 2 испытаниях»
и «количество успехов на последних 2 испытаниях» одинаково распределены.

Если X и Y определены на одном и том же вероятностном пространстве, то можно определить
арифметические действия (сумму, произведение. . . ) случайных величин, как соответствующие
арифметические действия над отображениями поточечно.

Определение 1.3.1 (Математическое ожидание случайной величины X). Обозначается

EX def
=
∑
ω∈Ω

X(ω)p(ω)

Математическое ожидание довольно неплохо описывает случайную величину одним числом: (за-
дача 1.3.1).

После приведения подобных членов, можно записать E(X) =
∑
r
P(X = r)r Если Ω конечно, то

сумма считается; если же Ω — бесконечное вероятностное пространство, то матожидание может
быть не определено, как сумма бесконечного ряда (тем не менее, сумма всегда существует, если X
всегда принимает неотрицательные значения). Чтобы было удобно оперировать с матожиданиями,
будем считать, что матожидание определено, если и только если ряд сходится абсолютно.

Чтобы исследовать существование EX, введём функции положительной и отрицательной частей
числа:

x+
def
= max{x, 0}

x−
def
= max{−x, 0}

Несложно видеть, что равенство x = x+ − x− выполнено всегда.

Посчитав матожидание положительной и отрицательной частей X, E(X+) и E(X−), можно утвер-
ждать, что E(X) существует, если и только если хотя бы одно из E(X+) и E(X−) конечно. Если
же E(X+) = E(X−) = +∞, то E(X) не определено. (Если ровно одно из E(X+) или E(X−)
бесконечно, то EX тоже можно мыслить, как бесконечность того или иного знака)

1.3.1 Простейшие свойства матожидания

• X ⩾ 0 ⇒ E(X) ⩾ 0.

• ∀c ∈ R : E(cX) = cE(X).

• E(X + Y ) = E(X) + E(Y ).

Доказательство.

E(X) + E(Y ) =
∑
r1

r1P(X = r1) +
∑
r2

r2P(Y = r2) =

=
∑
r1

r1
∑
r2

P(X = r1 ∧ Y = r2) +
∑
r2

r2
∑
r1

P(X = r1 ∧ Y = r2) =

=
∑
r1,r2

(r1 + r2)P(X = r1 ∧ Y = r2)

Здесь важно заметить, что X и Y лишь должны быть определены на одном вероятностном
событии; они не обязаны быть, например, независимы.

• X ⩾ Y ⇒ E(X) ⩾ E(Y ). Для доказательства можно записать Y = X + (Y − X). Тогда
EY = EX + E(Y −X).
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Примеры (Матожидания случайных величин).

• X имеет распределение Бернулли с параметром p, записываемое B(p). Это по определению
значит {

P(X = 1) = p

P(X = 0) = 1− p

В таком случае EX = 1 · P(X = 1) + 0 · P(X = 0) = p.

• Пусть S имеет распределение B(n, p)— число успехов в схеме Бернулли.

P(S = k) =

(
n

k

)
pk(1− p)n−k

Матожидание S можно посчитать по определению: ES =
n∑

k=0

k
(
n
k

)
pk(1− p)n−k.

Но это неоправданно сложно. Для упрощения работы запишем S = 11+· · ·+1n, где 11, . . . ,1n

— индикаторы событий A1, . . . , An соответственно. По определению 1i =

{
1, Ai успешно

0, Ai неуспешно

Каждый индикатор по отдельности имеет распределение Бернулли с параметром p, таким
образом,

ES =

n∑
i=1

EXi = n · p

• Пусть X имеет распределение Пуассона P(a):

P(X = k) = e−a a
k

k!

Матожидание такой случайной величины равно

∞∑
k=0

ke−a a
k

k!
= e−a · a

∞∑
k=1

ak−1

(k − 1)!
= e−aaea = a

Оказывается, параметр a в Пуассоновском распределении — матожидание данной случайной
величины.

Лекция III
27 февраля 2023 г.

Известно, что E(X + Y ) = E(X) + E(Y ). Верно ли, что E(X · Y ) = E(X) · E(Y )?

Выберем в качестве X величину, распределённую по закону P(X = 1) = P(X = −1) = 1
2 .

В качестве Y возьмём эту же случайную величину: Y = X.

Тогда замечаем, что EX = 0,EY = 0,EXY = EX2 = 1, равенство не выполняется. «Увы, так
устроен мир»

К счастью, можно наложить дополнительные условия, а именно, о независимости случайных
величин X и Y .

В таком случае формула выполняется:

P(X = r1, Y = r2) =
определение независимости

P(X = r1) · P(Y = r2)

откуда

∑
r1,r2

r1r2P(X = r1, Y = r2) =
∑
r1,r2

r1r2P(X = r1)·P(Y = r2) =

(∑
r1

r1P(X = r1)

)(∑
r2

r2P(X = r2)

)
= EX·EY
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Конечно, можно доказать по индукции формулу для любого конечного числа сомножителей:

E (X1 · . . . ·Xn) =

n∏
i=1

EXi

для независимых событий X1, . . . , Xn.

Рассмотрим следующую задачу, показывающее, что матожидание — число, наилучшим образом
приближает случайную величину:

Задача 1.3.1. Дана случайная величина X : EX2 < ∞. Надо найти число r, минимизирующее
E((X − r)2).

Значит, надо минимизировать E
(
X2 − 2rX + r2

)
= E

(
X2
)
− 2rE(X) + r2. Это квадратный

трёхчлен по r, минимум достигается при r = E(X).

1.3.2 Неравенства, связанные с математическим ожиданием

Пусть f : R → R — неубывающая неотрицательная функция.

Факт 1.3.1. ∀X — случайная величина и ∀r ∈ R имеет место неравенство:

P(X ⩾ r) ⩽
Ef(X)

f(r)

Доказательство. Рассмотрим вторую функцию g(x) =

{
0, x < r

f(r), x ⩾ r
. Несложно проверить, что

g(x) ⩽ f(x). Отсюда g(X) ⩽ f(X) (f(X) — композиция двух функций), и, как следствие,
E(g(X)) ⩽ E(f(X)). Но несложно видеть, что E(g(X)) = 0 · P(X < r) + f(r) · P(X ⩾ r) =
f(r) · P(X ⩾ r), и неравенство выполнено.

• Следствие 1.3.1 (Экспоненциальное неравенство Чебышёва). Рассмотрим f(x) = eλx, где
λ > 0.

Тогда P(X ⩾ r) ⩽
E(eλX)

eλr .

Более того, здесь возможна более сильная форма — оптимизация по λ:

P(X ⩾ r) ⩽ inf
λ>0

E
(
eλX

)
eλr

• Следствие 1.3.2 (Неравенство Маркова). ∀r > 0 : P(|X| ⩾ r) ⩽ E(|X|)
r .

Доказательство. Применим неравенство (факт 1.3.1) для f(x) =

{
x, x > 0

0, x ⩽ 0
и случайной

величины |X|. Получим

P(|X| ⩾ r) ⩽
Ef(|X|)

r
=

E|X|
r

что и требовалось доказать.

• Следствие 1.3.3. P(|X| ⩾ r) ⩽
E(X2)

r2

Доказательство. Следует из предыдущего применением P(|X| ⩾ r) ⇐⇒ P(X2 ⩾ r2).

Замечание. Несмотря на то, что это практически то же, что и выше, в мире случайных
величин нам будет удобно оценивать не случайную величину, а её квадрат.
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• Следствие 1.3.4 (Вероятностное неравенство Йенсена). Пусть X — случайная величина с
конечным матожиданием, а ϕ : R → R выпукла вниз (как x2).

Тогда E(ϕ(X)) ⩾ ϕ(EX). (картинка, где X принимает два значения).

Доказательство. Пусть X принимает конечное число значений. Тогда

E(ϕ(X)) =
∑
ω∈Ω

p(ω)ϕ(X(ω)) ⩾
по неравенству Йенсена

ϕ

(∑
ω∈Ω

p(ω)X(ω)

)
= ϕ(EX)

Если X принимает счётное число значений, то можно устроить предельный переход.

1.3.3 Медиана

Ещё одно число, которым можно характеризовать случайную величину — медиана.

Определение 1.3.2 (Медиана случайной величины X). Такое число m, что P(X ⩾ m) ⩾ 1
2 и

P(X ⩽ m) ⩾ 1
2 .

1. Можно доказать, что медиана (в отличие от матожидания) всегда существует.

2. Медиана необязательно единственна. Так, в случае случайной величины X, распределённой
по закону P(X = 1) = P(X = −1) = 1

2 медианой является любое число m ∈ [−1, 1].

3. Пусть X — случайная величина, такая, что P(X = −1) = P(X = 0) = P(X = 1) = 1
3 .

Единственная медиана — это 0, причём P(X ⩾ 0) = 2
3 , и P(X ⩽ 0) = 2

3 тоже.

4. На самом деле, медиана — плохая метрика, которой никто не пользуется. Так, только мато-
жидание линейно: медиана суммы вообще не выражается через медианы слагаемых.

5. Интересный факт. Если в задаче (задача 1.3.1) заменить E((X − r)2) на E(|X − r|), то
минимизирующим r окажется не матожидание, но медиана.

1.3.4 Дисперсия

«Слово дисперсия знакомо тем, кто имеет дело с садоводством. Садоводы используют так называ-
емую дисперсионную краску»

Вообще говоря, дисперсия описывает «меру разброса» данной случайной величины.

Пусть X – случайная величина, такая, что E(X2) < ∞.

Определение 1.3.3 (Дисперсия X). D(X) = E((X − E(X))2) = E(X2)− (EX)2.

Докажем эквивалентность двух определений:

Доказательство.

E(X − EX)2 = E(X2 − 2XEX + (EX)2) = E(X2)− 2EX · EX + (EX)2 = E(X2)− (EX)2

Замечание. В англоязычных текстах дисперсию обозначают Var(X) — от слова Variance.

1. D(X) ⩾ 0, как матожидание неотрицательной величины.

2. У константы нет дисперсии: D(C) = 0

3. Из определения очевидно D(X + C) = DX.

4. Из определения очевидно D(C ·X) = C2 · D(X). В частности, D(−X) = D(X).

5. Аддитивность: для независимых случайных величин X,Y : D(X + Y ) = D(X) + D(Y ).
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Доказательство.

