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Изначально предполагалось, что лекции будет читать Николай Александрович Вавилов.

13 сентября была прочитана третья лекция. Николай Александрович прекрасно выглядел, сообщил
о пересдаче в следующем месяце, а после лекции как обычно остался, чтобы отвечать на вопро-
сы. Я подошёл с вопросом о том, почему спин полуцелый (да, к лектору по алгебре — это было
упомянуто на лекции с обоснованием того, что RP 2 двулистно накрывает плоскость (может, я
ошибаюсь)). Николай Александрович что-то говорил про специальный индийский танец с чашей,
про привязывание греческого кратера резинками за обе ручки к стенкам с последующим закру-
чиванием, и про спиноры. К сожалению, про это я так ничего и не понял — сложно описывать
повороты трёхмерного тела в пространстве, а о спинорах я слышал в первый раз.

Уже выйдя на улицу, я потом в шутку предложил на следующий день принести греческую чашу
и резинки, чтобы Николай Александрович сам всё показал — 14 сентября была запланирована
очередная, четвёртая, лекция.

Я пришёл на неё за несколько минут до начала, и с удивлением увидел, что у аудитории стоит
лишь несколько человек. Оказалось, лекцию отменили — Николай Алесандрович внезапно плохо
себя почувствовал, и сообщил об этом администраторам. Нам написали, что 14 сентября лекции
не будет, и её проведут в другой день.

А уже вечером того дня до нас сарафанной почтой дошло известие о смерти учителя. Мой одно-
группник, Лев, поделился чьим-то сообщением с фотографией записи, приписав «Это правда?»

Сначала, кажется, никто не поверил. Я увидел текст, и подумал: «И ведь действительно, сегодня
лекции не было. Но он заболел, а не умер, что за глупая шутка». Потом я проверил, что запись
на стене поделившегося человека действительно существует, и в ту же секунду Лев написал, что,
похоже, это не шутка.

Это была не шутка.

Николай Александрович Вавилов, наш учитель алгебры, прекрасный преподаватель, которого лю-
били, кажется, все, скоропостижно скончался 14 сентября 2023 года.
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Глава 1

Полилинейная алгебра

Лекция I
5 сентября 2023 г.

1.1 Полилинейные отображения

Пусть R — коммутативное кольцо.

Определение 1.1.1 (Полилинейное отображение). Отображение ϕ : M1 × · · · × Ms → M , где
M1, . . . ,Ms,M — R-модули, такое, что оно

1. Аддитивно по любому аргументу при фиксированных остальных.

2. Однородно степени 1 по каждому аргументу (выносится скаляр).

Примеры.

• Билинейные формы — скалярные произведения.

• Умножение в алгебре A×A→ A, где A — алгебра над R.

• Определитель — n-линейная форма.

Замечание. Если M1, . . . ,Ms свободны, то ϕ определён заданием значений на наборах базисных
векторов.

Обозначим за L(M1, . . . ,Ms;M) множество всех s-линейных отображений M1×· · ·×Ms →M . На
этом множестве можно ввести структуру R-модуля:

(ϕ+ ψ)(u1, . . . , us) = ϕ(u1, . . . , us) + ψ(u1, . . . , us)

(λϕ)(u1, . . . , us) = λ · ϕ(u1, . . . , us)

Если R = K — поле, то dim(L(M1, . . . ,Ms;M)) = dim(M1) · . . . · dim(Ms) · dim(M).

Тензорные произведения позволяют в некотором смысле сводить полилинейные отображения к
линейным.

1.2 Определение тензорного произведения двух модулей

1.2.1 Мотивация

Рассмотрим X,Y — два множества. Хотим построить функцию ϕ : X × Y → K, где K — поле.

4



Рассмотрим пару функций f : X → K, g : Y → K. Как их превратить в одну функцию? Надо взять
их тензорное произведение!

f ⊗ g : X × Y → K; (x, y) 7→ f(x) · g(y)

Это было бы произведение функций, если бы f и g были заданы на одном множестве X = Y .

Функция такого вида — функция с разделяющимися переменными.

К сожалению, не все функции имеют такой вид. Рассмотрим лучше суммы

f1 ⊗ g1 + · · ·+ fm ⊗ gm : X × Y → K

Если |X|, |Y | <∞, то (из сравнения размерностей) имеет место равенство KX×Y = KX ⊗KY .

Получается, dim(U ⊕ V ) = dim(U) + dim(V ), и dim(U ⊗ V ) = dim(U) · dim(V ).

Мы таким образом сможем отождествить L(M1, . . . ,Ms;M) = Hom(M1 ⊗ · · · ⊗Ms;M), действи-
тельно сведя полилинейные отображения к линейным.

1.2.2 Симметричность

Определение 1.2.1 (Полилинейное отображение ϕ :M × · · · ×M → N симметрично).

ϕ(. . . , u, . . . , v, . . . ) = ϕ(. . . , v, . . . , u, . . . )

Определение 1.2.2 (Полилинейное отображение ϕ :M × · · · ×M → N антисимметрично).

ϕ(. . . , u, . . . , u, . . . ) = 0

Для таких полилинейных отображений возникнут особые конструкции — симметрической степени
Sm(M) и внешней степени

∧m
(M).

1.2.3 Тензорное произведение двух модулей

Пусть R — коммутативное кольцо.

Определение 1.2.3 (Тензорное произведение R-модулей L,M). R-модуль L ⊗M вместе с били-
нейным отображением ψ : L×M → L⊗M таким, что

∀ R-модуля N , ∀ полилинейного ϕ : L × M → N : ∃! R-линейное θ : L ⊗ M → N , такое, что
диаграмма ниже коммутативна.

L×M L⊗M

N

ψ

ϕ θ

Обозначим ψ(x, y) за x⊗ y, назовём это разложимым тензором.

Должно выполняться

(x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y
x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2
xλ⊗ y = (x⊗ y)λ = x⊗ yλ

Последнее в случае L — левого модуля, M — правого модуля, обращается в xλ⊗ y = x⊗ λy.

Теорема 1.2.1 (Существование тензорного произведения). Для любых R-модулей L,M существует
L⊗M .
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Доказательство. Введём P — свободный модуль на множестве образующих — множестве пар
(x, y) ∈ L×M . Его элементы — формальные суммы∑

x∈L,y∈M
(x, y)λx,y, где λx,y ∈ R, почти все 0

В P не выполнены соотношения, перечисленные выше, введём их и профакторизуем.

Q :=

〈 (x1 + x2, y)− (x1, y)− (x2, y)
(x, y1 + y2)− (x, y1)− (x, y2)

(xλ, y)− (x, y)λ
(x, yλ)− (x, y)λ

〉
⩽ P

Теперь по определению обозначим L⊗M = P/Q.

Докажем универсальное свойство: обозначим за i : L × M → P вложение множеств (i(x, y) =
(x, y)), за πQ : P → P/Q факторпроекцию. Положим ψ := πQ ◦ i.

Теперь надо показать, что ∀ полилинейного ϕ : L×M → N : ∃!θ : P/Q→ N , такое, что диаграмма
коммутативна.

P

L×M P/Q

N

i
πQ

ϕ

θ̃

θ

ψ

Введём θ̃ : P → N , заданное на системе образующих θ̃((x, y)) = ϕ(x, y), и продолженное по
линейности.

Заметим, что Q ⩽ Ker(θ̃) (в точности потому что ϕ полилинейно), поэтому по теореме о гомомор-
физме θ̃ пропускается через фактор: ∃!θ : P/Q → N , такое, что θ ◦ ψ = ϕ. Осталось заметить, что
никак по-другому θ определить нельзя: если нашлось θ′ : P/Q → N , такое, что θ′ ◦ ψ = ϕ, то
можно построить θ̃′ := θ′ ◦ πQ, и из коммутативности диаграммы θ̃ = θ̃′, откуда θ = θ′.

1.2.4 Базис тензорного произведения двух модулей

Выберем два свободных модуля L = Rl,M = Rm. Пусть L = ⟨e1, . . . , el⟩ ,M = ⟨f1, . . . , fm⟩.

Теорема 1.2.2. В качестве базиса L⊗M можно выбрать

e1 ⊗ f1 . . . e1 ⊗ fm
...

. . .
...

el ⊗ f1 . . . el ⊗ fm

Доказательство. L ×M → L ⊗M — отображение, переводящее (ei, fj) в ei ⊗ fj . Всякое поли-
линейное ϕ задаётся значениями на базисных элементах. Значит, надо знать ϕ(ei, fj). Введём η на
базисных значениях, положив η(ei⊗ fj) = ϕ(ei, fj). Понятно, что эти условия необходимы, то есть
η единственна.

Следствие 1.2.1. dim(L⊗M) = dim(L) dim(M).

Лекция II
7 сентября 2023 г.

Можно определить U ⊗ V ⊗W как (U ⊗ V )⊗W ?
= U ⊗ (V ⊗W ).

Почему (и можно ли?) считать, что тензорное произведение ассоциативно? Коммутативно ли оно?
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Коммутативным тензорное произведение считать не хочется: U ⊗V и V ⊗U — разные модули. Тем
не менее, ниже мы увидим, что имеется канонический изоморфизм.

Определим M1 ⊗ · · · ⊗Ms так, что L(M1, . . . ,Ms;M) = Hom(M1,⊗ · · · ⊗Ms,M), а потом докажем
существование всяких канонических изоморфизмов.

1.3 Тензорное произведение нескольких модулей

R — по-прежнему коммутативное кольцо.

Определение 1.3.1 (Тензорное произведение M1 ⊗ · · · ⊗ Ms). Модуль M1 ⊗ · · · ⊗ Ms вместе с
s-линейным отображением

ψ :M1 × · · · ×Ms →M1 ⊗ · · · ⊗Ms

(x1, . . . , xs) 7→ x1 ⊗ · · · ⊗ xs︸ ︷︷ ︸
разложимый тензор

такой, что ∀ R-модуля M,∀ полилинейного отображения ϕ : M1 × · · · ×Ms → M : ∃!θ : M1 ⊗ · · · ⊗
Ms →M , такая что диаграмма ниже коммутативна.

M1 × · · · ×Ms M1 ⊗ · · · ⊗Ms

M

ϕ θ

ψ

Доказательство существования. Универсальное свойство базиса и теорема о гомоморфизме опять.

Возьмём свободный модуль P = ⟨(x1, . . . , xs)⟩xi∈Mi
, профакторизуем по подмодулю

Q =

〈 (x1 + x′1, x2, . . . , xs)− (x1, x2, . . . , xs)− (x′1, x2, . . . , xs)
. . .

(x1λ, x2, . . . , xs)− (x1, x2, . . . , xs)λ
. . .

〉

Обозначим M1 ⊗ · · · ⊗Ms = P/Q, где ψ :M1 × · · · ×Ms →M1 ⊗ · · · ⊗Ms есть композиция отобра-
жения, переводящего элементы множества (x1, . . . , xs) в соответствующие элементы, образующие
свободный модуль P и канонической проекции.

θ построится единственным образом согласно универсальному свойству фактормодуля.

Теорема 1.3.1. Тензорное произведение ассоциативно с точностью до изоморфизма.

Доказательство. Ассоциативность устроена так

(L⊗M)⊗N ↔ L⊗M ⊗N ↔ L⊗ (M ⊗N)

(x1 ⊗ x2)⊗ x3 ↔ x1 ⊗ x2 ⊗ x3 ↔ x1 ⊗ (x2 ⊗ x3)

Определение 1.3.2 (Тензор). Элемент тензорного произведения.

Замечание. Всякий тензор представим в виде конечной суммы разложимых тензоров

x1 ⊗ · · · ⊗ xs + y1 ⊗ · · · ⊗ ys + · · ·+ z1 ⊗ · · · ⊗ zs

и наименьшее количество слагаемых называется ранг тензора.
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1.3.1 Базис тензорного произведения

Предположим, что M1, . . . ,Ms свободны, (e
(j)
1 , . . . , e

(j)
nj ) — базис Mj .

Теорема 1.3.2. Тогда M1 ⊗ · · · ⊗Ms — свободный модуль с базисом e
(1)
i1
⊗ e(2)i2 ⊗ · · · ⊗ e

(s)
is
, где

1 ⩽ ij ⩽ nj , 1 ⩽ j ⩽ s.