D(X + Y ) = E(X + Y )2 − (E(X + Y ))2 = E(X2 + 2XY + Y 2)− (EX + EY )2 =

=
(
EX2 − (EX)2

)
+
(
EY 2 − (EY )2

)
+ (2E(XY )− 2EX · EY )︸ ︷︷ ︸

0 из-за независимости

= D(X) + D(Y )

6. Определение дисперсии без вычитания матожидания: пусть X,X ′ независимы и одинаково
распределены.

Тогда DX = 1
2E(X −X ′)2.

Доказательство.

1

2
E(X −X ′)2 =

1

2
E(X2 +X ′2 − 2XX ′) =

1

2

(
EX2 + EX ′2 − 2(EX · EX ′)

)
= EX2 − (EX)2

7. «Элементарное, но нетривиальное свойство».

Пусть f : R → R — 1-липшицева функция, то есть |f(x)− f(y)| ⩽ |x− y|.

Тогда для любой случайной величины X : D(f(X)) ⩽ D(X).

Доказательство. Воспользоваться свойством DX = 1
2E(X −X ′)2, а также тем, что

(X −X ′)2 ⩾ (f(X)− f(X ′))2 (поточечно).

8. Факт 1.3.2 (Неравенство Чебышёва). Пусть X — случайная величина, такая, что D(X) < ∞.

Тогда P(|X − EX| ⩾ r) ⩽ DX
r2 .

Доказательство.

P(|X − EX| ⩾ r) ⩽
(следствие 1.3.3)

E(X − EX)2

r2
=

DX
r2

Замечание (О единицах измерения). Если случайная величина принимает значения некой раз-
мерности (рубли, очки, километры), то матожидание имеет ту же размерность, а дисперсия —
размерности квадрата измеряемой величины. Чтобы избавиться от такого неудобства, вводят сред-
неквадратическое отклонение.

Определение 1.3.4 (Среднеквадратическое отклонение случайной величины X). σ(X)
def
=
√
D(X).

Пример. Пусть X имеет распределение Пуассона P(a).

По формуле D(X) = E(X2)−(EX)2 получаем, что для вычисления дисперсии надо получить E(X2)
(нам уже известно, что (EX)2 = a2).

Необыкновенным образом получаем, что легче посчитать E(X(X − 1)) = E(X2)− EX.

E(X(X − 1)) =

∞∑
k=2

k(k − 1)
ak

k!
= a2

∞∑
k=2

e−a ak−2

(k − 2)!
= a2

Отсюда E(X2) = E(X(X − 1)) +E(X) = a2 + a, и, наконец, DX = EX2 − (EX)2 = a+ a2 − a2 = a.

Лекция IV
6 марта 2023 г.

Пусть X,Y — случайные величины.

Определение 1.3.5 (Ковариация X и Y ).

cov(X,Y ) = E(XY )− E(X)E(Y ) = E[(X − E(X))(Y − E(Y ))]
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Про ковариацию говорят, что это мера линейной зависимости X и Y .

Ковариация билинейна (линейна по обоим аргументам) и симметрична.

Определение 1.3.6 (X и Y некоррелированы). Ковариация X и Y равна 0, т. е. E(XY ) =
E(X)E(Y ).

В частности, независимые величины с конечным матожиданием модуля некоррелированы. Из кова-
риации следует, что для некоррелированных случайных величин X,Y : D(X + Y ) = D(X) +D(Y ).

Когда говорят про некоррелированность случайных величин, то имеют в виду попарную некорре-
лированность.

1.3.5 Моменты

Для k ∈ N определяют k-й момент случайной величины X, он по определению равен E(Xk). Для
k = 1 это матожидание.

Также определяют k-й центральный момент случайной величины X, он по определению равен
E(X − EX)k. Для k = 2 это дисперсия.

Если в определении звучит слово абсолютный, то матожидание берётся от модуля аргумента (k-й
абсолютный момент, k-й абсолютный центральный момент).

k-й момент однороден — при домножении случайной величины на c он домножается на ck или |c|k.
Для чётных k абсолютные моменты совпадают с обычными.

1.4 Законы больших чисел (ЗБЧ)

Если сложить много случайных величин, то в сумме получится что-то близкое к сумме их мато-
жиданий.

Теорема 1.4.1 (Закон больших чисел Чебышёва). Пусть X1, X2 . . . , Xn — некоррелированные
случайные величины, такие, что EX2

i < ∞. Запишем это как ∃σ ∈ R : sup
i

DXi ⩽ σ2.

Тогда

∀ε > 0 : P


∣∣∣∣∣∣∣∣

n∑
i=1

Xi

n
−

n∑
i=1

EXi

n

∣∣∣∣∣∣∣∣ > ε

 −→
n→∞

0

Доказательство.

P


∣∣∣∣∣∣∣∣

n∑
i=1

Xi

n
−

n∑
i=1

EXi

n

∣∣∣∣∣∣∣∣ > ε

 = P

(∣∣∣∣∣
n∑

i=1

(Xi − EXi)

∣∣∣∣∣ > nε

)

Согласно неравенству Чебышёва (факт 1.3.2), это оценивается следующим образом:

P

(∣∣∣∣∣
n∑

i=1

(Xi − EXi)

∣∣∣∣∣ > nε

)
⩽

D
(

n∑
i=1

Xi

)
(nε)2

⩽
nσ2

(nε)2
−→
n→∞

0

Следствие 1.4.1. Пусть X1, . . . , Xn — независимые одинаково распределённые случайные вели-
чины.

12



Если EX2
i < ∞,EXi = a, то

∀ε > 0 : P


∣∣∣∣∣∣∣∣

n∑
i=1

Xi

n
− a

∣∣∣∣∣∣∣∣ ⩾ ε

 −→
n→∞

0

Замечание. В заключении следствия ничего не говорится про второй момент величин Xj , и, на
самом деле, следствие как теорема верно и без оценки EX2

i в посылке. Это мы докажем через
пару лет совсем не тривиальной математикой.

Следствие 1.4.2 (Закон больших чисел Бернулли). Пусть Sn — число успехов в схеме Бернулли
с параметрами n, p. Тогда

∀ε > 0 : P
(∣∣∣∣Sn

n
− p

∣∣∣∣ > ε

)
−→
n→∞

0

На самом деле, в 1613 году Бернулли доказал закон больших чисел, названный позднее в честь
него, используя довольно сложные вычисления.

Лишь только в 1870 году Чебышёв доказал общий закон больших чисел и следствие из него.

Докажем полученными средствами теорему из матанализа, не использующую в своей формулиров-
ке ничего случайностного.

Теорема 1.4.2 (Вейерштрасс). Пусть f : [0, 1] → R — непрерывная функция. Тогда

∃{Pn}∞n=1 : max
t∈[0,1]

|f(t)− Pn(t)| −→
n→∞

0

Доказательство.

Лемма 1.4.1 (О математических ожиданиях). Пусть {Zn}∞n=1 — последовательность
случайных величин, такая, что ∃a ∈ R :

∀ε > 0 : P(|Zn − a| > ε) −→
n→∞

0

Пусть дана функция f , заданная в окрестности точки a, непрерывная в a и ограни-
ченная неким числом M ∈ R.

Тогда E(f(Zn)) −→
n→∞

f(a).

Доказательство леммы.

|Ef(Zn)− f(a)| = |E(f(Zn)− f(a))| ⩽
например, по неравенству Йенсена для модуля

⩽ E|f(Zn)− f(a)| ⩽ E

|f(Zn)− f(a)| · χ{|Zn−a|⩾ε}︸ ︷︷ ︸
⩽2M ·P(|Zn−a|⩾ε)

+ |f(Zn)− f(a)| · χ{|Zn−a|<ε}︸ ︷︷ ︸
⩽w(f,a,ε)


где w(f, a, ε) = sup

|s−a|<ε

|f(s)− f(a)|. В силу непрерывности f это сходится к 0 при s → 0.

Устремив ε к нулю, получаем, что |Ef(Zn)− f(a)| < δ(ε), где δ(ε) −→
ε→0

0, δ > 0.

Левая часть не зависит от ε, получается |Ef(Zn)− f(a)| = 0.
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Рассмотрим последовательность случайных величин Sn — число успехов в схеме Бернулли с
параметрами (n, p), где p — фиксированное число из [0, 1].

Согласно закону больших чисел Бернулли P
(∣∣Sn

n − p
∣∣ > ε

)
−→
n→∞

0.

Применим лемму для p и f : Ef
(
Sn

n

)
−→
n→∞

f(p). Подставим определение матожидания, отсюда

n∑
k=0

P(Sn = k)f

(
k

n

)
=

n∑
k=0

(
n

k

)
pk(1− p)n−kf

(
k

n

)
−→
n→∞

f(p)

Осталось сказать, что сходимость к f(p) равномерна при всех p ∈ [0, 1]. Для этого улучшим оценку:
заметим, что из леммы на самом деле следует, что∣∣∣∣Ef (Sn

n

)
− f(p)

∣∣∣∣ ⩽ 2M · P
(∣∣∣∣Sn

n
− p

∣∣∣∣ ⩽ ε

)
+ w(f, p, ε)

Первое слагаемое оценивается сверху в виде

2M · P
(∣∣∣∣Sn

n
− p

∣∣∣∣ ⩽ ε

)
= 2M · P (|Sn − np| ⩽ nε) ⩽ 2M

np(1− p)

(nε2)
⩽

2M

nε2

Чтобы показать, что
∣∣Ef (Sn

n

)
− f(p)

∣∣ ⩽ δ, выберем ε > 0 такой, что ∀p ∈ [0, 1] : w(f, p, ε) < δ
2 (это

можно сделать, так как согласно теореме Кантора непрерывная на отрезке функция равномерно
непрерывна), затем выберем настолько большое n, что 2M

nε2 ⩽
δ
2 .

1.5 Производящие функции

Пусть X — случайная величина, принимающая целые неотрицательные значения.

Определение 1.5.1 (Производящая функция величины X). Степенной ряд

ϕX(z) = E(zX) =

∞∑
k=0

P(X = k)zk

Так как
∞∑
k=0

, то ряд сходится при |z| ⩽ 1.

При рассмотрении производящих функций мы будем брать аргументы z ∈ [0, 1].

Заметим, что ϕX(0) = P(X = 0), ϕX(1) = 1, а сама функция неубывает и выпукла вниз (как x2).
Это следует из того, что ϕX(z) — линейная стандартных мономов, каждый из которых неубывает
и выпуклый вниз.

Если X и Y независимы, то ϕX+Y (z) = ϕX(z)ϕY (z).

Доказательство.

ϕX+Y (z) = E(zX+Y ) = E(zX · zY ) =
X и Y независимы

E(zX) · E(zY ) = ϕX(z) · ϕX(z)

Лекция V
13 марта 2023 г.

Обобщим данную формулу.

1. Пусть X1, . . . , Xn независимы. Тогда ϕSn
(z) =

n∏
j=1

ϕXj
(z), где Sn :=

n∑
j=1

Xj — тоже случайная

величина.
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2. В частности, если X1, . . . , Xn независимы и одинаково распределены, то ϕSn(z) = ϕX1(z)
n.

3. Пусть X1, . . . , Xn, . . . — независимы (независимо любое конечное подмножество) и одинаково
распределены. Пусть N ∈ N0 — случайная величина (формальнее, N : Ω → N0, где Ω —
вероятностное пространство), не зависящая от всех X-ов.

Положим S :=
N∑
i=1

Xi.

Тогда ϕS(z) = ϕN (ϕX1
(z)).

Замечание. Предыдущий пункт — частный случай данного. В самом деле, для неслучайной
величины N , всегда равной n, производящая функция равна zn.

Доказательство.

ϕS(z) =

∞∑
k=0

P(S = k)zk =

∞∑
k=0

∞∑
n=0

P(S = k,N = n)zk = P(Sn = k,N = n)zk =

Воспользуемся независимостью, продолжив равенство

=

∞∑
k=0

∞∑
n=0

P(Sn = k)P(N = n)zk =

∞∑
n=0

P(N = n)

∞∑
k=0

P(Sn = k)zk︸ ︷︷ ︸
ϕSn (z)

=

=

∞∑
n=0

P(N = n) · ϕX1
(z)n = ϕS(ϕX1

(z))

1.5.1 Производящие функции и моменты

Предложение 1.5.1. ϕ
(k)
X (1) = E (X(X − 1) · . . . · (X − k + 1)).

В частности, для k = 1 : ϕ′
X(1) = EX; для k = 2 : ϕ′′

X(1) = E(X(X − 1)) = EX2 − EX.

Доказательство. Докажем для k = 1.

Формально продифференцировав ряд, получаем ϕ′
X(z) =

( ∞∑
k=0

P(X = k)zk
)′

=
∞∑
k=1

P(X = k)k·zk−1.

При подстановке z = 1 действительно получается EX, но надо обосновывать, почему производная
ряда в граничной точке круга сходимости равна сумме производных слагаемых ряда.

Другой вариант доказательства. Данный вариант тяжелее в смысле выкладок, но легче — в
смысле теорем, на которые опирается доказательство.

Рассмотрим z ∈ (0, 1), близкое к единице.

ϕX(1)− ϕX(z)

1− z
=

1− ϕX(z)

1− z
=

1−
∞∑
k=0

P(X = k)zk

1− z
=

∞∑
k=0

P(X = k)
1− zk

1− z

По теореме Коши найдутся точки z̃k ∈ (z, 1), такие, что 1−zk

1−z = kz̃k−1
k .

Отсюда получаем оценку ϕX(1)−ϕX(z)
1−z ⩽

∞∑
k=0

P(X = k)·k (пользуемся тем, что все z̃k ⩽ 1). В пределе

ϕ′
X(X) ⩽

∞∑
k=0

P(X = k) · k.
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Чтобы получить оценку с другой стороны, заменим сумму на конечную, совершим предельный

переход, получим ϕ′
X(X) ⩾

K∑
k=0

P(X = k) · k · z̃k−1. Устремив z к единице, получаем оценку

ϕ′
X(X) ⩾

K∑
k=0

P(X = k) · k, затем можно перейти к предельному переходу по K → ∞.

Замечание. Производная бесконечна ⇐⇒ матожидание бесконечно.

1.6 Ветвящиеся процессы

1.6.1 Процесс Гальтона — Ватсона

График: в момент времени t = 0 есть частица (человек, электрон), которая в каждый момент
времени порождает случайное число потомков.

Получается, если можно так выразиться, дерево. Будем считать, что числа потомков у каждой
частицы — независимые одинаково распределённые случайные величины.

Гальтон и Ватсон интересовались генеалогией знатных родов, но потом внезапно оказалось, что
процесс прекрасно описывает ядерные реакции.

Определение 1.6.1 (Процесс Галтона — Ватсона). Пусть (Xn,j)n⩾0,j⩾1 — независимые одинаково
распределённые случайные величины.

Последовательность случайных величин определяется формулой M0 = 1, Mn+1 =
Mn∑
j=1

Xn,j и

называется ветвящимся процессом.

Согласно рекурсивной формуле, Mn не зависит от Xn,1, Xn,2, . . . .

Значит, ϕMn+1
(z) = ϕMn

(ϕX(z)), где ϕX — производящая функция любой из величин Xn,j .

Получаем ϕM0(z) = z, ϕM1(z) = ϕX(z), ϕM2(z) = ϕX(ϕX(z)). Вообще, ϕMn(z) = ϕ◦n
X (z).

Задача о выживании и вырождении ветвящегося процесса

Определим вероятность того, что на n-м шаге процесс не выжил qn = P(Mn = 0).

Очевидно, qn+1 ⩾ qn, так как если процесс выродился, то так потом и будет, но он может выро-
диться на n+ 1-м шаге впервые.

Так как qn ⩽ 1, то последовательность {qn}n∈N имеет предел q.

Говорят, что процесс вырождается, если q = 1.

Нарисуем график ϕX(z) при z ∈ [0, 1].

Предложение 1.6.1. q — наименьший корень уравнения ϕX(z) = z.

Доказательство. Рассмотрим M — множество корней уравнения. 1 ∈ M , M замкнуто — прообраз
нуля некоторого непрерывного отображения.

Отсюда следует, что в M существует наименьший элемент z∗.

Так как qn = P(Mn = 0) = ϕMn
(0) = ϕ◦n

X (0), то qn+1 = ϕ◦n+1
X (0) = ϕX(qn).

Запишем 0 ⩽ z∗, откуда ϕX(0) ⩽ ϕX(z∗) = z∗. Так можно применять много раз, получаем ∀n ∈ N :
ϕ◦n
X (0) ⩽ z∗.

Перейдя к пределу у qn+1 = ϕX(qn) получаем q = ϕX(q).

Используя q ⩽ z∗ и ϕX(q) = q, получаем q = z∗.
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Обозначим m = EX — среднее число потомков частицы.

Теорема 1.6.1. Процесс Mn не вырождается ⇐⇒ либо m > 1, либо X = 1 всегда, то есть X —
величина неслучайная.

Доказательство.

• Рассмотрим m > 1. При z, близком к единице, ϕX(z) = 1 − m(1 − z) + o(1 − z), что при z
достаточно близких к 1 меньше z.

Таким образом, нашлась точка z : ϕX(z) < z. С другой стороны, ϕX(0) ⩾ 0, значит, суще-
ствует корень уравнения ϕX(z) = z, строго меньший единицы. Отсюда следует, что процесс
не вырождается.

• Рассмотрим m < 1. Функция ϕX(z) выпукла вниз, поэтому ∀z ∈ [0, 1] : ϕX(z) ⩾ 1 +m(z − 1).

Таким образом, единственный корень уравнения ϕX(z) = z — z = 1.

• Рассмотрим m = 1. Касательная прямая к ϕX(z) проходит по диагонали y = z.

Рассмотрим наименьший корень уравнения ϕX(z) = z. Есть варианты:

1. Касание единицы происходит только в самом конце: ϕX(z) > z для z < 1. Это случай
вырождения процесса.

2. ∀z ∈ [0, 1] : ϕX(z) = z. Процесс не вырождается, Xn,j = 1 всегда.

3. Остался один случай, которого не бывает. Для некоего a ∈ (0, 1), совпадение ϕX(z) = z
происходит только при z ∈ [a, 1].

На самом деле, с производящими функциями такое невозможно: если ϕX(z) = z в
окрестности 1, то ϕ′′

X(1) = 0.

Но ϕ′′
X(1) = E(X(X − 1)) = EX2 − EX, а мы знаем, что EX = 1. Получается, EX2 = 1,

и дисперсия этой величины нулевая: DX = EX2 − (EX)2 = 0. Таким образом, X —
величина неслучайная.

1.6.2 Некоторые другие виды процессов

Процессы Беллмана — Харриса

Отличие от процессов Гальтона — Ватсона состоит в том, что каждый субъект живёт случайное
время. В конце своего жизненного времени частица распадается на случайное количество частиц.

Многотиповые процессы

Распределение числа потомков зависит от типа данной частицы: синяя частица порождает либо
два синие, либо две красные, а красная – одну жёлтую, и, возможно, одну зелёную.

Процессы с иммиграцией

На каждом поколении число частиц меняется каким-то фиксированным образом — частицы «при-
бывают откуда-то снаружи».

1.7 Предельные теоремы Муавра — Лапласа

1.7.1 Локальная

Запишем число успехов в схеме Бернулли B(n, p). Зафиксируем p и изучим P(Sn = k) для «типич-
ных» значений k при n → ∞.
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Вспомним, что ESn = np, DSn = np(1− p) для любого n ∈ N.

Так как дисперсия — это квадрат «типичного отклонения», то для некой константы C величина
Sn должна часто отклоняться от своего матожидания не больше, чем на C

√
n.

Определение 1.7.1 (Последовательности An,k и Bn,k равномерно эквивалентны при n → ∞ на
некоторой области k ∈ Cn).

max
k∈Cn

∣∣∣∣An,k

Bn,k
− 1

∣∣∣∣ −→
n→∞

0

Теорема 1.7.1 (Локальная предельная теорема Муавра — Лапласа). Локальность означает, что в
рассмотрении находится фиксированное k.

Пусть последовательность εn стремится к нулю. Утверждается, что

P(Sn = k) ∼ 1√
2πnp(1− p)

· exp
{
− (k − np)2

2p(1− p)n

}

равномерно по области
{
k ∈ N

∣∣∣|k − np| ⩽ εn · n2/3
}
. «Название теоремы — историческое недоразу-

мение. Теорему Муавра — Лапласа доказал Муавр, а Лаплас — лишь включил её в свой учебник.
Впрочем, к распространению этой теоремы он всё-таки имел какое-то отношение»

Доказательство. Запишем

P(Sn = k) =

(
n

k

)
pk(1− p)n−k =

n!

(n− k)!k!
pk(1− p)k

n!