Доказательство. Аналогично случаю двух тензорных множителей.

1.4 Изоморфизмы тензорного произведения

1.4.1 Геометрическое определение тензорного произведения

«Берёте вы какую-нибудь книжку по дифференциальным уравнениям, и там на первых страницах
написано»

U ⊗ V = L(U∗, V ∗;K)

1.4.2 Определение ⊗ через Hom

Пусть U, V,W — свободные модули над R конечного ранга.

Теорема 1.4.1. Имеет место канонический изоморфизм U ⊗ V = Hom(U∗, V ) = Hom(V ∗, U).

Доказательство. Рассмотрим u ∈ U, v ∈ V , сопоставим

(u, v) 7→ (ηu,v : U
∗ → V ), ηu,v : θ 7→ θ(u) · v

Заметим, что U×V → Hom(U∗, V ) билинейно, значит, пропускается через тензорное произведение:

U ⊗ V → Hom(U∗, V )

(u, v) 7→ ηu,v

определено корректно и R-линейно.

Базис переходит в базис: ei ⊗ fj 7→

{
e∗i 7→ fj

e∗h 7→ 0
, значит, ранги U ⊗ V и Hom(U∗, V ) равны, откуда

отображение биективно (но только потому, что модули конечного ранга).

Интересный факт. Hom(U⊗V,W⊗Z) = Hom(U,W )⊗Hom(V,Z) — докажем, определив тензорное
произведение гомоморфизмов.

То, что пишется в этом и следующем подразделе — частные случаи данного факта.

1.4.3 Двойственность для ⊗
Теорема 1.4.2. (U ⊗ V )∗ = U∗ ⊗ V ∗.

Доказательство. Пусть η ∈ U∗, θ ∈ V ∗. Сопоставим (η, θ) 7→ (u ⊗ v 7→ η(u) · θ(v)). Определение
корректно, так как от η и от θ зависит линейно, то есть зависит билинейно от (η, θ), значит, по
определению тензорного произведения есть единственное отображение U∗ ⊗ V ∗ → (U ⊗ V )∗.

Это изоморфизм, так как отображение инъективно, и размеры базисов совпадают:

• e∗i ⊗ f∗j — базис U∗ ⊗ V ∗

• (ei ⊗ fj)∗ — базис (U ⊗ V )∗.

Следствие 1.4.1 (Определение ⊗ через Hom). U ⊗ V = (U∗ ⊗ V ∗)∗ = Hom(U∗ ⊗ V ∗, R) =
L(U∗, V ∗;R).
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В силу ассоциативности ⊗ это верно для любого количества модулей.

1.4.4 Сопряжённость ⊗ и Hom

Теорема 1.4.3. Hom(U ⊗ V,W ) = Hom(U,Hom(V,W )).

1.5 Тензорное произведение линейных отображений

Докажем, что тензорное произведение является ковариантным функтором (определение 3.2.3)
двух аргументов.

Функтор — это что-то, что берёт одну вещь, и сопоставляет ей другую вещь, сохраняя морфизмы
— какие-то полезные стрелки.

Лекция III
13 сентября 2023 г.

Сопоставим двум линейным отображениям ϕ : U → W,ψ : V → Z отображение ϕ ⊗ ψ : U ⊗ V →
W ⊗ Z.

Определение 1.5.1 (Тензорное произведение линейных отображений). Такое отображение, опре-
делённое на разложимых тензорах

ϕ⊗ ψ : U ⊗ V →W ⊗ Z
u⊗ v 7→ ϕ(u)⊗ ψ(v)

Замечание. Определение корректно, и продолжается по линейности на все элементы U ⊗ V

Теорема 1.5.1. Тензорное произведение билинейно (1-3) и функториально (4-5):

1. (ϕ1 + ϕ2)⊗ ψ = ϕ1 ⊗ ψ + ϕ2 ⊗ ψ.

2. ϕ⊗ (ψ1 + ψ2) = ϕ⊗ ψ1 + ϕ⊗ ψ2.

3. ϕ⊗ (λψ) = (λϕ)⊗ ψ = λ(ϕ⊗ ψ).

4. (ϕ2 ⊗ ψ2) ◦ (ϕ1 ⊗ ψ1) = (ϕ2 ◦ ϕ1)⊗ (ψ2 ◦ ψ1).

5. idU ⊗ idV = idU⊗V

Доказательство. Применить обе части к одному и тому же разложимому тензору u⊗ v ∈ U ⊗ V .
По билинейности совпадения на них будет достаточно.

Например,

((ϕ2 ⊗ ψ2) ◦ (ϕ1 ⊗ ψ1))(u⊗ v) = (ϕ2 ⊗ ψ2)((ϕ1 ⊗ ψ1)(u⊗ v)) =
= (ϕ2 ⊗ ψ2)(ϕ1(u)⊗ ψ1(v)) = ϕ2(ϕ1(u))⊗ ψ2(ψ1(v)) =

= (ϕ2 ◦ ϕ1 ⊗ ψ2 ◦ ψ1)(u⊗ v)

Таким образом, мы определили билинейное отображение Hom(U,W ) × Hom(V,Z) → Hom(U ⊗
V,W ⊗ Z), ему соответствует отображение из тензорного произведения

Hom(U,W )⊗Hom(V,Z)→ Hom(U ⊗ V,W ⊗ Z)

Теорема 1.5.2. Выше написанное отображение — изоморфизм (для свободных модулей конечного
ранга U, V,W,Z). При данном изоморфизме разложимому тензору ϕ ⊗ ψ ставится в соответствие
тензорное произведение линейных отображений ϕ⊗ ψ.
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Доказательство. Ранги модулей в левой и правой частях равны rk(U) · rk(V ) · rk(W ) · rk(Z).
Обозначим маленькими пронумерованными буковками базис соответствующего кольца.

Рассмотрев базисные элементы ϕi,h : ui 7→ wh; ψj,k : vj 7→ zk видим, что они отправляются в
базисные элементы

ϕi,h ⊗ ψj,k = θ(i,j),(h,k) : U ⊗ V →W ⊗ Z
ui ⊗ vj 7→ wh ⊗ zk

Замечание. Этот изоморфизм обобщает все ранее написанные изоморфизмы, кроме сопряжённости
тензорного произведения и Hom.

1.5.1 Матрица тензорного произведения линейных отображений

Пусть (xi,j) = x ∈M(m,n,R), (yh,k) = y ∈M(p, q,R).

Определение 1.5.2 (Тензорное произведение матриц). Блочная матрица

x⊗ y =

x1,1y · · · x1,ny
...

. . .
...

xm,1y · · · xm,ny


Также данная матрица называется кронекеровским произведением x и y.

Замечание. Вот так, например, выглядит кронекеровское произведение столбцов:

x1
...
xm

⊗
y1...
yn

 =



x1y1
...

x1yn
...
...

xmy1
...

xmyn


Предложение 1.5.1.

1. (x⊗ y)⊗ z = x⊗ (y ⊗ z).

2. (x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y.

3. x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2.

4. λx⊗ y = λ(x⊗ y) = x⊗ λy.

5. (xz)⊗ (yw) = (x⊗ y) · (z ⊗ w).

6. en ⊗ em = em·n, здесь en — единичная матрица ранга n.

Доказательство. Пусть ϕ : U → V, ψ : W → Z, причём матрица ϕ в базисе (ei) равна x, матрица
ψ в базисе (fj) равна y.

Тогда матрица ϕ⊗ ψ в базисе (ei ⊗ fj)i,j , упорядоченном в виде

e1 ⊗ f1, . . . , e1 ⊗ fn, . . . , em ⊗ f1 . . . , em ⊗ fn

равна x⊗ y.

Все записанные свойства уже доказаны ранее про тензорное произведение линейных отображений.
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1.5.2 Кронекеровское произведение и кронекеровская сумма многочленов

Пусть ϕ : U → U,ψ : V → V . Пусть u, v — собственные векторы ϕ и ψ с числами λ и µ
соответственно.

(ϕ⊗ ψ)(u⊗ v) = ϕ(u)⊗ ψ(v) = λu⊗ µv = λµ(u⊗ v)

Таким образом, если мультимножество собственных чисел ϕ — (λ1, . . . , λm), а мультимножество
собственных чисел ψ — (µ1, . . . , µn), то собственные числа ϕ⊗ ψ равны (λi · µj)i,j .

Выберем унитальный многочлен f ∈ R[t], пусть f = xn+an−1x
n−1+· · ·+a0. Ему можно сопоставить

сопровождающую матрицу

B(f) = (−1)n


0 . . . . . . −a0
1 −a1

. . .
...

0 1 −an−1


Она обладает тем свойством, что χ(B(f)) = f .

Из подсчёта собственных чисел получается, что χ(B(f) ⊗ B(g)) — многочлен, корни которого —
попарные произведения корней f и g. Этот многочлен обозначается f ⊠ g, и называется кронеке-
ровским произведением многочленов.

Ещё Кронекер определил кронекеровскую сумму.

Определение 1.5.3 (Кронекеровская сумма многочленов f, g). f ⊞ g = χ(B(f) ⊗ en + em ⊗ B(g))
(здесь en — матричная единица ранга n).

Это многочлен, корни которого — попарные суммы корней f и g.

Следствие 1.5.1. Множество целых алгебраических чисел образует кольцо.

1.6 Тензорные пространства

Пусть U — модуль (его элементы — векторы — элементы T 1(U)). Можно построить U∗ (его
элементы — ковекторы — элементы T1(U)).

Дальше можно построить Hom(U,U) = U∗ ⊗ U = T 1
1 (U).

Определение 1.6.1 (Тензорное пространство типа (p, q)). T pq (U) = U ⊗ · · · ⊗ U︸ ︷︷ ︸
p

⊗U∗ ⊗ · · · ⊗ U∗︸ ︷︷ ︸
q

.

Число p традиционно называется контравариантной валентностью, а q — ковариантной ва-
лентностью. (Инверсия «ко» и «контра» произошла из-за слежения не за базисами, а за коорди-
натами)

Координаты элемента тензора x ∈ T pq (U) индексируется p верхними и q нижними индексами.
Иногда ещё помнят, в каком порядке шли U и U∗ в тензорном произведении (и возникают записи
вида x·j·k·h), но все перестановки канонически изоморфны.

Определение 1.6.2 (Чисто ковариантное тензорное пространство). T 0
q (U).

Определение 1.6.3 (Чисто контравариантное тензорное пространство). T p0 (U).

Иначе (p, q ̸= 0) пространство называют смешанным

Сумму p+ q называют полной валентностью тензора.

Перечислим некоторые тензоры маленькой полной размерности.

Примеры (Всё на свете — тензор).

• T 0
0 (U) = R — скаляры.

• T 1
0 (U) = U — векторы.
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• T 0
1 (U) = U∗ — ковекторы.

• T 1
1 (U) = U ⊗ U∗ = Hom(U,U) — линейные операторы.

• T 2
0 (U) = U ⊗ U = U⊗2 = L(U∗, U∗;R).

• T 0
2 (U) = U∗⊗U∗ = (U⊗U)∗ — билинейные отображения U×U → R, или просто отображения
U ⊗ U → R (также известные в природе, как 2-формы).

• T 0
3 (U) = U∗ ⊗ U∗ ⊗ U∗ = L(U,U, U ;R).

• T 1
2 (U) = U ⊗ U∗ ⊗ U∗ = Hom((U∗ ⊗ U∗)∗, U) = Hom(U ⊗ U,U) — задают на U структуру
алгебры с билинейным умножением.

Замечание. Пусть A — алгебра над кольцом R, (e1, . . . , en) — базис группы по сложению A
(если это свободный R-модуль). На алгебре задано умножение mul : A×A→ A.

mul : ei, ej 7→ ei · ej =
∑
h

xhi,jeh

Эти коэффициенты xhi,j — структурные константы алгебры. Тензор (xhi,j) — структурный
тензор алгебры A.

Вот эти структурные константы зависят от выбора базиса, но зависят с точностью до чего-то
вроде сопряжения (теорема 1.6.1).

Сам структурный тензор от выбора базиса, конечно, не зависит.

• T 2
1 (U) = U ⊗U ⊗U∗ = Hom(U,U ⊗U). Операция ∆ : U → U ⊗U — копроизведение, объекты
снабжённые копроизведениями — коалгебры.

• T 3
0 (U) = U ⊗ U ⊗ U = U⊗3 — 3-формы на U∗.

• Дальше — больше. Дальше идут объекты, с которыми мы ещё не сталкивались, но в науке
они встречаются. Будут встречаться 4-формы U × U × U × U → R, тернарные алгебры
U ×U ×U → U , ещё какие-то структуры — например, U ⊗U → U ⊗U , что уже и не описать
без тензорных произведений.

Лекция IV
19 сентября 2023 г.

Пусть V — свободный R-модуль над коммутативным кольцом.

Пусть (e1, . . . , en) = e — базис V ; пусть V ∗ = Hom(V,R) — двойственный модуль.

V ∗ — тоже свободный модуль, его базис — двойственный e∗ =

e
1

...
en

. По определению ei(ej) = δi,j .

Пусть e = (e1, . . . , en) и f = (f1, . . . , fn) — два базиса V . Введём матрицу замена от базиса к
базису f = e ·

(
e⇝ f

)
.

В первом семестре мы показали, что матрица замены базиса для двойственного пространства —
обратная к данной.

Предложение 1.6.1. Матрица перехода от e∗ к f∗ равна (f∗ ⇝e∗) = (e⇝ f)−1:f
1

...
fn

 = (f∗ ⇝e∗)

e
1

...
en



Доказательство. Равенство ei(ej) = δi,j в матричном виде выглядит в виде

e
1

...
en

 · (e1 · · · en
)
= E.

12



Аналогично

f
1

...
fn

 · (f1 · · · fn
)
= E.

Домножая первое равенство справа на (e⇝ f) и слева на обратную матрицу, получаем

(e⇝ f)−1

e
1

...
en

(f1 · · · fn
)
= E =

f
1

...
fn

(f1 · · · fn
)

Так как f — базис, то есть векторы f1, . . . , fn линейно независимы, то (e⇝ f)−1

e
1

...
en

 =

f
1

...
fn

.

Теперь рассмотрим T pq (V ) = V ⊗ · · · ⊗ V︸ ︷︷ ︸
p

×V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
q

.

Пусть x ∈ T pq (V ).

x =
∑

i1,...,iq
j1,...,jp

(
ej1 ⊗ · · · ⊗ ejp ⊗ ei1 ⊗ · · · ⊗ eiq

)
· ([x]e)

j1,...,jp
i1,...,iq

где [x]e — координаты разложения x по базису e, которые индексируются p верхними и q нижними
индексами.

Теорема 1.6.1 (Преобразование координат тензора). При замене координат базиса координаты
разложения меняются следующим образом

([x]f )
j1,...,jp
i1,...,iq

=
∑

k1,...,kp
m1,...,mq

(c̃)
m1,...,mq

i1,...,iq
· ([x]e)k1,...,kpm1,...,mq

· (c)j1...jpk1...kp

где (c̃)
m1,...,mq

i1,...,iq
=

q∏
l=1

((f ⇝ e)−1)ml
il

и (c)
j1...jp
k1...kp

=
p∏
l=1

(f ⇝ e)jlkl .

Доказательство. Запишем преобразования базисов
(
e1 · · · en

)
=
(
f1 · · · fn

)
(f ⇝ e) иe

1

...
en

 = (f ⇝ e)−1

f
1

...
fn

.
Отсюда извлекаем er =

∑
s
fs(f ⇝ e)sr =

∑
s
fs · (c)sr и es =

∑
r
(e⇝ f)sr · fr =

∑
r
(c̃)sr · fr.

x =
∑

k1,...,kp
m1,...,mq

(
ek1 ⊗ · · · ⊗ ekp ⊗ em1 ⊗ · · · ⊗ emq

)
· ([x]e)k1,...,kpm1,...,mq

Раскрывая ei и ei через суммы по базису f , действительно получаем

x =
∑

i1,...,iq
j1,...,jp

 ∑
k1,...,kp
m1,...,mq

(c̃)
m1,...,mq

i1,...,iq

(
fj1 ⊗ · · · ⊗ fjp ⊗ f i1 ⊗ · · · ⊗ f iq

)
· (c)j1,...,jpk1,...,kp

· ([x]e)k1,...,kpm1,...,mq



Лекция V
21 сентября 2023 г.
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1.6.1 Операции над тензорами

• Как элементы R-модуля, тензоры, конечно, можно складывать. В координатах сложение про-
исходит покомпонентно.

• Аналогично с умножением на скаляр.

• Можно определить умножение на тензорах

⊗ : T pq × T
p′

q′ → T p+p
′

q+q′

(v1...p ⊗ f1...q), (v′1...p′ ⊗ f ′1...q
′
) 7→ v1...p ⊗ v′1...p′ ⊗ f1...q ⊗ f ′1...q

′

Несложно проверить, что умножение билинейно (то есть дистрибутивно).

• Сворачивание (не путать со свёрткой) — от англ. contraction (а отнюдь не convolution).
Зададим сворачивание на разложимых тензорах.

Csr : T pq (V )→ T p−1
q−1 (V )

(v1 ⊗ · · · ⊗ vp ⊗ f1 ⊗ · · · ⊗ fq) 7→ (v1 ⊗ · · · ⊗ v̂s ⊗ · · · ⊗ vp ⊗ f1 ⊗ · · · ⊗ f̂r ⊗ · · · ⊗ fq)fr(vs)

Как обычно, крышка над элементом последовательности означает, что он пропущен.

В координатном виде сворачивание записывается в виде ([Csr (x)]e)
i1,...,̂ir,...,ip

j1,...,̂js,...jq
=
∑
h

([x]e)
i1,...,h,...,ip
j1,...,h,...jq

где при суммировании h стоит сверху на месте r, снизу — на месте s.

Примеры (Сворачивание).

– Пусть A ∈ T 1
1 (V ) — эндоморфизм V . Если A — ранга 1, то есть A = v⊗ϕ, то C1

1 (v⊗ϕ) =
ϕ(v). Это в точности взятие следа, что может быть записано в координатном виде:

v =
(
e1 . . . en

)v
1

...
vn

 ϕ =
(
ϕ1 . . . ϕn

)e
1

...
en


C1

1 (v ⊗ ϕ) = C1
1

ϕ1v
1 . . . ϕnv

1

...
. . .

...
ϕnv

1 . . . ϕnv
n

 =

n∑
i=1

ϕiv
i = ϕ(v)

– Пусть A,B ∈ T 1
1 (V ), то есть End(V ). Тензорное произведение A⊗B ∈ T 2

2 (V ).

Что такое C2
1 (A⊗B)? Это элемент T 1

1 (V ), то есть эндоморфизм пространства V .

Пусть A = (v ⊗ ϕ), B = (u⊗ ψ).

C2
1 (A⊗B) = C2

1 ((v ⊗ ϕ)⊗ (u⊗ ψ)) = C2
1 (v ⊗ u⊗ ϕ⊗ ψ) = ϕ(u)(v ⊗ ψ)

Применение C2
1 (A ⊗ B) к некоторому w ∈ V выдаст ϕ(u)(v ⊗ ψ)(w) = v · ϕ(u)ψ(w),

что в точности есть результат применения композиции AB к w. Таким образом, C2
1

соответствует умножению матриц.

1.7 Тензорная алгебра

Заинтересуемся «наименьшей алгеброй (ассоциативной, с единицей), в которую можно вложить
V ». Умножение на алгебре зададим как выше, тензорно, валентность произведения равна сумме
валентностей множителей.

В R-алгебре с единицей должны присутствовать все скаляры, выполнено вложение R ↪→ A. Дальше
просто по условию выполнено вложение V ↪→ A. Так как произведение двух элементов V —
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контравариантный тензор валентности 2, то такие элементы тоже лежат в A. И так далее. Итого,
зададим

T (V ) :=

∞⊕
n=0

V ⊗n = R⊕ V ⊕ V ⊗2 ⊕ . . .

На однородных элементах (элементах V ⊗n для некоего n ∈ N0) умножение определено, как
описано выше. Дальше, умножение продлевается по линейности на все элементы T (V ).

Что означает, что алгебра должна быть наименьшей? Сформулируем универсальное свойство.

С точки зрения теории категорий отображения из модуля в алгебру рассматривать нельзя. Для
этого обозначим за F(A) модуль, на котором построена данная алгебра (забыли про умножение).
Этот F — забывающий функтор.

На самом деле, функторы переводят не только объекты из одной категории в другую, но и стрелки.
Гомоморфизму алгебр ϕ : A→ B соответствует гомоморфизм модулей F(ϕ) : A→ B.

Потребуем, чтобы для любой R-алгебры с единицей B и для любого гомоморфизма R-модулей
ϕ : V → F(B) выполнялось условие: ∃!ψ : A → B — гомоморфизм алгебр, такой, что диаграмма
коммутативна.

V F(A)

F(B)

ϕ
F(ψ)

in

Теорема 1.7.1. Для так построенной тензорной алгебры T (V ) в качестве A выполняется выше
описанное универсальное свойство.

Доказательство. Если такое ψ найдётся, то ∀v ∈ V : ψ(v) = ϕ(v), а так как V — множество
образующих F(T (V )), как алгебры, то ψ единственно. Проверим, что ψ существует.

Пусть B — произвольная R-алгебра, ψ : V → F(A) — гомоморфизм модулей.

Определим полилинейное

θn : V × · · · × V︸ ︷︷ ︸
n

→ F(B)

(v1 ⊗ · · · ⊗ vn) 7→ ϕ(v1) · . . . · ϕ(vn)

на разложимых тензорах. Согласно универсальному свойству тензорного произведения, для него
найдётся единственное линейное отображение ηn : V ⊗n → F(B).

Зададим F(ψ) : F(T (V ))→ F(B) на прямых слагаемых в соответствии с ηn, дальше оно продле-
вается по линейности.

Осталось проверить, что ψ : T (V )→ B — гомоморфизм алгебр, то есть сохраняет умножение. Это
достаточно проверять на разложимых тензорах, так как умножение билинейно. На разложимых
же тензорах это очевидно:

ψ(v1⊗· · ·⊗vn) ·ψ(u1⊗· · ·⊗um) = ϕ(v1) · . . . ·ϕ(vn) ·ϕ(u1) · . . . ·ϕ(um) = ψ(v1⊗· · ·⊗vn⊗u1⊗· · ·⊗um)

1.8 Градуированные алгебры

Пусть (N,+) — аддитивный коммутативный моноид. Часто N = N0.

Определение 1.8.1 (N -градуированная R-алгебра). Такая R-алгебра A, которая раскладывается
в прямую сумму R-модулей An.

A =
⊕
n∈N

An
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причём умножение удовлетворяет свойствам An ·Am ⩽ An+m.

Напоминание: как множество
⊕
n∈N

An =

{ ∑
n∈N

an | почти все an нули
}
.

Определение 1.8.2 (Однородный элемент x ∈ A). Элемент x ∈
⋃
n∈N

An.

Рассмотрим произвольный элемент a ∈ A. Он разложим в сумму однородных элементов, которые
называются однородными компонентами элемента a.

При построении базиса Грёбнера на кольце многочленов F[t1, . . . , tk] вводится градуировка Nk0 ,
моному tn1

1 · . . . · t
nk

k ставится в соответствие (n1, . . . , nk) ∈ Nk0 .

Также часто встречаются Z/2Z градуировки: A = A0⊕A1, где A0 — подалгебра, а A1 — подмодуль,
такой, что A1 ·A1 ⩽ A0. Например, алгебры Клиффорда.

Лекция VI
26 сентября 2023 г.

Лемма 1.8.1. Пусть A =
⊕
n∈N

An — N -градуированная алгебра. Пусть I P A — двусторонний

идеал. Следующие условия эквивалентны:

1. I =
⊕
n∈N

(An ∩ I).

2. ∀a ∈ I: однородные компоненты a лежат в I.

3. I порождён некоторым множеством однородных элементов.

4. Проекция A → A/I является гомоморфизмом N -градуированных алгебр (то есть в том
числе утверждается, что A/I — N -градуированная алгебра).

Доказательство.

(1)⇔ (2) И (1), и (2) записываются в виде ∀a ∈ I : ∃{an}: an ∈ I ∩An и a =
∑
n∈N

an.