(n− k)!k!
pk(1− p)k ∼ (n/e)n

√
2πn · pk(1− p)n−k

((n−k)/e)n−k
√
2π(n− k) · (k/e)k

√
2πk

∼ nnpk(1− p)n−k√
2πnp(1− p) · (n− k)n−kkk

Преобразовав ещё чуть-чуть выражение, получаем

1√
2πnp(1− p)

· n
npk(1− p)n−k

(n− k)n−kkk
=

1√
2πnp(1− p)

·
(np
k

)k
·
(
n(1− p)

n− k

)n−k

Определим новую переменную v таким образом: k = np+v. В таком случае
(

k
np

)k
=
(

np+v
np

)np+v

=(
1 + v

np

)np+v

= exp
(
log
(
1 + v

np

)
(np+ v)

)
. Разложим log в ряд с точностью до второго члена:

exp
((

v
np − v2

2(np)2 +O
(

v3

(np)3

))
(np+ v)

)
= exp

(
v − v2

2np + v2

np − v3

2(np)2 +O
(

v3

(np)2

))
= exp

(
v + v2

2np + o(1)
)

Слагаемое под O стремится к нулю, так как |v| ⩽ εn ·n2/3 по условию на рассматриваемую область
k.

Таким образом,
(
np
k

)k
= exp

(
−(k − np)− (k−np)2

2np + o(1)
)
. Аналогично (подставив p ↭ (1 −

p); k↭ (n− k); v↭ −v) получаем
(

n(1−p)
n−k

)n−k

= exp
(
−(np− k)− (np−k)2

2n(1−p) + o(1)
)

Перемножив, получаем

(np
k

)k
·
(
n(1− p)

n− k

)n−k

= exp

{
− (k − np)2

2n

(
1

p
+

1

1− p

)
+ o(1)

}
= exp

{
− (np− k)2

2np(1− p)

}
+ o(1)

1.7.2 Интегральная

Что можно сказать о вероятности попадания числа успехов в определённый интервал?
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Теорема 1.7.2 (Интегральная теорема Муавра — Лапласа). Пусть a < b.

P
(
Sn ∈

[
np+ a

√
p(1− p)n;np+ b

√
p(1− p)n

])
∼ 1√

2π

b∫
a

e−
x2

2 dx

Вероятность переписывается в виде P
(
a ⩽ Sn−np√

p(1−p)n
⩽ b

)
= P

(
a ⩽ Sn−ESn√

DSn
⩽ b
)

Доказательство.

P
(
Sn ∈

[
np+ a

√
p(1− p)n;np+ b

√
p(1− p)n

])
=

∑
k∈

[
np+a

√
p(1−p)n;np+b

√
p(1−p)n

]P(Sn = k)

Так как k − np ∼ O (
√
n), то все последующие оценки равномерны по k.

∑
k

P(Sn = k) ∼
∑
k

1√
2np(1− p)

exp

{
− (k − np)2

2p(1− p)n

}

Слагаемые в сумме можно заменить на эквивалентные, так как оценка равномерна. Заменим сумму

интегралом: для начала покажем 1√
2np(1−p)

exp
{
− (k−np)2

2p(1−p)n

}
∼

k+1∫
k

1√
2np(1−p)

exp
{
− (x−np)2

2p(1−p)n

}
dx.

Покажем корректность этой эквивалентности, заменив x = k + θ. 1√
2np(1−p)

exp
{
− (x−np)2

2p(1−p)n

}
=

1√
2np(1−p)

exp
{
− (k−np)2+2(k−np)θ+θ2

2p(1−p)n

}
Так как (k − np)θ = O (

√
n), то этими слагаемыми действи-

тельно можно пренебречь — знаменатель порядка n, эти слагаемые — o(1).

∑
k

P(Sn = k) ∼

np+b
√

np(1−p)∫
np+a

√
np(1−p)

1√
2πnp(1− p)

exp

(
− (x− np)2

2np(1− p)

)
dx+ o(1)

Сделаем замену переменной: u = x−np√
np(1−p)

. Тогда du = dx√
np(1−p)

.

Интеграл упрощается до 1√
2π

b∫
a

exp
(
−u2

2

)
du

Следствие 1.7.1.

P
(
Sn ⩽ np+ b

√
np(1− p)

)
−→
n→∞

1√
2π

b∫
−∞

e−
x2

2 dx

Доказательство.

• Докажем, что lim
n→∞

P(Sn < np) = 1
2 . Для этого покажем ∀ε > 0 :

∣∣∣ lim
n→∞

P(Sn < np)− 1
2

∣∣∣ ⩽ ε.

Воспользуемся тем, что 1√
2π

+∞∫
−∞

e−
x2

2 dx = 1. Значит, найдётся M > 0:

1√
2π

0∫
−M

e−
x2

2 dx =
1√
2π

+M∫
0

e−
x2

2 dx ⩾
1

2
− ε
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Отсюда

P
(
np−M

√
np(1− p) ⩽ Sn < np

)
⩽ P(Sn < np) ⩽ 1− P

(
np ⩽ Sn ⩽ np+M

√
np(1− p)

)
↓ n → ∞

0∫
−M

e−
x2

2 dx ⩽ lim
n→∞

P(Sn < np) ⩽ 1−
M∫
0

e−
x2

2 dx

• Теперь осталось посчитать P
(
Sn ⩽ np+ b

√
np(1− p)

)
. Без потери общности b ⩾ 0, тогда

P
(
Sn ⩽ np+ b

√
np(1− p)

)
= P(Sn < np) + P

(
np ⩽ Sn ⩽ np+ b

√
np(1− p)

)
−→
n→∞

−→ 1

2
+

1√
2π

b∫
0

e−
x2

2 dx =
1√
2π

b∫
−∞

e−
x2

2 dx

Интересный факт. Интеграл в правой части описывает нормальное распределение, он не берётся.

Теорема Леви «выросла» из интегральной теоремы Муавра — Лапласа.

Интересный факт (Теорема Леви). Пусть X1, . . . , Xn, . . . — независимо распределённые случай-
ные величины, Sn := X1 + · · ·+Xn. Предположим, что EX2

j < ∞ для любого j.

Тогда для ∀a < b : P
(
a ⩽ Sn−ESn√

DSn
⩽ b
)

−→
n→∞

1√
2π

b∫
a

e−
x2

2 dx.

Лекция VI
22 марта 2023 г.

1.8 Цепи Маркова

Лекция пропущена.

Лекция VII
27 марта 2023 г.

Было: X — множество состояний. X0, X1, . . . ,∈ X . πn(x) = P(Xn = x), x ∈ X . Вероятность
перехода p(x → y) = P(Xn+1 = y|Xn = x). π0, p определяют состояние цепи. P(X0 = x0, . . . , Xn =
xn) = π0p(x0 → x1) · . . . · πn = π0 · pn.

1.8.1 Инвариантные (стационарные) распределения

Определение 1.8.1 (Распределение на множестве X ). Такое отображение π : X → [0, 1], что∑
x∈X

π(x) = 1.

Определение 1.8.2 (Инвариантное распределение). Такое распределение π, что π · p = π.

∀y ∈ X : π(y) =
∑
x∈X

π(x)p(x → y).

Если π0 инвариантно, то ∀n ⩾ 0 : πn = π ·pn = π0. Следует из ассоциативности умножения матриц.

Примеры.
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• «Хороший пример»: блуждание по конечному неориентированному графу.

Обозначим за E общее число рёбер, deg x — число рёбер, инцидентных x. Очевидно.
∑
x∈X

deg x =

2E.

Рассмотрим цепь Маркова, где ∀y : p(x → y) =

{
1

deg x , ∃(x, y)
0, ∄(x, y)

.

Выберем распределение π(x) = deg(x)
2E . Покажем, что оно инвариантно:

deg(y)

2E
= π(y) =

∑
x∈X

π(x)p(x → y) =
∑

x∈X ,∃(x,y)

deg(x)

2E
· 1

deg x
=

∑
x∈X ,∃(x,y)

1

2E
=

deg y

2E

• «Плохой пример»: случайное блуждание на множестве целых чисел Z. Вероятности перехода
p(n → n+ 1) = p(n → n− 1) = 1

2 .

Граф бесконечный. и это всё разрушает. Поищем инвариантное распределение. Пусть это π.

Тогда π(y) = 1
2 (π(y − 1) + π(y + 1)). Отсюда можно выразить ∀y ∈ Z : π(y) = π(0) + ky, где

k — некая константа. Несложно видеть, что во всех трёх случаях (k < 0, k > 0, k = 0) π не
является распределением.

Таким образом, для случайного блуждания на Z нет инвариантного распределения.

Теорема 1.8.1 (Марков). Пусть X — конечная цепь, причём вероятность любого перехода нену-
левая: δ := min

x,y∈X
p(x → y) > 0.

Тогда ∃π — такое распределение, что

∀x, y ∈ X , n ∈ N : |pn(x → y)− π(y)| ⩽ (1− δ)n (1.1)

При этом π — единственное инвариантное распределение цепи. Любое начальное распределение
π0 влечёт πn −→

n→∞
π.

Доказательство. В предположении истинности (1.1) получаем

πn(y) = (π0p
n)(y) =

∑
x∈X

π0(x)p
n(x → y) −→

n→∞

(∑
x∈X

π0(x)

)
︸ ︷︷ ︸

1

π(y) = π(y)

Предположим, что π̃ — произвольное инвариантное распределение. Рассмотрим цепь для π0 = π̃.
С одной стороны, в таком случае ∀n ∈ N : πn = π̃. С другой стороны, πn −→

n→∞
π. Значит, π̃ = π.

Таким образом, все инвариантные распределения совпадают с π.

Теперь докажем что-то. Запишем в координатном виде pn+1 = pn · p.

pn+1(x → y) =
∑
z∈X

pn(x → z)p(z → y)

↓ n → ∞

π(y) =
∑
z∈X

π(z)p(z → y)

Интересно, что мы доказали?

Покажем, что π — распределение, то есть сумма
∑
x∈X

π(x) = 1. Для любого фиксированного x ∈ X

1 =
∑
y∈X

pn(x → y) −→
n→∞

∑
y∈X

π(y)
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Осталось доказать (1.1). Зафиксируем y ∈ X . Рассмотрим последовательности mn = min
x∈X

pn(x → y)

и Mn = max
x∈X

pn(x → y).

mn неубывает, Mn невозрастает:

pn+1(x → y) =
∑
z∈X

p(x → z)pn(z → y)

Так как pn(z → y) ∈ [mn,Mn], то pn+1(x → y), как барицентрическая комбинация таких вероятно-
стей, тоже лежит в [mn,Mn]. Отсюда действительно mn неубывает, Mn невозрастает.