(2)⇒ (3) Для a ∈ I обозначим за sa набор однородных компонент a. Согласно (2) sa ⊂ I, тогда〈 ⋃
a∈I

sa

〉
= I.

Замечание. Если I конечно порождён, то можно выбрать объединение sa для всех образую-
щих I, тогда найдётся и конечная система однородных образующих.

(3)⇒ (2) Рассмотрим ∀a ∈ I. Из условия на порождение получаем a = µ1x1λ1 + · · · + µnxnλn, где
xi ∈ I — однородные, µi, λi ∈ A. Каждый из µi, λi является конечной суммой однородных
компонент, а произведение однородных однородно.

(1)⇒ (4) Положим In := An ∩ I. Для всяких модулей верно, что A/I =
⊕
An⊕
In

=
⊕ An

In
. Проекция

отображает a ∈ An в a+ In, действительно она уважает градуировку.

(4)⇒ (2) Рассмотрим a ∈ I, пусть a =
∑
n∈N

an, почти все an = 0.

Тогда для гомоморфизма редукции ρ : ρ(a) =
∑
n∈N

ρ(an), где ρ(an) ∈ An/In, но так как это 0,

то an ∈ In.

1.8.1 Смена градуировки

Пусть ϕ : N → N ′ — гомоморфизм моноидов, A — N -градуированная алгебра.

Тогда A =
⊕
n∈N

An =
⊕

n′∈N ′

( ⊕
n∈ϕ−1(n′)

An

)
, то есть A можно превратить в N ′-градуированную

алгебру.
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Пример. Построим «общую матрицу с определителем 1»:

x1,1 · · · x1,n
...

. . .
...

xn,1 · · · xn,n

.
Чтобы определитель был 1, мы рассматриваем эту матрицу над кольцом

A := Z[x1,1, . . . , xn,n]/(det(x)− 1)

Эта матрица обладает универсальным свойством: ∀R,∀a ∈ SLn(R) : ∃!ϕ : A → R : SLn(ϕ)(x) = a.
SLn — функтор, который в частности сопоставляет стрелке ϕ : A→ R стрелку SLn(ϕ) : SLn(A)→
SLn(R) покомпонентным применением ϕ.

Так как Z[x1,1, . . . , xn,n] — N0-градуированная алгебра, а det(x) − 1 — многочлен с однородными
компонентами степени n и 0, то A — Z/nZ-градуированная алгебра.

Определение 1.8.3 (Антикоммутативная Z/2Z-градуированная R-алгебра A). Такая алгебра, что
∀a ∈ An, b ∈ Am : ab = (−1)mn · ba. Дополнительно потребуем, чтобы 2 ∈ RegR, тогда ∀a ∈ A1 :
a2 = 0.

Также такие алгебры называют градуировано-коммутативными.

Если A — N -градуированная R-алгебра, и имеется гомоморфизм моноидов ϕ : N → Z/2Z (на-
пример, ϕ : N0 → Z/2Z), то A тоже можно считать градуировано-коммутативной, если она
градуировано-коммутативна, как Z/2Z алгебра A, полученная при помощи гомоморфизма ϕ, как
в (подраздел 1.8.1).

Определение 1.8.4 (Антисимметричное отображение B : V × V → U). Такое отображение, что
B(x, y) = −B(y, x) и B(x, x) = 0. Если B — билинейно, то достаточно второго условия, а если
2 ∈ RegR, то можно обойтись и первым.

1.9 Построение симметрической и внешней алгебр

Тензорное пространство (пусть полностью контравариантное) валентности n соответствует одно-
родным многочленам степени n от некоммутирующих переменных.

В симметрической алгебре мы введём соотношения о коммутировании переменных. Для этого
профакторизуем по соответствующему идеалу IS = ⟨x⊗ y − y ⊗ x|x, y ∈ V ⟩ P T (V ).

Определение 1.9.1 (Симметрическая алгебра). S(V ) := T (V )/IS

Если V — свободный R-модуль с базисом мощности n, то S(V ) ∼= R[x1, . . . , xn] (подраздел 1.9.1).
В соответствии с этим, умножение в симметрической алгебре обозначают точкой.

Заметим, что тензорное пространство — N0-градуированная алгебра, и при факторизации по IS
градуировка сохраняется, таким образом, S(V ) — тоже N0-градуированная алгебра.

В пару к симметрической алгебре построим «антисимметрическую». Здесь переменные будут ан-
тикоммутировать, x⊗ y = −y ⊗ x. В характеристике не 2 это то же самое, что и x⊗ x = 0 для
любого x ∈ V , а в общем случае условие равенства квадрата нулю сильнее.

Определим идеал I∧ = ⟨x⊗ x|x ∈ V ⟩ P T (V ).

Определение 1.9.2 (Внешняя алгебра или алгебра Грассмана).
∧
(V ) := T (V )/I∧

Если V — свободный R-модуль с базисом мощности n, то эта алгебра конечномерна над R (под-
раздел 1.9.1). Умножение во внешней степени обозначают значком ∧.

V вкладывается как в S(V ), так и в
∧
(V ) — ядро композиции V ↪→ T (V )→ S(V ) нулевое, так же

как и у V ↪→ T (V )→
∧
(W ) (подмодуль, по которому происходит факторизация, содержит только

элементы степени хотя бы 2).

Аналогично симметрической, внешняя алгебра — N0-градуированная алгебра.
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Теорема 1.9.1 (Универсальное свойство симметрической алгебры). Для любой коммутативной
алгебры A, для любого гомоморфизма R-модулей ϕ : V → A найдётся единственный гомоморфизм
R-алгебр η : S(V )→ A, такой, что диаграмма коммутирует.

V T (V ) S(V )

A

ϕ

ρ

η
ψ

Доказательство. По гомоморфизму ϕ : V → A найдётся единственный гомоморфизм R-алгебр
ψ : T (V )→ A (универсальное свойство тензорного произведения).

Так как ψ : T (V )→ A бьёт в коммутативную алгебру, то

ψ(x⊗ y) = ψ(x) · ψ(y) = ψ(y) · ψ(x) = ψ(y ⊗ x)

поэтому образующие IS лежат в Ker(ψ). Таким образом, ψ пропускается через фактор, а так как
ρ — редукция по IS — эпиморфизм, то η единственно.

Теорема 1.9.2 (Универсальное свойство внешней алгебры). Для любой градуировано коммута-
тивной N0-градуированной R-алгебры A, и для любого гомоморфизма R-модулей ϕ : V → A1 (A1

— однородная компонента A с индексом 1) найдётся единственный гомоморфизм η :
∧
(V ) → A,

такой, что диаграмма коммутирует.

V T (V )
∧
(V )

A

ϕ
ψ

ρ

η

Доказательство. По гомоморфизму ϕ : V → A найдётся единственный гомоморфизм R-алгебр
ψ : T (V )→ A (универсальное свойство тензорного произведения).

Так как ψ : T (V )→ A бьёт в антикоммутативную N0-градуированную R-алгебру, то ∀x ∈ V :

ψ(x⊗ x) = ψ(x) · ψ(x) = −ψ(x) · ψ(x) = −ψ(x⊗ x)

Так как 2 ∈ RegR, то ψ(x ⊗ x) = 0; поэтому образующие I∧ лежат в Ker(ψ). Таким образом, ψ
пропускается через фактор, а так как ρ — редукция по I∧ — эпиморфизм, то η единственно.

Итак, IS = (x⊗ y − y ⊗ x).

Замечание. IS ∩ V ⊗n — подмодуль в V ⊗n, порождённый элементами вида

(x1 ⊗ · · · ⊗ y ⊗ z ⊗ · · · ⊗ xn−2)− (x1 ⊗ · · · ⊗ z ⊗ y ⊗ · · · ⊗ xn−2)

где y и z на одном и том же месте в одном и том же кортеже x1 ⊗ · · · ⊗ _⊗ _⊗ · · · ⊗ xn−2.

Определение 1.9.3 (n-я симметрическая степень V ). Фактормодуль V ⊗n/ (IS ∩ V ⊗n).

Умножение в симметрической алгебре традиционно обозначается точкой, что, как мы впоследствии
увидим (подраздел 1.9.1), неслучайно. Рассмотрим

ϕ : V × · · · × V︸ ︷︷ ︸
n

→ Sn(V )

(v1, . . . , vn) 7→ v1 ⊗ · · · ⊗ vn ≡ v1 · . . . · vn

ϕ полилинейно и симметрично.
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Теорема 1.9.3 (Универсальное свойство n-й симметрической степени). ∀R-модуля M и симмет-
ричного полилинейного отображения V × · · · × V︸ ︷︷ ︸

n

→ M : ∃!ψ : Sn(V ) → V , такое что диаграмма

коммутативна.

V × · · · × V Sn(V )

M
ϕ ψ

Доказательство. Пусть θ : V × · · · × V → V ⊗n Согласно универсальному свойству тензорного
произведения найдётся η : V ⊗n →M , такое, что ϕ = η ◦ θ. Из симметричности ϕ

∀a ∈ V ⊗k, b ∈ V ⊗n−2−k : η(a⊗ x⊗ y ⊗ b) = η(a⊗ y ⊗ x⊗ b)

то есть образующие лежат в ядре η, и η пропускается через фактор.

Аналогично определяется n-я внешняя степень∧n
(V )

def
= V ⊗n/In = V ⊗n/

〈
a⊗ x⊗ x⊗ b

∣∣x ∈ V, a ∈ V ⊗k, b ∈ V ⊗n−2−k〉
Теорема 1.9.4 (Универсальное свойство n-й внешней степени). ∀R-модуля M и антисимметрич-
ного полилинейного отображения ϕ : V × · · · × V → M : ∃!ψ :

∧n
(V ) → V , такое что диаграмма

коммутативна.

V × · · · × V
∧n

(V )

M
ϕ ψ

Доказательство. Пусть θ : V × · · · × V → V ⊗n Согласно универсальному свойству тензорного
произведения найдётся η : V ⊗n →M , такое, что ϕ = η ◦ θ. Из антисимметричности ϕ

∀a ∈ V ⊗k, b ∈ V ⊗n−2−k : η(a⊗ x⊗ x⊗ b) = 0

то есть образующие лежат в ядре η, и η пропускается через фактор.

Лекция VII
28 сентября 2023 г.

1.9.1 Базисы симметрической и внешней степеней

Пусть V — свободный модуль. Какие базисы у Sn(V ) и
∧n

(V )?

Пусть (x1, . . . , xm) — базис V .

Зададим отображение f из базиса в произвольную коммутативную алгебру.

{x1, . . . , xm} V S(V )

A

∃!ϕ
∃!ψf

Тогда существует и единственно ψ : S(V ) → A — гомоморфизм алгебр, а это универсальное
свойство кольца многочленов.

Таким образом, Sn(V ) ∼= R[x1, . . . , xm]deg=n. Можно явно выписать базис. Кстати, отсюда видно,
почему в S(V ) умножение обозначают точкой — как и в случае обычных переменных.
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Элементарная комбинаторика (так как xi ∧ xj = −xj ∧ xi, то соседние переменные в разложимом
тензоре можно менять местами, меняя знак; если в одном разложимом тензоре две переменные xi
для какого-то i, то он равен нулю) показывает, что

∧n
(V ) = ⟨xi1 ∧ · · · ∧ xin |1 ⩽ i1 < · · · < in ⩽ m⟩.

Предложение 1.9.1. Это не просто система образующих, а базис
∧n

(V ).

Доказательство. Надо проверить линейную независимость. Пусть I = {i1, . . . , in}, где i1 < i2 <
· · · < in. Обозначим xi1 ∧ · · · ∧ xin =: xI . Обозначим {1, . . . , n} =: [n].

Предположим наличие линейной зависимости:∑
I⊂[m],|I|=n

xIαI = 0

Домножим равенство на x[m]\J , получим ±αJx[m].

Отсюда хочется доказать, что αJ = 0 (и мы получим, что всякая линейная зависимость тривиаль-
на), но для этого надо показать, что xJ ̸= 0. Как ни странно, это сделать не очень просто.

Одним из способов является воспользоваться универсальным свойством внешнего произведения.
Найдём антисимметричное полилинейное отображение V × · · · × V︸ ︷︷ ︸

m

→ R. По счастливому стечению

обстоятельств dimV = m, поэтому такое отображение мы знаем, это — определитель.

Так как базис V состоит из линейно независимых векторов, то det(x1, . . . , xm) ̸= 0. Но соглас-
но универсальному свойству внешнего произведения det пропускается через фактор, а тогда из
условия det(x1 ∧ · · · ∧ xm) ̸= 0 следует и само условие x[m] = x1 ∧ · · · ∧ xm ̸= 0.

Замечание. Обозначения из доказательства xi1 ∧· · ·∧xin =: xI , {1, . . . , n} =: [n] будут повсеместно
встречаться и далее.

1.10 Другое определение симметрической и внешней алгебр

Если кольцо R является Q-алгеброй (то есть разрешается делить на все ненулевые целые), то
можно дать другое определение симметрической и внешней алгебрам.

Введём действие Sn ↷ V ⊗n:

Sn × V ⊗n → V ⊗n

π, (x1 ⊗ · · · ⊗ xn) 7→ xπ(1) ⊗ · · · ⊗ xπ(n)

продолженное так по линейности на все элементы V ⊗n.

Тензор x ∈ V ⊗n назовём симметрическим, если ∀π ∈ Sn : π(x) = x. Все симметрические тензоры
образуют подмодуль S̃n(V ) ⩽ V ⊗n, который изоморфен Sn(V ). Более того, если R — Q-алгебра,
то можно ввести умножение данных симметрических тензоров, об этом ниже.

Проблема в том, что по умолчанию произведение симметрических тензоров — необязательно сим-
метрический тензор, переменные можно переставлять только «внутри множителей».

Для того, чтобы избежать этой проблемы, введём симметризацию Sym : V ⊗n → S̃n(V ). Также
хочется, чтобы симметризация была проектором на S̃n(V ), то есть ∀x ∈ S̃n(V ) : Sym(x) = x. Для
этого мы её определим так:

Sym : V ⊗n → S̃n(V )

x 7→ 1

n!

∑
π∈Sn

π(x)
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Интересный факт. Sym является проектором на S̃n(V ). Умножение

S̃n(V ), S̃k(V )→ S̃n+k(V )

x, y 7→ Sym(x⊗ y)

коммутативно и ассоциативно. С данной операцией
⊕
n⩾0

S̃n(V ) становится алгеброй с единицей.

Для внешней алгебры можно действовать также, определив действие Sn ↷ V ⊗n:

Sn × V ⊗n → V ⊗n

π, (x1 ⊗ · · · ⊗ xn) 7→ sgn(π) · xπ(1) ⊗ · · · ⊗ xπ(n)

и положив
∧̃
n(V ) ⩽ V ⊗n, подмодулем, инвариантным относительно данного действия. Для умно-

жения введём

Alt : V ⊗n →
∧̃n(V )

x 7→ 1

n!

∑
π∈Sn

sgn(π) · π(x)

Интересный факт. Alt является проектором на
∧̃
n(V ). Умножение∧̃n(V ),

∧̃k(V )→
∧̃n+k(V )

x, y 7→ Alt(x⊗ y)

антикоммутативно и ассоциативно. С данной операцией
⊕
n⩾0

∧̃
n(V ) становится антикоммутативной

N0-градуированной алгеброй с единицей.

Лекция VIII
3 октября 2023 г.

1.11 Вычисления в алгебре Грассмана

Пусть A ∈M(n,m,R). I ⊂ [n], J ⊂ [m], Обозначим за

AI подматрицу, состоящую из строк с номерами из I

AJ подматрицу, состоящую из столбцов с номерами из J

AIJ = (AI)J = (AJ)
I

Замечание.

ej1 ∧ · · · ∧ ejn = (−1)inv(j1,...,jn)eJ , где inv(j1, . . . , jm) — число беспорядков (инверсий) в j1, . . . , jn

Рассмотрим алгебру Грассмана
∧
(V ).

Теорема 1.11.1. Пусть (u1, . . . , un)C = (v1, . . . , vm), где C ∈ M(n,m,R), ui, vj ∈ V . Интересным
случаем является m ⩽ n, иначе в обеих частях равенства стоят нули. Утверждается, что

v[m] := v1 ∧ · · · ∧ vm =
∑

|I|=m,I⊂[n]

uI det(C
I)

где CI — подматрица C, берутся строки с номерами из I.

Доказательство.
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• Сначала предполагаем, что (ui)
n
i=1 являются базисом V , причём m = n.

Тогда v[m] ∈
∧m

(V ) =
〈
u[m]

〉
, то есть v[m] = u[m] · α(C), где коэффициент α зависит от

матрицы C. Таким образом, этот коэффициент можно рассматривать, как отображение α :
M(n,R)→ R.

Несложно видеть полилинейность, антисимметричность и нормированность α, то есть это
определитель.

• Теперь пусть m < n, но (ui)
n
i=1 — всё ещё базис V . Тогда {uI | I ⊂ [n], |I| = m} — базис∧m

(V ) и v[m] =
∑
I

uIαI .

Зафиксируем J ⊂ [n], |J | = m. Определим U ⩽ V , как подмодуль, натянутый на {uj | j ∈ J}.

Определим проекцию на U : · : V → U, ui 7→

{
ui, i ∈ J
0, i /∈ J

. Чтобы найти коэффициент перед

uJ , домножим слева выражение vj через ui на матрицу проекции на U (применим надчёрки-
вание):

(u1, . . . , un)C = (v1, . . . , vm) ⇐⇒ (uj1 , . . . , ujm)CJ = (v1, . . . , vm)

Из предыдущего пункта находим uJ det(C
J) = v[m].

• Теперь докажем общий случай. Пусть M — свободный модуль с базисом (e1, . . . , en), пусть
(f1, . . . , fm) := (e1, . . . , en)C. Согласно предыдущему пункту

f[m] = f1 ∧ · · · ∧ fm =
∑

I⊂[n],|I|=m

eI detC
I

Согласно универсальному свойству базиса ∃!L :M → V : L(ei) = ui.

Теперь (v1, . . . , vm) = (u1, . . . , un)C = (L(e1), . . . , L(en))C = (L(f1), . . . , L(fm)). Применим∧k
(L) к f1 ∧ · · · ∧ fm (применим L к каждой компоненте):

v[m] = L(f1) ∧ · · · ∧ L(fm) =
∑
I

L(e)I det(C
I) =

∑
I

uI det(C
I)

Следствие 1.11.1 (Теорема Бине — Коши). Пусть R — коммутативное кольцо, A ∈M(m,n,R), C ∈
M(n,m,R). Полезным случаем является m ⩽ n, иначе обе части будут точно нулями. Утвер-
ждается, что

det(A · C) =
∑

I⊂[n],|I|=m

det(AI) det(C
I)

Доказательство. Пусть V — свободный правый модуль ранга m с базисом (e1, . . . , em).

Положим (u1, . . . , un) := (e1, . . . , em)A; далее положим (v1, . . . , vm) := (u1, . . . , un)C.

Согласно (теорема 1.11.1): v1 ∧ · · · ∧ vm =
∑

I⊂[n],|I|=m
uI det(C

I).

Дальше раскрывая (ui1 , . . . , uim) = (e1, · · · , em)AI , получаем

v[m] =
∑

I⊂[n],|I|=m

uI det(C
I) =

∑
I⊂[n],|I|=m

e[m] det(AI) det(C
I)

Сравнивая с тем, что (v1, . . . , vm) = (e1, . . . , em) · (AC), получаем равенство определителей.

Теорема 1.11.2 (Разложение по нескольким столбцам). Рассмотрим блочную матрицу (B|C), где
B ∈M(n, k,R), C ∈M(n, n− k,R). Утверждается, что

det (B|C) =
∑

I⊂[n],|I|=k

εI · det
(
BI
)
det
(
C [n]\I

)
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где εI — знак перестановки ниже (пусть I = {i1 < · · · < ik}; J := [n] \ I = {j1 < · · · < jn−k}).

εI = sgn

(
1 · · · · · · n
i1 . . . ik j1 . . . jn−k

)
= (−1)

k∑
i=1

(is−s)

Доказательство. Пусть (b1, . . . , bk) — столбцы матрицы B, (c1, . . . , cn−k) — столбцы матрицы C.
Посчитаем b1 ∧ · · · ∧ bk ∧ c1 ∧ · · · ∧ cn−k.

С одной стороны, это равно e[n] · det(B|C).

С другой стороны, внешнее произведение ассоциативно:

(b1 ∧ . . . bk) ∧ (c1 ∧ · · · ∧ cn−k) =

 ∑
I⊂[n],|I|=k

eI det
(
BI
) ∧

 ∑
J⊂[n],|J|=n−k

eJ det
(
CJ
)

Так как произведение eI ∧ eJ не обнуляется только если I ⊔ J = [n], то

(b1 ∧ . . . bk) ∧ (c1 ∧ · · · ∧ cn−k) =

 ∑
I⊂[n],|I|=k

eI ∧ e[n]\I det
(
BI
)
det
(
C [n]\I

)
Теперь осталось вычислить eI ∧ e[n]\I . Это равняется εI · e[n], где εI — знак перестановки(

1 · · · · · · n
i1 . . . ik j1 . . . jn−k

)
Нетрудно видеть, что индексы i упорядочены по возрастанию, j — тоже, инверсии в данной пере-
становки образуют только пары (il, jm). Индекс il образует инверсию с меньшими j, таких имеется

il − l. В Z/2Z:
k∑
l=1

(il − l) =
k∑
l=1

il +
l(l+1)

2

1.12 Элементы матрицы внешней степени

Лемма 1.12.1 (Функториальность ∧k). Всякому отображению L : U → V соответствует един-
ственное линейное ∧k

(L) :
∧k

(U)→
∧k

(V )

u1 ∧ · · · ∧ uk 7→ L(u1) ∧ · · · ∧ L(uk)

Это является иллюстрацией того, что всякая хорошая конструкция, задающееся универсаль-
ным свойством, является функтором (действует и на морфизмах).

Доказательство.

U × · · · × U
∧k

(U)

V × · · · × V
∧k

(V )

(L,...,L)
∧k(L)

Композиция (L, . . . , L) и вложения V × · · · × V →
∧k

(V ), бьющая U × · · · × U →
∧k

(V ) антисим-
метрична и полилинейна, значит, согласно универсальному свойству внешней алгебры, найдётся
единственная стрелка

∧k
(L) :

∧k
(U) →

∧k
(V ). Часто её обозначают просто L, в программирова-

нии это называется полиморфизмом — зависимость стрелки от передающихся ей аргументов.

Пусть L : V → V линейно, V = ⟨e1, . . . , en⟩ — свободный модуль. Обозначим матрицу L в базисе
e за [L]e. Базису e модуля V соответствует базис

∧k
e = {eI | I ⊂ [n]}.

Изучим связь матрицы [L]e и матрицы [
∧k

(L)]∧k
(e)
.

23



Замечание. Если L обратим, то
∧k (

L−1
)
= (
∧k

L)−1.

Пусть J ⊂ [n], |J | = k. L(ej1) = (e1, . . . , en)([L]e)∗,j1 , таким образом L(ej1 , · · · , ejk) = (e1, . . . , en)([L]e)J .

L(ej1) ∧ · · · ∧ L(ejk) =
∑

I⊂[n],|I|=k

eI det([L]e)
I
J

Таким образом, мы получили следующий результат:

Лемма 1.12.2. Элемент матрицы [
∧k

L]∧k
e
в строке I и столбце J равен минору det ([L]e)

I
J .

Лекция IX
5 октября 2023 г.

1.12.1 Элементы обратной матрицы

Конечно, подобным образом можно записать некоторую формулу, выражающую элементы матрицы∧k
(L)−1.

Например, элементы обратной к любой матрице над коммутативным кольцом равны соответству-
ющим алгебраическим дополнениям, поделённым на определитель. Сейчас будет найдено более
короткое выражение для этих элементов.

Замечание. Всё, что мы собираемся доказать над полем — полиномиальные равенства, поэтому они
верны для всех колец (полиномиальные равенства сохраняются при взятии подколец и факторов)
— все кольца являются факторкольцом кольца многочленов (если кольцо очень большое, то и
элементов очень много). Более того, можно доказать над R, так как R содержит Z[ti|i ∈ N] —
всякое полиномиальное равенство содержит конечное число переменных.