Ещё докажем их сближение: (Mn+1 − mn+1) ⩽ (1 − δ)(Mn − mn): Выберем такие x1, x2, что
максимум и минимум достигаются: Mn+1 = pn+1(x1 → y),mn+1 = pn+1(x2 → y).

Mn+1 −mn+1 = pn+1(x1 → y)− pn+1(x2 → y) =
∑
z∈X

[p(x1 → z)− p(x2 → z)]pn(z → y)

Оценим эту сумму следующим образом:∑
z∈X

[p(x1 → z)−p(x2 → z)]pn(z → y) ⩽
∑
z∈X

[p(x1 → z)−p(x2 → z)]+Mn−
∑
z∈X

[p(x1 → z)−p(x2 → z)]−mn

Покажем равенство∑
z∈X

[p(x1 → z)− p(x2 → z)]+ =
∑
z∈X

[p(x1 → z)− p(x2 → z)]−

Это верно, так как∑
z∈X

[p(x1 → z)− p(x2 → z)]+ −
∑
z∈X

[p(x1 → z)− pn(x2 → z)]− =∑
z∈X

(p(x1 → z)− p(x2 → z)) =
∑
z∈X

p(x1 → z)−
∑
z∈X

p(x2 → z) = 1− 1 = 0

Таким образом
Mn+1 −mn+1 ⩽

∑
z∈X

[p(x1 → z)− p(x2 → z)]+(Mn −mn)

Если все слагаемые [p(x1 → z) − p(x2 → z)]+ равны нулю, то доказывать нечего. Иначе найдётся
положительное слагаемое p(x1 → z)−p(x2 → z) > 0. Согласно определению δ : p(x1 → z)−p(x2 →
z) ⩽ p(x1 → z)− δ.

Доказали сближение (Mn+1 −mn+1) ⩽ (1− δ)(Mn −mn).

Таким образом, mn неубывает, Mn невозрастает, Mn−mn −→
n→∞

0. Назначим за π(y) общий предел

последовательностей mn и Mn. Так как |pn(x → y) − π(y)| ⩽ Mn − mn ⩽ (1 − δ)n, то (1.1)
доказана.

Примеры (Теорема Маркова здесь неприменима).

• «Бесконечно плохой пример»: случайное блуждание на квадрате из четырёх вершин. Вероят-
ность перехода в диагонально противоположную вершину равна 0, вероятности pn(x → y) не
сходятся — они периодично меняются с 1

2 до 0.

• Случайное блуждание по пятиугольнику из пяти вершин. Есть рёбра с вероятностью пере-
хода 0, напрямую теорема неприменима. Но здесь за четыре шага можно попасть в любую
вершину: ∀x, y : p4(x → y) > 0.

Факт 1.8.1. Пусть цепь Маркова такова, что для некоторого m ∈ N : ∀x, y ∈ X : pm(x →
y) > 0. Тогда ∃! инвариантное распределение π : pn(x → y) −→

n→∞
π(y).
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Доказательство. Доказательство Маркова применимо к прореженной цепи X0, Xm, . . . с
матрицей перехода pm. Согласно ему, pmn(x → y) −→

n→∞
π(y).

pk(x → y) = pmn+l(x → y) =
∑
z∈X

pl(x → z)pmn(z → y) −→
n→∞

(∑
z∈X

pl(x → z)

)
︸ ︷︷ ︸

1

π(y) = π(y)

Лекция VIII
3 апреля 2023 г.

1.8.2 Классификация состояний в цепях Маркова

Рассмотрим для примера цепь Маркова на таком графе:

D F G

C B E H

A

Существенные и несущественные состояния

Определение 1.8.3 (Состояние y достижимо из x). Существует такая последовательность состо-
яний x0, . . . , xm, такая, что

x0 = x;xm = y; p(xi → xi+1) > 0

Обозначается x · · · → y

Определение 1.8.4 (Существенное состояние x). ∀y такого, достижимого из x, можно вернуться:

(x · · · → y) ⇒ (y · · · → x)

Пример. A — единственное несущественное состояние в графе в начала раздела.

Факт 1.8.2. Из существенного состояния можно перейти только в существенное.

Доказательство. От противного: ∃z ∈ X : (y · · · → z) ∧ ¬(z · · · → y). Тогда в частности ¬(z · · · →
x), но x · · · → z. Противоречие.

Факт 1.8.3. В конечной цепи Маркова всегда найдётся хотя бы одно существенное состояние.

Доказательство. Рассмотрим цепочку состояний. Если x0 ∈ X (произвольный элемент) — суще-
ственное состояние, то доказывать нечего. Иначе выберем x1 как такое состояние, что x0 · · · → x1,
но не наоборот.

Так дальше продолжим цепочку: xn · · · → xn+1. От противного: пусть она стала бесконечной,
никакие состояния в ней не оказались существенными. Если в какой-то момент окажется, что
xi = xj , то значит мы нашли цикл xi · · · → . . . · · · → xj , и получили противоречие.

Контрпример. В бесконечной цепи p(n → n+1) = p(n → n+2) = 1
2 существенных состояний нет.

Но, она, конечно, бесконечная.
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На множестве существенных состояний можно ввести отношение эквивалентности:

x ∼ y ⇐⇒ x · · · → y ∨ x = y

Симметричность: по определению того, что x — существенное состояние: (x · · · → y) ⇒ (y · · · → x).
Транзитивность и рефлексивность очевидны из определения.

Следствие 1.8.1. Множество существенных состояний распадается на классы достижимых
— эргодические классы.

Факт 1.8.4. Каждый эргодический класс замкнут: из любого эргодического класса нельзя вый-
ти.

Доказательство. Из всякого x из данного эргодического класса можно попасть только в суще-
ственные y, которые по определению эквивалентны x.

Пример. В графе выше эти классы — треугольник BCD и четырёхугольник EFGH.

Определение 1.8.5 (Неприводимая цепь Маркова). В данной цепи нет замкнутых множеств кроме
всего пространства X .

Рассмотрим произвольное состояние x ∈ X . По определению, множество точек, достижимых из x
(обозначим его Tx), замкнуто.

В неприводимой цепи ∀x ∈ X : Tx = X , значит, эквивалентным определением неприводимой цепи
является то, что из любого состояния можно добраться до любого другого.

В частности, в неприводимой цепи все состояния — существенны, образуют один эргодический
класс.

1.8.3 Периодичность

Рассмотрим произвольное состояние x ∈ X , обозначим Ix :=
{
k ∈ N | pk(x → x) > 0

}
. Будем счи-

тать, что Ix непустое.

Определение 1.8.6 (Период состояния x). d(x) = gcd(Ix).

Замечание. Для произвольного x: Ix — полугруппа по сложению.

Факт 1.8.5. Существует конечное подмножество I ′x ⊂ Ix, такое, что gcd(Ix) = gcd(I ′x).

Доказательство. Положим dM := gcd(Ix ∩ [1,M ]). С ростом M последовательность множеств
увеличивается по включению, dM убывает.

Так как dM — натуральные числа, то последовательность стабилизируется: ∃M0 : ∀M > M0 :
gcd(Ix ∩ [1,M ]) = dM0 . Очевидно, в таком случае Ix ∩ [1,M ] — искомое подмножество.

Факт 1.8.6. ∃k0 ∈ N:

{k · d(x) | k ∈ N, k ⩾ k0} ⊂ Ix ⊂ {k · d(x) | k ∈ N}

Доказательство. Правое включение очевидно верно независимо от k0.

1. Найдём конечное множество I ′x ⊂ Ix, такое, что gcd(I ′x) = d(x).

2. Найдём линейную комбинацию элементов I ′x, такую, что d(x) =
∑
j

vjλj , vj ∈ I ′x, λj ∈ Z.

3. Выберем b :=
∑
j

vj |λj |. b ∈ Ix, как линейная комбинация его элементов с неотрицательными

коэффициентами |λj |.

Значит, b представимо в виде b = β · d(x).
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4. Заметим, что (β + 1)d(x) =
∑
j

vj · (λj + |λj |), что опять-таки линейная комбинация с неотри-

цательными коэффициентами, лежит в Ix.

5. Рассмотрим достаточно большое k ∈ N. Разделив на β с остатком, получаем k = rβ + v, где
0 ⩽ v < β.

k = rβ + v(β + 1)− vβ = (r − v)β + v(β + 1)

Для r − v ⩾ 0, например, для k ⩾ β2: k · d(x) ∈ Ix, как линейная комбинация β · d(x) и
(β + 1) · d(x).

Таким образом, k0 = β2 подходит.

Следствие 1.8.2. В частности, ∃k ∈ N : kd ∈ Ix ∧ (k + 1) · d(x) ∈ Ix (например, k = β).

Факт 1.8.7. Если два состояния сообщаются: x · · · → y и y · · · → x, то d(x) = d(y).

Доказательство. Пусть pa(x → y) > 0. Воспользуемся (следствие 1.8.2) применительно к y: есть
два цикла, содержащих y, длин k · d(y) и (k + 1) · d(y).

Тогда a + k · d(y) ∈ Ix и a + (k + 1) · d(y) ∈ Ix тоже. Отсюда сразу получаем d(x) | d(y) =
(a+ (k + 1) · d(y)− a− k · d(y)). Аналогично d(y) | d(x), значит они равны.

1.8.4 Связь периодов и эргодических классов

Для произвольного эргодического класса C ⊂ X : x, y ∈ C ⇒ d(x) = d(y).

Доказательство. x и y сообщаются, так как они в одном эргодическом классе.

Циклические подклассы

Рассмотрим один эргодический класс, например, C = {E,F,G,H}. Заметим, что для C0 = {E,G}
и C1 = {F,H}: из одного класса на следующем шаге можно попасть только в другой.

Пусть C — эргодический класс с периодом d. Тогда существует разбиение C = C0 ⊔ C1 ⊔ · · · ⊔ Cd−1,
такое, что вероятность перехода из Ci в C(i+1) (mod d) равна 1.

Иными словами, ∀x ∈ Ci : p(x → y) > 0 ⇒ y ∈ C(i+1) (mod d). Это называется разбиением на
циклические подклассы.