Поэтому можно думать, что L : V → V — автоморфизм векторного пространства. Выберем базис
V = ⟨e1, . . . , en⟩, в нём A := [L]e — матрица L. Обозначим за

∧k
A матрицу оператора

∧k
L в

базисе
∧k

e.

Теорема 1.12.1. Пусть I, J ⊂ [n]. Имеет место следующая формула для элементов матрицы
(
∧k

A)−1: (
(
∧k

A)−1
)
I,J

= det(A−1)IJ = (−1)εI+εJ 1

detA
A

[n]\J
[n]\I

εI и εJ определены здесь (теорема 1.11.2)

Доказательство. Помимо базиса
∧k

e = (eI)I⊂[n],|I|=k, имеется также двойственный к нему базис
(f I)I⊂[n],|I|=k — здесь f I := (−1)εIe[n]\I . Двойственность означает f I · eJ = δI,J · e[n], что можно
так записать в матричном виде: пусть f — столбец из f I ,

∧k
e — строка из eI , тогда

f ·
∧k

e = e[n] · E (∗)

Это произведение матриц с элементами из алгебры
∧
(V ), и E — единичная матрица, проиндекси-

рованная I ⊂ [n], |I| = k.

Лемма 1.12.3 (Функториальность
∧
). Для коммутативного кольца R всякий гомомор-

физм R-модулей L : U → V индуцирует гомоморфизм R-алгебр
∧
(L) :

∧
(U)→

∧
(V ).

Доказательство леммы.

Аналогично (лемма 1.12.1).

U
∧
(U)

V
∧
(V )

L
∧
(L)
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Композиция L и вложения V →
∧
(V ) бьёт в первую однородную компоненту

∧
(V ),

поэтому согласно универсальному свойству
∧
: ∃! гомоморфизм N0-градуированных анти-

коммутативных R-алгебр
∧
(L) :

∧
(U)→

∧
(V ).

Таким образом
∧
(L) — эндоморфизм алгебры

∧
(V ), и также имеются эндоморфизмы модулей

матриц над
∧
(V ) (они обозначаются Mr,s(

∧
(V ))), сохраняющие произведение матриц. Применяя

их к равенству (∗) (иначе говоря, применяя
∧
(L) ко всем элементам матриц), получаем

L(f) · L(
∧k

e) = L(e[n])︸ ︷︷ ︸
detA·e[n]

·E

Обозначим D := [
∧n−k

(L)]f , B := [
∧k

L]∧k
e
=
∧k

A. Равенство выше говорит, что Dt · B = detA.

В самом деле, L(f) = Dt · f , и L(
∧k

e) =
∧k

e ·B.

Получаем B−1 = 1
detAD

t, и осталось подставить

DI,J = ([
∧n−k

(L)]f )I,J = (−1)εI+εJ
(
[
∧n−k

(L)]∧n−k
(e)

)
[n]\I,[n]\J

= (−1)εI+εJ detA
[n]\I
[n]\J

Замечание. Можно заметить, что в Z/2Z : ε[I] + ε[J] =
∑
i∈I

i+
∑
j∈J

j =
∑

k∈I△J
k, где I△J — симмет-

рическая разность I и J .

1.13 Грассманиан

Зафиксируем некоторое поле F , и рассмотрим пространство Fn.

У него имеется, например, проективизация Pn def
= {(x0, . . . , xn) \ (0, . . . , 0) | xi ∈ F} / ∼, где (x0, . . . , xn) ∼

(λx0, . . . , λxn) для λ ∈ F . Это множество прямых.

Определение 1.13.1 (Грассманиан). Grk(V ) — множество k-мерных подпространств в простран-
стве V . Grnk := Grk(F

n).

По определению получается Grn1 = Pn−1.

Чтобы задать алгебраическую топологию на грассманиане, введём систему полиномиальных урав-
нений — соотношения Плюккера.

Пусть dimV = n, и выбрано k-мерное подпространство U ⩽ V,dimU = k. Выберем базис
(u1, . . . , uk) ∈ U , и рассмотрим u[k] ∈

∧k
(V ). Согласно (теорема 1.11.1), при выборе другого

базиса U , назовём его (w1, . . . , wk), внешнее произведение домножается на элемент F ∗: w[k] =
u[k] det(u⇝ w).

Отфакторизовав по скалярам, получаем корректно определённое γ : Grk(V ) → P(
∧k

(V )), сопо-
ставляющее подпространству внешнее произведение векторов произвольного базиса.

Интересный факт. γ инъективно.

Таким образом, грассманиан вкладывается в P(
∧k

(V )), и имеется возможность задать на нём
структуру алгебраического многообразия. Это многообразие является замкнутым — множество
корней некоторого набора однородных многочленов.

Пусть (e1, . . . , en) — базис V , тогда
∧k

e — базис
∧k

V . Рассмотрим k-мерное подпространство
U ⩽ V с базисом (u1, . . . , uk). Выразим этот базис через базис e: ∃!A ∈ M(n, k, F ) — матрица
ранга k, такая, что u = eA.

Отображение γ сопоставляет U 7→ P(u[k]). Так как u[k] =
∑

I⊂[n],|I|=k
eI detA

I , то координаты u[k] ∈∧k
(V ) в базисе

∧k
e равны (detAI)I⊂[n],|I|=k, . Они называются однородными координатами

пространства U , и соотношения Плюккера — набор условий на эти координаты.
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Интересный факт (Соотношения Плюккера). Точка x ∈ P(
∧k

(V )) лежит в образе γ тогда и
только тогда, когда ∀L = (l1, . . . , lk−1) ⊂ [n],∀M = (m1, . . . ,mk+1) ⊂ [n] выполнено следующее
уравнение: ∑

k∈M\L

(−1)
(∣∣{l∈L|l>k}∣∣+∣∣{m∈M |m<k}

∣∣)
[x]L∪{k} · xM\{k} = 0

где [x]I — I-я однородная координата x.

Мне кажется, на лекции и в конспекте лектора −1 возводился в разные степени. Конечно,
есть много различных способов, так как в результате должен получится 0 (и значит всё
можно домножить на −1), и вообще имеет значение только чётность показателя степени.

Я считаю, что мой способ расстановки знаков эквивалентен способу на лекции, и согласуется
с тем, что в википедии, но не согласуется с конспектом лектора. Будьте осторожны.
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Глава 2

Теория представлений конечных
групп

Лекция X
12 октября 2023 г.

2.1 Теорема Жордана — Гёльдера

Рассмотрим ряд подмодулей {0} =M0 ⩽ . . . ⩽Mm =M .

Теорема Жордана — Гёльдера говорит о том, что такой ряд в некотором смысле единственный. Для
начала, определим, в каком смысле понимать эту единственность. Для этого рассмотрим второй
ряд {0} = N0 ⩽ . . . ⩽ Nn =M .

Определение 2.1.1 (Ряды {Mi} и {Nj} эквивалентны). Равны наборы факторов соседних подмо-
дулей: n = m и ∃σ ∈ Sn :Mi/Mi−1

∼= Nσ(i)/Nσ(i)−1

Определение 2.1.2 (Ряд {Mi} без повторений). ∀i :Mi−1 ̸=Mi.

Определение 2.1.3 (Простой модуль). Модуль, в котором нет собственных подмодулей.

Определение 2.1.4 (Неуплотняемый ряд Mi). Все факторы простые: ∀K : Mi ⩽ K ⩽ Mi+1 ⇐⇒[
K =Mi

K =Mi+1

, то есть Mi+1/Mi прост.

Определение 2.1.5 (Композиционный ряд). Неуплотняемый ряд без повторений

Определение 2.1.6 (Артинов модуль M). Модуль M , удовлетворяющий условию обрыва убыва-
ющих цепей (для подмодулей), DCC. А именно, всякая убывающая цепочка . . . ⩽ M2 ⩽ M1 ⩽ M
стабилизируется: ∃N ∈ N : ∀n ⩾ N :Mn+1 =Mn.

Определение 2.1.7 (Нётеров модуль M). Модуль M , удовлетворяющий условию обрыва возрас-
тающих цепей (для подмодулей), ACC. Всякая возрастающая цепочка {0} ⩽ M1 ⩽ M2 ⩽ . . . ⩽ M
стабилизируется: ∃N ∈ N : ∀n ⩾ N :Mn+1 =Mn.

Согласно лемме Цорна в любом непустом наборе подмодулей артинова модуля есть минимальный
элемент, в непустом наборе подмодулей нётерова модуля — максимальный.

Предложение 2.1.1. В модуле M есть композиционный ряд ⇐⇒ модуль M и артинов, и
нётеров.

Доказательство.
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⇐. Построим композиционный ряд по индукции. {0} = M0 .⩽M1, где M1 выбирается, как ми-
нимальный элемент (существует из-за артиновости) в множестве {N ⩽M |M0 ⩽ N}. Таким
образом, строится цепочка M0 .⩽M1 .⩽ · · · .⩽Mn .⩽ · · · . Данная цепочка за счёт нётеровости
обрывается, то есть ∃n ∈ N :Mn =M

⇒. Пусть модуль не артинов или не нётеров. Тогда существует сколь угодно длинная цепочка из
подмодулей. Но длина любого ряда не превосходит длины композиционного (следствие 2.1.1).

Теорема 2.1.1. У любых двух рядов существует их общее уплотнение.

Доказательство. Пусть даны два ряда {0} = M0 ⩽ M1 ⩽ . . . ⩽ Mm = M и {0} = N0 ⩽ N1 ⩽
. . . ⩽ Nn =M .

Определим M ′
i,j = (Mi +Nj) ∩Mi+1 для 0 ⩽ i < m, 0 ⩽ j ⩽ n.

Определим N ′
j,i = (Nj +Mi) ∩Nj+1 для 0 ⩽ j < n, 0 ⩽ i ⩽ m. Тогда

M ′
i,j+1

M ′
i,j

=
(Mi +Nj+1) ∩Mi+1

(Mi +Nj) ∩Mi+1

?∼=
(Nj +Mi+1) ∩Nj+1

(Nj +Mi) ∩Nj+1
=
N ′
j,i+1

N ′
j,i

Лемма 2.1.1. Если A ⩽ B, то (A+X) ∩B = A+ (X ∩B).

Доказательство леммы.

Так как A ⩽ (A+X) ∩B, и X ∩B ⩽ (A+X) ∩B, то A+ (X ∩B) ⩽ (A+X) ∩B.

В другую сторону, рассмотрим a+x = b ∈ (A+X)∩B. Тогда x = b−a, то есть x ∈ X∩B,
и a+ x ∈ A+X ∩B.

Лемма 2.1.2 (О бабочке). Пусть A ⩽ B ⩽M и C ⩽ D ⩽M . Тогда утверждается, что

(A+D) ∩B
(A+ C) ∩B

∼=
B ∩D

A ∩D +B ∩ C
∼=

(B + C) ∩D
(A+ C) ∩D

Доказательство леммы.

При замене B ↔ D,A ↔ C среднее не меняется, а левое изменяется на правое. Значит,
достаточно доказать первый знак изоморфности.

A+D ∩B
A+ C ∩B

=
(A+ C ∩B) +D ∩B

A+ (C ∩B)
∼=

теорема Нётер об изоморфизме

D ∩B
(A+ C ∩B) ∩D ∩B

Осталось показать, что (A + C) ∩ B ∩ D = A ∩ D + B ∩ C. Используя (лемма 2.1.1),
получаем ((A+ C) ∩B) ∩D = (A+ C ∩B) ∩D = A ∩D + C ∩B.

Применяя лемму о бабочке, получаем, что искомая изоморфность фактормодулей (отмеченная во-
просиком) действительно имеет место.

Таким образом, следующие последовательности — уплотнения {Mi} и {Nj} соответственно, и они
эквивалентны.

{0} =M ′
0,0 ⩽ . . . ⩽M

′
0,n =M ′

1,0 ⩽ . . . ⩽M
′
1,n =M ′

2,0 ⩽ . . . ⩽ . . . ⩽M
′
m−1,0 ⩽ . . . ⩽M

′
m−1,n =M

{0} = N ′
0,0 ⩽ . . . ⩽ N

′
0,m = N ′

1,0 ⩽ . . . ⩽ N
′
1,m = N ′

2,0 ⩽ . . . ⩽ . . . ⩽ N
′
n−1,0 ⩽ . . . ⩽ N

′
n−1,m =M

Теорема 2.1.2 (Жордан — Гёльдер). Любые два композиционных ряда без повторений эквива-
лентны.
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Доказательство. Построим общее уплотнение данных рядов. Так как ряды неуплотняемы, то
уплотнение только добавляет нуль-факторы.

Следствие 2.1.1. Длина любого ряда без повторений не больше длины композиционного ряда.

Определение 2.1.8 (Длина модуля). Длина композиционного ряда данного модуля.

Следствие 2.1.2 (Теорема Ремака — Крулля — Шмидта). Если M =
n⊕
i=1

Mi, где Mi — простые,

то {Mi} определено однозначно с точностью до перестановки.

Замечание. Данная теорема также будет доказана в меньшей общности с использованием техники
характеров: (следствие 2.15.4).

Предложение 2.1.2. Пусть M — артинов модуль. Следующие условия эквивалентны:

• Имеется разложение M =
n⊕
i=1

Mi, где Mi — простые.

• ∀N ⩽M : ∃N ′ ⩽M : N ⊕N ′ =M .

Доказательство.

⇐. Разложим M в прямую сумму. Рассматриваем модуль M . Если он не простой, то ∃N,N ′ :
N ⊕N ′ =M : Дальше ветвимся относительно N,N ′:

M

N N ′
⊕

Действительно, ∀L ⩽ N : ∃L′ : L⊕L′ =M , откуда L⊕ (L′∩N) = N , то есть посылка теоремы
верна и для каждого из N,N ′.

Из-за артиновости дерево ветвления конечно (в бесконечном дереве есть бесконечная ветвь).

⇒. Выберем наибольшее k ⩽ n, такое, что можно так перенумероватьMi, что
(

k⊕
i=1

Mi

)
∩N = {0}.

Положим M ′ :=
k⊕
i=1

Mi. Из максимальности ∀j > k : (M ′ ⊕Mj) ∩N ̸= {0}.

Докажем, что M = M ′ ⊕N . Достаточно доказать, что ∀j > k : Mj ⩽ M ′ ⊕N . Зафиксируем
какое-нибудь такое j, и докажем.

В силу максимальности k: N ′ := N ∩ (M ′ ⊕Mj) ̸= {0}. Выберем x ∈ N ′ \ {0}. Он расклады-
вается в сумму x = m′ + y, где m′ ∈M ′, y ∈Mj .

y ̸= 0, так как N∩M ′ = {0}. Устроим проекцию π :M ′⊕Mj →Mj , заметим, что π(x) = y ̸= 0,
отсюда π(N ′) нетривиально. Так как образ модуля — подмодуль, то π(N ′) ⩽Mj . Из простоты
Mj : π(N

′) =Mj .

Лекция XI
17 октября 2023 г.

2.2 Радикал Джекобсона и формулировка теоремы Веддербар-
на — Артина

Кольца, как и модули, тоже бывают артиновы и нётеровы, в них ACC и DCC — условия на цепочки
идеалов.

В самом деле, кольцо R можно рассмотреть, как регулярный модуль R, кольцо действует на себе
умножением слева (или справа).
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Предостережение. Артиновость слева и справа — разные вещи. Кольцо
(
Q R
0 R

)
справа артиново

(в нём просто-напросто конечное число правых идеалов), слева — не артиново и даже не нётерово.

Так как идеал в кольце является подмодулем, то для поля F , и конечной группы G: F [G] является
артиновым (хотя бы из соображений размерности).

Пусть R — некоммутативное кольцо.

Определение 2.2.1 (Регулярный R-модуль). R как модуль над R.

Следует различать левый и правый регулярные R-модули.

Интересный факт. Пусть r ∈ R. Следующие условия эквивалентны.

(1L) r лежит во всяком максимальном левом идеале.

(1R) r лежит во всяком максимальном правом идеале.

(2L) r можно исключить из всякой системы образующих левого регулярного R-модуля.

(2R) r можно исключить из всякой системы образующих правого регулярного R-модуля.

(3L) ∀x ∈ R : 1 + xr обратимо слева.

(3R) ∀x ∈ R : 1 + rx обратимо справа.

(4L) ∀x ∈ R : 1 + xr двусторонне обратим.

(4R) ∀x ∈ R : 1 + rx двусторонне обратим.

(5) ∀x, y ∈ R : 1 + xry обратим.

Доказательство. Как уверяет лектор, 3L ⇒ 4L — сложный трюк, остальное — более простые
упражнения.

Определение 2.2.2 (Радикал Джекобсона). Множество r ∈ R, удовлетворяющих пунктам инте-
ресного факта выше. Обозначается Rad(R) = JRad(R).

Rad(R) — двусторонний идеал, как пересечение левых идеалов, и как пересечение правых идеалов.

Интересный факт (Радикальность радикала). Rad(R/Rad(R)) = {0}.

Интересный факт. Если R — артиново кольцо, то ∃n ∈ N : Rad(R)n = 0. Таким образом, в
артиновых кольцах Rad(R) — нильпотентный идеал.

Замечание. Напоминание: A,B P R⇒ AB
def
=

{
n∑
i=1

xiyi | n ∈ N, xi ∈ A, yi ∈ B
}

P R.

Так, если A = B = (2, x) P Z[x], то AB = (x2, 2x, 4) P Z[x].

Видно, что AB не совпадает с множеством попарных произведений (например, x2+4 /∈ {ab | a ∈ A, b ∈ B}),
ни тем более с множеством квадратов элементов A.

Факт 2.2.1. Если Rad(R) ̸= {0}, то регулярный модуль не является вполне приводимым.

Доказательство. Предположим, что R = Rad(R) ⊕ M . Тогда R = M , так как все элементы
радикала можно выкинуть из системы образующих.

Таким образом, радикал никогда не выделяется прямым слагаемым.

Определение 2.2.3 (Полупростое кольцо). Rad(R) = {0}.

Интересный факт (Теорема Веддербарна — Артина). Если R — полупростое артиново кольцо
(эквивалентно, классически полупростое), то R =

⊕n
i=1Mki(Di), где Di — какие-то R-алгебры с

делением (тела).

Схема доказательства.
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1. I — нильпотентный правый идеал ∃a, x ∈ I : (a2 − a)x = 0, ax ̸= 0.

2. Любой правый идеал содержит идемпотент.

3. Любой двусторонний идеал содержит центральный идемпотент ⇒ выделяется прямым слага-
емым.

4. R — прямая сумма простых колец без двусторонних идеалов.

5. R — простое, I — минимальный правый идеал ⇒ ∃n ∈ N : R ∼= I⊕n, как R-модуль.

6. R ∼= EndR(I
⊕n) ∼=M(n,D), где D = EndR(I).

Радикал Джекобсона позволяет установить, что если кольцо, как регулярный модуль, раскладыва-
ется в прямую сумму простых (например, левых) модулей, то оно полупросто, и, следовательно,
раскладывается в прямую сумму идеалов (коими и являются матрицы над телами из теоремы
Веддербарна — Артина).

Предложение 2.2.1. Если R =
n⊕
i=1

Ri, M — левый R-модуль, то M =
n⊕
i=1

Ri ·M . Если M —

простой, то все слагаемые, кроме одного, равны нулю.

Таким образом, если R — полупростое артиново кольцо, то можно интересоваться только модулями
над матричными кольцами над телами.

Никаких конечных тел над алгебраически замкнутым полем нет (лемма 2.2.1)

Предложение 2.2.2. Пусть M — простой левый модуль над M(k,D), где D — тело. Тогда
M ∼= Dk.

Используя теорему Веддербарна — Артина, легко увидеть, что
n∑
i=1

k2i = dimF [G] = |G|. Это мы

также докажем впоследствии, используя технику характеров (следствие 2.16.2).

Лемма 2.2.1. Если D — конечномерная алгебра без делителей нуля (например, тело) над
алгебраически замкнутым полем F , то D ∼= F .

Доказательство. Пусть a ∈ D. Устроим гомоморфизм колец

ψ : F [t]→ D

t 7→ a

Ker(ψ) ̸= {0}, так как dimF (F [t]) = ∞, но dimF (D) < ∞. Тогда F [t]/Ker(ψ) ∼= Im(ψ) без делите-
лей нуля.

Таким образом, Ker(ψ) — простой идеал, но кольцо многочленов евклидово, поэтому это макси-
мальный идеал.

Ker(ψ) = p · F [t], где p неприводим, тогда p(t) = t− α и F [a] = F [t]/(p) ∼= F .

Тогда если a ∈ 1A · F , то D = 1D · F = F .

Лекция XII
7 сентября 2016 г.

Чаще всего у нас будут иметься предположения о конечности группы |G| < ∞ и алгебраической
замкнутости базового поля K = K.

Пусть char(K) = p. Случай p ̸ | |G| более простой, о нём говорит теория обыкновенных представ-
лений.

Другой случай p | |G| изучает теория модулярных представлений, и о нём мы говорить почти
ничего не будем.
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2.3 Три с половиной языка

Есть несколько эквивалентных языков, чтобы говорить о представлениях групп.

• Линейные представления G над R.

• Линейные действия G на R-модулях.

• Модули над R[G], где R[G] — групповая алгебра G над R.

• Частный случай линейных представлений — матричные представления (на свободных R-
модулях с фиксированным базисом).

Эквивалентность данных языков установлена Эмми Нётер в 1926 году.

2.3.1 Линейные представления группы G

Пусть R — коммутативное ассоциативное кольцо с единицей (обычно поле). Коммутативность
нужна для того, чтобы работать с матрицами было приятно.

Пусть V — R-модуль (скоро станет векторным пространством, или по крайней мере свободным
модулем конечного ранга).

Определение 2.3.1 (Линейное представление группы G над R с модулем представления V ). Го-
моморфизм π : G→ GL(V ) = AutR(V ) — в полную линейную группу модуля.

Обычно образ g при действии π обозначается πg, чтобы не плодить скобок.

Здесь π — представление (representation), и V — модуль представления (presentation module).

Свойствами гомоморфизма являются

• πh · πg = πhg. В частности, πe = id и πg−1 = π−1
g .

2.3.2 Линейные действия

Если G действует просто на V , как на множестве, то задано отображение

G× V → V

g, x 7→ gx

со свойством внешней ассоциативности (hg)x = h(gx).

Если дано представление, то действие можно определить так:

G× V → V

g, v 7→ πg(v) = gv

Это действие, так как π — гомоморфизм. При этом, получилось не просто действие, а линейное
действие: ∀u, v ∈ V, λ ∈ R:

• πg(u+ v) = πg(u) + πg(v) или же g(u+ v) = gu+ gv

• πg(λu) = λπg(u) или же g(λu) = λgu.

Обратно, если задано действие G↷ V то ему можно сопоставить представление

π : G→ GL(V )

g 7→ (v 7→ gv)

Факт 2.3.1. Таким образом, линейные представления — то же самое, что и линейное дей-
ствие.
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2.3.3 Структура R[G] модуля над каким-то R-модулем

Здесь будет существенно, что группа конечна.

Вспомним, что групповая алгебра R[G] — это алгебра, элементы которой интерпретируются как∑
g∈G

agg, ag ∈ R.

Предостережение. Не стоит путать групповую алгебру с алгеброй функций RG — двойственной
к групповой алгебре. Элементы алгебры функций —

∑
g∈G

agδg, где функция

δg(h) = δg,h =

{
1, g = h

0, g ̸= h

Имеется изоморфизм колец RG ∼= R[G], но G действует на них по-разному: g · g = g2, g · δg = 1.

Сумма и произведение элементов R[G] определены в виде∑
g∈G

agg +
∑
g∈G

bgg =
∑
g∈G

(ag + bg)g∑
g∈G

agg

 ·(∑
h∈G

bhh

)
=
∑
h,g∈G

(agbh)g =
∑
f∈G

(∑
h∈G

ahbh−1f

)
f

Линейному действию G↷ V сопоставим действие R[G] ↷ V , определённое в виде∑
g∈G

agg

 v =
∑
g∈G

ag(gv)

Можно проверить, что данная формула задаёт на V структуру левого R[G]-модуля.