Доказательство. Выберем произвольное x0 ∈ C. Для всякого y ∈ C найдём такое l(y) : pl(y)(x0 →
y) > 0.

Положим j(y) = l(y) (mod d) (0 ⩽ j(y) < d).

Определим ∀j = 0..d− 1 : Cj := {y ∈ C | j(y) = j}. Ясно, что
⋃
j

Cj = C.

Заметим, что если p(y → z) > 0, то pl(y)(x0 → y) > 0 ⇒ pl(y)+1(x0 → z) > 0. Значит, действитель-
но, p(x → y) > 0 ⇒ y ∈ C(i+1) (mod d).

Осталось показать, что Cj не пересекаются.

Пойдём от противного: пусть y ∈ Cj1 ∩ Cj2 . Тогда ∃l1, l2 ∈ N : pl1(x0 → y) > 0, pl2(x0 → y) > 0. Так
как x0 и y в одном эргодическом классе, то для некоторого b ∈ N : pb(y → x0). значит, l1 + b ∈ Ix0

и l2 + b ∈ Ix0
. Значит, они оба делятся на d, их разность делится на d, значит, l1 ≡ l2 (mod d).

Лекция IX
10 апреля 2023 г.
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Теорема 1.8.2 (Марков). Самая общая формулировка, которая у нас покамест встречалась, звучит
так:

Если для конечной цепи X существует m ∈ N : ∀x, y ∈ X : pm(x → y) > 0, то

∃π — распределение, такое, что pn(x → y) −→
n→∞

π, а ещё π · p = π и ∀π0 : πn(y) −→
n→∞

π.

На этой лекции мы рассмотрим ещё две теоремы, далее обобщающие теорему Маркова.

Теорема 1.8.3 (Марков, для апериодических цепей). Пусть X конечно и состоит из единственного
эргодического класса с периодом 1.

Утверждается, что тогда верно утверждение предыдущей теоремы (истинна посылка).

Доказательство. Пусть x — произвольное состояние. Тогда, согласно предыдущей лекции, суще-
ствует достаточно большое K(x) : ∀k ⩾ K(x) : pk(x → x) > 0.

По определению эргодического класса, ∃a(x, y) : pa(x,y)(x → y) > 0. Тогда

∀k ⩾ K(x) + a(x, y) : pk(x → y) > pk−a(x,y)(x → x) · pa(x,y)(x → y) > 0

Так как пар конечное число, то m := max
x,y

(K(x) + a(x, y)) подойдёт.

Замечание. Рассмотрим цепь, в которой есть один эргодический класс C и много несущественных
состояний, из которых достижим данный класс.

Формально, под условие теоремы эта цепь не подходит. Тем не менее, доказательство работает и
здесь.

Упражнение. Если X конечно, и содержит единственный эргодический класс C, причём его период
— 1, то утверждение теоремы Маркова тоже верно (правда, посылка в записанной форме не
истинна), причём предельное распределение сосредоточено на эргодическом классе:

∑
y∈C

π(y) = 1.

Теорема 1.8.4 (Марков, для периодических цепей). Пусть X конечно и состоит из единственного
эргодического класса с периодом d > 1.

Для краткости записи обозначим i⊕ j := (i+ j (mod d)).

Тогда, как уже доказано, X = C0 ⊔ · · · ⊔ Cd−1, таких, что

p(x → y) > 0 ⇒ ∃j ∈ [0, d) : x ∈ Cj , y ∈ Cj⊕1

Утверждается, что ∃{πj}d−1
j=0 — система распределений, такая, что ∀j : πj сосредоточено на Cj , и

∀x ∈ Ci, y ∈ Ci⊕j : lim
n→∞

pnd+j(x → y) = πi⊕j(y)

Кроме того, условие инвариантности заменяется на условие πj · p = πj⊕1.

Доказательство. Зафиксируем подкласс Ci и рассмотрим на нём марковскую цепь с переходной
вероятностью q := pd. Заметим, что тогда Ci — эргодический класс в новой цепи, причём его период
— 1. В самом деле,

∀x ∈ Ci : ∃K : ∀k ⩾ K : pkd(x → x) > 0

qk(x → x) > 0

Таким образом, период новой цепи равен 1, откуда получаем, что к новой цепи применима преды-
дущая теорема.

А именно, существует распределение πi на Ci:

∀x, y ∈ Ci : qn(x → y) −→
x→y

πi(x → y) ⇐⇒ pnd(x → y) −→
x→y

πi(x → y)
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Теперь рассмотрим два подкласса Ci и Ci⊕j и произвольные x ∈ Ci, y ∈ Ci⊕j .

pnd+j(x → y) = pndpj(x → y) =
∑

z∈Ci⊕j

pj(x → z) · pnd(z → y)

Так как pnd(z → y) −→
n→∞

πi⊕j(y), то pnd+j(x → y) −→
n→∞

( ∑
z∈Ci⊕j

pj(x → z)

)
· πi⊕j(y) = πi⊕j(y).

Осталось доказать, что πj · p = πj⊕1. Положим y ∈ Cj+1, запишем

πj⊕1(y) =
∑
x∈Cj

πj(x) · p(x → y)

Для этого вспомним, что ∀x0 ∈ Cj : πj(x) = lim
n→∞

pnd(x0 → x). Тогда

πj⊕1(y) = lim
n→∞

∑
x∈Cj

pnd(x0 → x) · p(x → y) = lim
n→∞

pnd+1(x → y) =
предыдущее утверждение для j = 1

πj⊕1(y)

1.8.5 Возвратность

Пусть X — быть может бесконечное пространство состояний.

Выберем x0 ∈ X , обозначим за fi вероятность вернуться в X на i-м шаге:

fi(x0) := P((x1 ̸= x0) ∧ · · · ∧ (xi−1 ̸= x0) ∧ (xi = x0))

Так как события несовместны, то
∞∑
i=1

fi(x0) ⩽ 1.

Определение 1.8.7 (x0 ∈ X — возвратное состояние). Такое состояние, для которого
∞∑
i=1

fi(x0) = 1.

При этом говорят, что x0 — положительно возвратно, если
∞∑
i=1

i·fi(x0) < ∞, то есть матожидание

времени возврата конечно. Иначе x0 называется нуль-возвратным.

Теорема 1.8.5 (Критерий возвратности). x ∈ X возвратно ⇐⇒
∞∑

n=1
pn(x → x) = ∞.

Доказательство. Запишем двумя способами вероятность события пройти цикл из x в x.

pn(x → x) =

n∑
i=1

fi(x) · pn−i(x → x)

Введём производящие функции F(z) =
∞∑
i=1

fi(x)z
i и P(z) =

∞∑
n=0

pn(x → x)zn, действующие на

z ∈ [0, 1). Для них
P(z) = 1 + F(z)P(z)

Таким образом,

1− 1

P(z)
= F(z)

Перейдём к пределу при z → 1. Равенство обратится в

1− 1
∞∑

n=1
pn(x → x)

=

∞∑
i=1

fi(x)
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Факт 1.8.8. Если x и y сообщаются, то они либо оба возвратны, либо оба — невозвратны.

Доказательство. ∃a, b ∈ N : pa(x → y) > 0 и pb(y → x) > 0. Тогда запишем

pn+a+b(x → x) ⩾ pa(x → y)pn(y → y)pb(y → x)

Отсюда видим, что ряды
∞∑

n=1
pn(x → x) и

∞∑
n=1

pn(y → y) сходятся (или нет) одновременно.

Следствие 1.8.3. Если в цепи все состояния сообщаются, то они все одновременно либо воз-
вратны, либо нет.

Пример (Самый знаменитый пример). Простое симметричное случайное блуждание на Zd.

Пусть мы находимcя в произвольной точке пространства Zd ∋
(
x1 . . . xd

)
. На каждом шагу

меняется произвольная координата с вероятностью 1
2d — на ±1.

Все точки сообщаются, значит, все они возвратны или невозвратны одновременно.

Лекция X
17 апреля 2023 г.

Теорема 1.8.6 (Пойа). Симметричное случайное блуждание на целочисленной решётке Zd воз-
вратно ⇐⇒ d ⩽ 2.

Доказательство. Будем пользоваться не определением возвратности, а критерием — про сходи-
мость ряда. Идея состоит в том, что pn(x → x) ≍ n−d/2. Этот ряд сходится при d ⩾ 3.

p2n+1(0 → 0) = 0, поэтому для проверки расходимости ряда будем рассматривать чётные индексы.

d = 1.

pn1 (0 → 0) =

(
2n

n

)(
1

2

)2n

=
(2n)!

n!n!22n
∼ (2n/e)n

√
2π2n

(n/e)n(n/e)n ·
√
2πn

√
2πn · 22n

=
1√
πn

Так как ряд расходится, то блуждание возвратно.

d = 2. Представим себе блуждание по плоскости x, y и рассмотрим замену переменных:

{
u = x+ y

v = x− y
.

Теперь обе координаты (u, v) независимы:
x⇝ x+ 1 u⇝ u+ 1, v ⇝ v + 1 1/4

x⇝ x− 1 u⇝ u− 1, v ⇝ v − 1 1/4

y ⇝ y + 1 u⇝ u+ 1, v ⇝ v − 1 1/4

y ⇝ y − 1 u⇝ u− 1, v ⇝ v + 1 1/4

Таким образом, случайные блуждания по заменённым координатам независимы, откуда:

p2n2 (0 →
(xy)

0) = p2n2 (0 →
(uv)

0) = p2n1 (0 →
u

0) · p2n1 (0 →
v
0) =

1

πn

Ряд расходится, блуждание возвратно.

d = 3. Введём M1,M2,M3 — число шагов вдоль осей 1, 2, 3 — случайные величины, такие, что
M1 +M2 +M3 = 2n. Также введём событие

Am1,m2,m3
= {M1 = 2m1,M2 = 2m2,M3 = 2m3}

Запишем p2n3 (0 → 0) =
∑

m1,m2,m3

p2n3 (0 → 0 ∧ Am1,m2,m3
) — формулу полной вероятности.

Здесь есть плохие слагаемые, в которых одно из m1,m2,m3 слишком мало.

EM1 = EM2 = EM3 =
2n

3
; DM1 = DM2 = DM3 ∼ const ·n
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Согласно неравенству Чебышёва

P
(
M1 ⩽

n

3

)
= P

(
M1 − EM1 ⩽ −n

3

)
⩽ P

(
|M1 − EM1| ⩾

n

3

)
⩽

DM1

(n/3)

2

=
const

n

Эта оценка слишком слабая, она расходится и не помогает доказать сходимость.

Воспользуемся лучше экспоненциальным неравенством Чебышёва:

P
(
M1 ⩽

n

3

)
= P

(
−M1 ⩾ −n

3

)
⩽

E
(
e−M1

)
e−n/3

=

= E
(
e−M1

)
· en/3 =

(
2

3
+

1

3
· e−1

)2n

· en/3 =

((
2 + e−1

3

)2

e
1/3

)n

≈ 0.87n

Теперь∑
m1,m2,m3

p2n3 (0 → 0∧Am1,m2,m3
) ⩽

∑
m1,m2,m3

m1,m2 или m3 меньше n/3

P(Am1,m2,m3
)+

∑
m1,m2,m3

иначе

P(0 → 0∧Am1,m2,m3
)

Первая сумма сходится: оценивается суммой P
(
m1 ⩽ n

3

)
+ P

(
m2 ⩽ n

3

)
+ P

(
m3 ⩽ n

3

)
, где

каждое слагаемое оценено выше.

Вторая сумма оценивается из формулы полной вероятности: p2n3 (0 → 0∧Am1,m2,m3
) = p2n3 (0 →

0|Am1,m2,m3) ·P(Am1,m2,m3). Дальше p
2n
3 (0 → 0|Am1,m2,m3) раскладывается на три множителя

по каждой координате:

p2n3 (0 → 0|Am1,m2,m3) = pm1
1 (0 → 0)pm1

2 (0 → 0)pm3
1 (0 → 0) ⩽

const
√
m1

· const√
m2

· const√
m3
⩽

const

n3/2

Таким образом,
∑

m1,m2,m3, одно меньше n/3

p2n3 (0 → 0|Am1,m2,m3
) · P(Am1,m2,m3

) ⩽ const
n3/2

— события

Am1,m2,m3
не пересекаются. Итак, ряд сходится, блуждание невозвратно.

d > 3. Доказывается аналогично d = 3.

1.9 Случайное блуждание в Z1

Случайное блуждание на Z можно воспринимать либо как сумму независимых случайных величин

Xj , распределённых по закону Xi,j =

{
+1, с вероятностью p

−1, с вероятностью q
(и Sn = X1 + · · · + Xn), или как

марковскую цепь

P(Sn+1 = s+ 1|Sn = s) = p

P(Sn+1 = s− 1|Sn = s) = q

Исследуем некоторые параметры данного случайного блуждания.

Обозначим за Rn количество шагов вправо среди первых n шагов. Это величина с биномиаль-
ным распределением B(n, p). Sn = Rn − (n − Rn) = 2Rn − n, откуда вероятность P(Sn ⩾ m)
переписывается в виде P(2Rn − n ⩾ m) = P(Rn ⩾ n+m

2 ).

Интегральная теорема Муавра — Лапласа говорит, что P
(
Rn ⩾ np+ b

√
np(1− p)

)
−→
n→∞

1√
2π

∞∫
b

e−
x2

2 dx.

В частности, для p = 1/2 получаем P(Sn ⩾ b
√
n) = P(Rn ⩾ n

2 + 1
2b
√
n) −→

n→∞
1√
2π

∞∫
b

e−
x2

2 dx.
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Отсюда получаем следствие: характерное значение Sn при p = 1/2 имеет порядок O(
√
n):

P
(
b1
√
n ⩽ Sn ⩽ b2

√
n
)
−→
n→∞

1√
2π

b2∫
b1

e−
x2

2 dx

1.9.1 Распределение максимума. Принцип отражения

Рассмотрим симметричное случайное блуждание на Z1. Обозначим за Mn := max
0⩽j⩽n

Sj . Только

что мы оценили, что характерное значение Sn имеет порядок
√
n, а какого максимума следует

ожидать?

Разобьём событие на три дизъюнктных:

P(Mn ⩾ r) = P(Mn ⩾ r, Sn > r) + P(Mn ⩾ r, Sn = r) + P(Mn ⩾ r, Sn < r) =

= P(Sn > r) + P(Sn = r) + P(Mn ⩾ r, Sn < r)

Факт 1.9.1. P(Sn > r) = P(Mn ⩾ r, Sn < r).

Доказательство. Рассмотрим произвольное случайное блуждание, в котором {Mn ⩾ r, Sn < r}.
На картинке ниже оно схематично изображено сплошными линиями.

Sk • •

r • •

• • • •

• •
k0

k

Выделим минимальное k0, такое что Sk0
= r — оно очевидно существует, так как Mn ⩾ r. Отразим

от оси Sk = r всю часть графика при k > k0.

Получили новый вариант развития случайного блуждания. Так как блуждание симметричное, то
вероятность его появления такая же, как и у исходного. Более того, нетрудно видеть, что данное
отражение задаёт биекцию между всеми событиями {Sn > r} и {Sn < r,Mn ⩾ r}.

Таким образом, получаем, что P(Mn ⩾ r) = 2P(Sn > r) + P(Sn = r). При стремлении n → ∞ для
любого конкретного r : P(Sn = r) −→ 0, так как даже для r = 0 вероятность эквивалентна 1√

πn
, а

из биномиальной формулы ясно, что r = 0 — наиболее вероятно.

Таким образом, применяя интегральную теорему Муавра — Лапласа, получаем

P(Mn ⩾ b
√
n) −→

n→∞

2√
2π

∞∫
b

e−
x2

2 dx

Лекция XI
15 мая 2023 г.
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1.9.2 Время пребывания на полуоси (закон арксинуса)

Рассмотрим симметричное блуждание с p = q = 1
2 . Изобразим на своеобразном графике точки

(k, Sk), соединив последовательные отрезками.

Sk

•

• •

• • • k

•
. . .

Назовём временем, проводимым на положительной оси Tn =
n∑

k=1

1{sk⩾0,sk−1⩾0}. Пусть a, b ∈ (0, 1),

найдём, чему пропорциональна вероятность P(a ⩽ Tn

n ⩽ b).

Будем рассматривать чётные n, то есть обозначим их 2n. Интересно заметить, что T2n всегда чётно:
точки Sk = 0 появляются всегда при чётных k, и между соседними точками либо всё время —
пребывание на положительной полуоси, либо всё время — пребывание на отрицательной полуоси.

Будем использовать без доказательства факт P(T2n = k) = P(S2k = 0) · P(S2(n−k) = 0). (доказа-
тельство можно найти в учебнике Ширяева «Вероятность», глава 1, параграф 10).

Таким образом, мы можем выразить (T2n = k) с помощью простых методов:

P(S2k = 0) = 2−2k

(
2k

k

)
=

1√
πk

(1 + o(1))

P(S2(n−k) = 0) =
1√

π(n− k)
(1 + o(1))

Теперь можно записать

P
(
a <

Tn

n
< b

)
=

∑
a< k

n<b

1√
πk

· 1√
π(n− k)

(1 + o(1)) =
1

π
·
∑

a< k
n<b

1√
k
n

· 1√
1− k

n

· 1
n
(1 + o(1))

Заметим, что теперь под суммой стоит сумма Римана — Дарбу, можем записать свойство интеграла
Римана

1

π
·
∑

a< k
n<b

1√
k
n

· 1√
1− k

n

· 1
n
(1 + o(1)) −→

n→∞

1

π

b∫
a

du√
u(1− u)

= I(b)− I(a)

где в качестве I подойдёт любая первообразная. Любопытно, что здесь есть две разные естественно
выглядящие первообразные

I1(x) =
1

π
arcsin(2x− 1)

I2(x) =
2

π
arcsin(

√
x)

Это можно видеть из тождества arcsin(2x − 1) + π
2 = 2arcsin(

√
x) при x ∈ [0, 1]. (Проверяется

взятием косинуса от обоих частей)

График 1√
u(1−u)

выглядит, как U-образная кривая, с концами, уходящими в бесконечность, поэто-

му распределение сосредоточено около границ.
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Если рассмотреть случайную величину Z с распределением P(Z ∈ [a, b]) = 1√
π

b∫
a

du√
u(1−u)

, то

окажется, что она с очень большой вероятностью распределена близко к краю:

P(Z ⩽ 0.024) ≈ 0.1 P(Z ⩽ 0.006) ≈ 0.05

1.9.3 Задача о разорении игрока

Пусть у I игрока есть |A| монет (мы будем считать A < 0), у II игрока — B монет, и пусть они
играют в азартную игру. У I игрока вероятность выигрыша p, у II игрока — q = 1−p. По выигрышу
проигравший платит одну монету другому, игра заканчивается, когда один из них разорится.

Исследуем эту модель. Заметим, что это на самом деле тоже случайное блуждание, заканчиваю-
щееся когда Sk выходит из интервала [A,B]:

Sk

B

•

• •

• • • •

• •

A I проиграл

•

Положим βk(x) — вероятность выйти на B раньше, чем на A не более чем за k шагов, исходя
из точки x. Эти величины мы можем рассматривать в дискретной теории вероятностей, так как
бесконечных траекторий несчётное количество.

Заметим, что βk(x) монотонно возрастает по k, но, очевидно, βk(x) ограничена. Значит, имеется
предел, который мы и хотим вычислить.

Запишем своеобразную рекурренту на β: с вероятностью p первый шаг — в положительном на-
правлении, с вероятностью q — в отрицательном

βk(x) = pβk−1(x+ 1) + qβk−1(x− 1)

Перейдя к пределу по k получаем

β(x) = pβ(x+ 1) + qβ(x− 1)

pβ(x) + qβ(x) = pβ(x+ 1) + qβ(x− 1)

q(β(x)− β(x− 1)) = p(β(x+ 1)− β(x))

β(x+ 1)− β(x) =
q

p
(β(x)− β(x− 1))

Таким образом, последовательные разности β(x + 1) − β(x) образуют геометрическую прогрес-

сию. Воспользовавшись начальными условиями

{
β(B) = 1

β(A) = 0
можно получить точную формулу. В
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частности, для p = q = 1
2 получается неожиданно простая формула

β(0) =
|A|

B + |A|

Если p ̸= q, то можно решить систему из B + |A|+ 1 линейных уравнений, результатом будет

β(x) =
(q/p)

x − (1/p)
A

(q/p)
B − (1/p)

A

Замечание. Случайное блуждание не может бесконечное время болтаться внутри ограниченного
отрезка. Вероятность того, что рано или поздно кто-то выиграет стремится к единице. Доказатель-
ство остаётся читателю в качестве упражнения.

1.9.4 Матожидание времени разорения

Задача прежняя — есть два игрока с капиталами |A|, B, p, q — вероятности их выигрышей соот-
ветственно.

Обозначим T (x) — время разорения одного из игроков, если блуждание началось в точке x. Чему
равно ET (x)?

Как и в предыдущей задаче, ограничим игру конечным числом ходов: Tk(x) =

{
T (x), T (x) ⩽ k

k, T (x) ⩾ k
.

Используемая выше T (x) — величина, которую мы не можем рассматривать в дискретной теории
вероятностей. Чтобы этого избежать, рассмотрим величины Tk(x) и найдём lim

k→∞
ETk(x).

Обозначим mk(x) := ETk(x). mk(x) тоже монотонно возрастет по k. Более того, у него есть предел
— вероятность того, что T (x) > n экспоненциально убывает, но выкладок, обосновывающих это,
нет.

mk(x) =

{
pmk−1(x+ 1) + qmk−1(x− 1) + 1, x ∈ (A,B)

0, x = A ∨ x = B

Преобразуем первое равенство, перейдя в нём к пределу по k → ∞.

pm(x) + qm(x) = pm(x+ 1) + qm(x− 1) + 1

p(m(x+ 1)−m(x)) = q(m(x)−m(x− 1))− 1

m(x+ 1)−m(x) =
q

p
(m(x)−m(x− 1))− 1

p

Это опять же решаемая система, но для экономии времени лекции приведём лишь решение для
p = q = 1

2 :
m(x+ 1)−m(x) = (m(x)−m(x− 1))− 2

Решением является многочлен второй степени с корнями в A и B. m(x) = K(x − A)(x − B).
Подгоняя K так, чтобы выполнялось уравнение m(x+1)−m(x) = (m(x)−m(x−1))−2 понимаем,
что K = −1.

m(x) = (B − x)(x−A); в частности, m(0) = |A| ·B

Если p ̸= q, то ответ чуть более противный:

m(0) =
B −A

p− q
· 1− (q/p)

A

(q/p)
B − (q/p)

A
+

A

p− q

1.10 Случайные графы

В нашей жизни есть огромное множество графов: графов друзей социальных сетей, граф аэропор-
тов и авиалиний, граф совместных научных публикаций и граф цитирований. . .
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small world — маленькость мира, диаметры реальных графов (длина пути — количество рёбер)
очень малы. Так, в графе совместных публикаций научного мира диаметр порядка 10.

Графы бывают статические и динамические — во времени меняются последние.

Типичная статическая модель: граф Эрдёша — Реньи на n вершинах G(n, p), в котором каждое из(
n
2

)
рёбер проведено с вероятностью p.

Самая знаменитая динамическая модуль: модель преимущественного присоединения. Начнём с
какого-то простого графа, на каждом шаге добавляем вершину и одно ребро из неё, ведущее к
какой-нибудь из существующих вершин, причём вероятность пропорциональна степени вершины.

Лекция XII
22 мая 2023 г.

1.10.1 Граф Эрдёша — Реньи

Рассмотрим множество из n вершин, каждое из
(
n
2

)
рёбер проведено в вероятностью p независимо

от других — случайный граф G(n, p).

Рассмотрим последовательность pn и изучим поведение G(n, p) при n → ∞.

Интересный факт (Условие связности).

• Если lim
n→∞

pn
log n/n > 1, то P(G(n, pn) связен) −→

n→∞
1.

• Если lim
n→∞

pn
log n/n < 1, то P(G(n, pn) связен) −→

n→∞
0.

Обозначим за Mn размер максимальной компоненты связности в G(n, pn).

Интересный факт (О гигантской компоненте).

• Если lim
n→∞

pn
1/n =: γ > 1, то ∃a(γ) : P(Mn > a(γ) · n) −→

n→∞
1.

• Если lim
n→∞

pn
1/n =: γ < 1, то ∃b(γ) : P(Mn ⩽ b(γ) · log n) −→

n→∞
1.

1.10.2 power law for degrees (степенной закон для степеней (вершин))

Рассмотрим большой граф из n вершин; обозначим за V
(d)
n количество вершин степени d.

Оказывается, часто имеет место приближение V
(d)
n ≈ (ad−α)n, где α ∈ (2, 5) — для разных графов

предлагались разные значения. a и α — константы, зависящие от типа графа, но не зависящие от
d, иначе было бы совсем неинтересно. Тем не менее, α меняется не очень сильно, а a находится
из уравнения V

(0)
n + V

(1)
n + · · ·+ V

(n)
n = n.

1.10.3 Дерево преимущественного присоединения

Рассмотрим в качестве начального состояния граф K2, состоящий из двух вершин и одного ребра.

На k-м шаге в граф добавляется вершина с номером k + 2, и из неё добавляется ровно одно
случайное ребро, причём оно проведено к вершине i ∈ [1, k+1] с вероятностью, пропорциональной
deg(i), где deg — степень в графе на первых k + 1 вершинах.

После шага n в графе n + 2 вершины, n + 1 ребро, несложно видеть, что граф связен и является
деревом.

Поведение степеней вершин

Обозначим за X
(m)
n степень вершины m после шага n.

«Кто не успел, тот опоздал»
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Рассмотрим m = 1. X(1)
0 = 1 — после 0-го шага величина пока неслучайная. Запишем уравнения

на развитие случайной переменной X
(1)
n .

P
(
X

(1)
n+1 −X(1)

n = 1
∣∣∣X(1)

n = k
)
=

k

2(n+ 1)

P
(
X

(1)
n+1 −X(1)

n = 0
∣∣∣X(1)

n = k
)
= 1− k

2(n+ 1)

Посчитаем от величины X
(1)
n только её матожидание.

E
(
X

(1)
n+1

)
− E

(
X(1)

n

)
= E

(
X

(1)
n+1 −X(1)

n

)
= P

(
X

(1)
n+1 −X(1)

n = 1
)
=

∞∑
k=1

P
(
X(1)

n = k
) k

2(n+ 1)

В этом месте чудесным образом появляется матожидание, получаем рекурренту на матожидание

E
(
X

(1)
n+1

)
− E

(
X(1)

n

)
= E

(
X(1)

n · 1

2(n+ 1)

)
откуда EX(1)

n+1 = EX(1)
n

(
1 + 1

2(n+1)

)
= EX(1)

n · 2n+3
2(n+1) = (2n+3)!!

(2n+2)!! . Используя формулу Стирлинга,
получаем

(2n)!! = 2nn! ∼ 2n
√
2πn

(n
e

)n
(2n+ 1)!! =

(2n+ 1)!

(2n)!

откуда

EX(1)
n =

(2n+ 1)!

((2n)!!)2
∼
√
2π(2n+ 1)

(
2n+1

e

)2n+1

22n(2πn)
(
n
e

)2n ∼ 1√
π

√
2 · 2n
2n

(
2n+ 1

2n

)2n

︸ ︷︷ ︸
→e

2n+ 1

e
∼ 2√

π

√
n

Заметим, что в графе 2(n+ 1) рёбер всего, поэтому в среднем степень вершины порядка 2. Таким
образом, видим, что степень первой вершины сильно больше средней степени.

Очевидно, EX(2)
n = EX(1)

n . Можно написать формулу для произвольной вершины, она доказывается
примерно так же.

EX(l+1)
n ∼ 2√

π

(2l − 2)!!

(2l − 1)!!

√
n, где можно записать

(2l − 2)!!

(2l − 1)!!
∼ l−

1/2

1.10.4 Распределение степеней вершин

Пусть V
(d)
n — количество вершин степени d после шага n.

Рассмотрим d = 1. После 0 шагов V
(d)
0 = 2 — величина ещё неслучайная. Опять же, выпишем

условные вероятности. Заметим, что V
(1)
n+1 − V

(1)
n+1 —всегда либо 0, либо 1 (добавляется вершина

степени 1, но, быть может, одна из вершин степени 1 станет вершиной степени 2).

P
(
V

(1)
n+1 − V

(1)
n+1 = 0

∣∣∣Vn = k
)
=

k

2(n+ 1)

P
(
V

(1)
n+1 − V

(1)
n+1 = 1

∣∣∣Vn = k
)
= 1− k

2(n+ 1)

Аналогично подсчёту EX(1)
n получаем

EV (1)
n+1 − EV (1)

n = E
(
V

(1)
n+1 − V (1)

n

)
= P

(
V

(1)
n+1 − V (1)

n = 1
)
=

∞∑
k=1

(
1− k

2(n+ 1)

)
P
(
V (1)
n = k

)
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Суммируя вероятности P(V (1)
n = k) получаем 1; во второй половине правой части формулы опять

получается матожидание. Значит,

EV (1)
n+1 − EV (1)

n = 1− EV (1)
n

2(n+ 1)

Чтобы решить эту рекурренту, предположим, что EV (1)
n ∼ αn для некоего α ∈ R. По-хорошему,

это надо обосновать, но давайте опустим.

Тогда решая уравнение α = 1− α
2 , получаем α = 2

3 .

EV (1)
n ∼

n→∞

2

3
n

В общем случае получится формула

EV (d)
n ∼

n→∞

4

d(d+ 1)(d+ 2)
n ∼

d→∞

4

d3
n

36


	Дискретная теория вероятностей
	Основные определения и понятия
	Вероятностное пространство. События
	Взаимосвязь событий

	Случайные величины
	Схема Бернулли
	Случайные блуждания
	Про условные вероятности

	Матожидание, дисперсия
	Простейшие свойства матожидания
	Неравенства, связанные с математическим ожиданием
	Медиана
	Дисперсия
	Моменты

	Законы больших чисел (ЗБЧ)
	Производящие функции
	Производящие функции и моменты

	Ветвящиеся процессы
	Процесс Гальтона — Ватсона
	Некоторые другие виды процессов

	Предельные теоремы Муавра — Лапласа
	Локальная
	Интегральная

	Цепи Маркова
	Инвариантные (стационарные) распределения
	Классификация состояний в цепях Маркова
	Периодичность
	Связь периодов и эргодических классов
	Возвратность

	Случайное блуждание в Z1
	Распределение максимума. Принцип отражения
	Время пребывания на полуоси (закон арксинуса)
	Задача о разорении игрока
	Матожидание времени разорения

	Случайные графы
	Граф Эрдёша — Реньи
	power law for degrees (степенной закон для степеней (вершин))
	Дерево преимущественного присоединения
	Распределение степеней вершин