Поскольку G ↪→ R[G], то верно и обратное — структура R[G]-модуля на V определяет линейное
действие G на R-модуле V .

2.3.4 Глоссарий терминов

Представление Модуль
Факторпредставление Фактормодуль

Сплетающий оператор (intertwining operator) Гомоморфизм
Неприводимое представление Простой модуль (у которого ровно два подмодуля)
Неразложимое представление Неразложимый (в прямую сумму) модуль

Эквивалентность Изоморфизм
Инвариантное подпространство Инвариантное подпространство

Полная приводимость Полупростота (прямая сумма конечного числа простых)

В дальнейшем мы будем предполагать, что V = Rn — свободный модуль конечного ранга. Над
полем, очевидно, достаточно считать, что dim(V ) <∞.

Определение 2.3.2 (Конечномерное линейное представление над K). Представление, в котором
модуль представления конечномерен.

Если зафиксировать e1, . . . , en — базис V , то V = Rn и GL(Rn) = GL(n,R).

Здесь линейные операторы — матрицы.

В этом случае можно определять π : G→ GL(n,R). Это матричное представление.
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Матрица записывается x = (xi,j)1⩽i,j⩽n. В данной главе нас больше всего будет волновать след∑
i

xi,i.

Работая в матрицах, придётся не забывать, что мы используем их с точностью до сопряжения. С
другой стороны, считать что-то в матрицах легче.

Определение 2.3.3 (Степень представления). Ранг модуля представления. Обозначают deg(π).

Пусть n = deg(π), где π : G→ GL(n,R). Тогда πg = ((πg)i,j)1⩽i,j⩽n.

Коэффициенты матрицы πg обозначают πi,j(g) ∈ R, опять же чтобы не плодить скобок. πi,j здесь
— матричный элемент представления π в позиции (i, j).

2.4 Сплетающие операторы

Пусть π : G→ GL(U), ρ : G→ GL(V ) — два представления.

Определение 2.4.1 (Сплетающий оператор (гомоморфизм) ϕ между π и ρ). Для любого g ∈ G
диаграмма коммутативна.

πg : U U

g ∈ G

ρg : V V

ϕ ϕ

Иными словами (на языке действий, а не представлений) πg(u)
def
= gu, ρg(v)

def
= gv и коммутатив-

ность диаграммы значит G-эквивариантность

ϕ(gu) = gϕ(u)

Таким образом, сплетающий оператор — в точности гомоморфизм R[G]-модулей:

ϕ

∑
g∈G

agg · u

 =
∑
g∈G

ϕ(agg · u) =
∑
g∈G

agϕ(g · u) =
∑
g∈G

aggϕ(u) =

∑
g∈G

agg

ϕ(u)

Мы определили то, что далее будет называться категорией представлений — объекты и морфиз-
мы между ними.

В случае, когда ϕ — изоморфизм модулей, оно называется эквивалентностью. Далее всюду будем
смотреть на представления с точностью до эквивалентности.

Лекция XIII
7 сентября 2016 г.

2.4.1 Изоморфизм представлений

Пусть π : G→ GL(U), ρ : G→ GL(V ) — два представления.

Элементу g соответствует левый квадрат, но так как ϕ обратимо, то его коммутативность равно-
сильна коммутативности правого квадрата

U U U U

V V V V

ϕ

πg

ρg

ϕ

ρg

πg

ϕ−1 ϕ
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Получаем соотношение сопряжения ρg = ϕ ◦ πg ◦ ϕ−1.

Выбрав базисы в U, V получаем два гомоморфизма G→ GL(n,R), таких, что найдётся обратимая
матрицы x ∈ GL(n,R):

∀g ∈ G : xπgx
−1 = ρg

Эти представления эквивалентны.

2.5 Подпредставление

Пусть π : G→ GL(V ), где V — R-модуль, U ⩽ V .

Определение 2.5.1 (U — G-подмодуль). R[G]-подмодуль в V , или же G-инвариантное подпро-
странство.

Требование об отсутствии собственных G-подмодулей в случае кольца R не выполняется практи-
чески никогда — в кольце много идеалов. Далее предполагаем, что R = K — поле.

Определение 2.5.2 (Неприводимое представление π : G → GL(V )). V ̸= {0} и в V нет нетриви-
альных G-инвариантных подпространств. В противном случае представление называется приводи-
мым.

Если представление приводимо (U ⩽ V — G-инвариантное подпространство), то в U найдётся
базис e1, . . . , em, он дополняется до базиса V .

В этом базисе для любого g:

πg =

(
∗ ∗
0 ∗

)
Матрицы такого вида образуют стандартную параболическую подгруппу.

Определение 2.5.3 (m-я стандартная параболическая подгруппа Pm ⩽ GL(n,K)).

Pm
def
=

{(
a b
0 c

)
| a ∈ GL(m,K), c ∈ GL(n−m,K),M ∈M(m,n−m,K)

}
, где 1 ⩽ m < n

Замечание. Неприводимость представления — свойство не самого представления, а свойство об-
раза Im(π) = π(G) = {πg | g ∈ G} ⊂ GL(V ).

Пусть π : G→ GL(V ) — представление, U ⩽ V — G-подмодуль.

Определение 2.5.4 (Подпредставление).

πU : G→ GL(U)

g 7→ (πg)
∣∣∣
U

Предостережение. Не путать с ограничением представления π на подгруппу H ⩽ G. Ограничение

обозначается resGH(π) = π
∣∣∣
H

: H → GL(V ).

2.6 Лемма Шура

Пока G — произвольная группа, K — любое поле.

Лемма 2.6.1 (Лемма Шура — 1). Пусть U, V — неприводимые G-модули, ϕ : U → V — гомомор-
физм G-модулей. Тогда ϕ = 0, либо ϕ : U ∼= V .

Доказательство. Ker(ϕ) — G-подмодуль в U : ∀u ∈ U : ϕ(u) = 0⇒ ∀g ∈ G : ϕ(gu) = gϕ(u) = 0, то
есть gu ∈ Ker(ϕ).

Но таких подмодулей только два.

35



• Если Ker(ϕ) = {0}, то ϕ — мономорфизм (инъекция).

• Если Ker(ϕ) = U , то ϕ ≡ 0.

Im(ϕ) ⩽ V — G-подмодуль. В самом деле, v ∈ Im(ϕ) ⇒ ∃u ∈ U : ϕ(u) = v ⇒ ∀g ∈ G : gϕ(u) =
ϕ(gu) ∈ Im(ϕ).

Но таких подмодулей только два.

• Если Im(ϕ) = {0}, то ϕ ≡ 0.

• Если Im(ϕ) = V , то ϕ — эпиморфизм (сюръекция).

Если ϕ ̸= 0, то ϕ — одновременно мономорфизм и эпиморфизм, то есть изоморфизм.

Следствие 2.6.1 (Лемма Шура — 2). Пусть K — поле, U, V — неприводимые G-модули над
K. Тогда если U ≇ V , то множество сплетающих операторов между U и V HomG(U, V ) =
HomK[G](U, V ) = 0.

Если же U = V , то AutG(U) — тело (любой автоморфизм либо равен нулю, либо обратим).

Теперь дополнительно предположим, что K — алгебраически замкнутое поле, и что dimU,dimV <
∞.

Лемма 2.6.2 (Лемма Шура — 3). Если U, V — неприводимые конечномерные G-модули над K,
а ϕ ∈ HomK[G](U, V ), то

• Либо ϕ ≡ 0.

• Либо ϕ : U ∼= V , и тогда ϕ = λ id (где λ ∈ K) — гомотетия.

Доказательство. Любому скаляру λ ∈ K можно сопоставить сплетающий оператор

λ idU : U → U

u 7→ λu

Из G-линейности g(λu) = λ(gu). При λ ̸= 0: λ id — автоморфизм.

Если ϕ : U → U — G-эндоморфизм, то условие алгебраической замкнутости значит в точности то,
что ∀ϕ : ∃λ ∈ K — собственное число:

∃u ∈ U \ {0} : ϕ(u) = λu

Отсюда (ϕ − λ idU )(u) = 0. Но тогда ϕ − λ idU — G-эндоморфизм U с ненулевым ядром. Тогда
ϕ− λ idU = 0.

2.7 Факторпредставление

Пусть π : G→ GL(V ) — представление, U — G-подмодуль. Тогда в подходящем базисе всякое πg
имеет вид  πg

∣∣∣
U

∗

0 πg

∣∣∣
V/U


πg

∣∣∣
V/U

: G → GL(V/U). Фактормодуль V/U = {v + U | v ∈ V } состоит из смежных классов,

параллельных U .
g(v + U) = gv + U , так как U — G-подмодуль.

Определение 2.7.1 (Факторпредставление π по инвариантному подпространству U ⩽ V ). Выше

полученное π
∣∣∣
V/U

.
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Факт 2.7.1. Матрица факторпредставления — в точности правый нижний блок, натянутый
на базисные векторы em+1, . . . , en.

Рассмотрим группу Pm =

{(
a b
0 c

)
| a ∈ GL(m,R), c ∈ GL(n−m,R)

}
. Это группа:

(
a1 b1
0 c1

)(
a2 b2
0 c2

)
=

(
a1a2 a1b2 + b1c2
0 c1c2

)
и

(
a b
0 c

)−1

=

(
a−1 −a−1bc−1

0 c−1

)

Lm =

{(
a 0
0 c

)
| a ∈ GL(m,R), c ∈ GL(n−m,R)

}
⩽ Pm — подгруппа Ле́ви.

Здесь ещё полезно вспомнить Um =

{(
e b
0 e

)
| b ∈M(m,n−m,R)

}
. Несложно видеть, что Pm =

Lm ⋌ Um

Отображение

Pm → Lm(
a b
0 c

)
7→
(
a 0
0 c

)
является гомоморфизмом, поэтому действительно можно взять левый верхний, или правый нижний
диагональные блоки всех πg, и полученные матрицы будут подпредставлением или факторпредстав-
лением соответственно.

2.8 Прямая сумма представлений. Неразложимые представле-
ния

Пусть π : G → GL(U), ρ : G → GL(V ) — два представления одной и той же группы на разных
модулях.

Определение 2.8.1 (Прямая сумма представлений).

π ⊕ ρ : G→ GL(U ⊕ V )

g 7→ (π ⊕ ρ)g

где (π ⊕ ρ)g
def
= ((u, v) 7→ (πg(u), ρg(v)))

Если U, V — свободные модули, то в качестве базиса прямой суммы можно взять объединение
базисов U и V . В этом базисе матрица π ⊕ ρ — это прямая сумма матриц π и ρ.

Замечание. Если не только модули разные, но и группы разные, то двум представлениям π : H →
GL(U), ρ : G → GL(V ) можно сопоставить наружную прямую сумму — представление группы
H ×G — прямого произведения групп.

π ⊞ ρ : H ×G→ GL(U ⊕ V )

(h, g) 7→ (π ⊞ ρ)(h,g)︸ ︷︷ ︸
πh⊕ρg

Обычная прямая сумма π ⊕ ρ — это ограничение resG×G
∆(G)(π ⊞ ρ), где ∆(G)

def
= {(g, g) | g ∈ G} —

диагональная подгруппа.

Если U — G-инвариантное подпространство в V , то когда π раскладывается в прямую сумму?
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Если R = K — поле, то у любого подпространства U найдётся дополняющее (необязательно
G-инвариантное) подпространство W : V = U ⊕W .

Если W тоже G-инвариантно, то π = π
∣∣∣
U
⊕ π

∣∣∣
W
.

Лекция XIV
14 сентября 2016 г.

G — конечная группа, K — поле характеристики p ̸ | |G|. Позже даже будем предполагать p = 0.

И, конечно, все представления конечномерны.

2.9 Усреднение по конечной группе

2.9.1 Усреднение векторов

Пусть π : G→ GL(V ), V = Kn. Найдём инвариантные элементы.

Определение 2.9.1 (Инвариантные элементы).

V G = {v ∈ V | ∀g ∈ G : πg(v) = v} ⩽ V

Построим (сюръективную) проекцию V → V G.

Так как группа конечная, то по ней можно усреднять. Устроим

ϕ : V → V G

v 7→ 1

|G|
∑
g∈G

gv

Тогда ∀v ∈ V : ϕ(v) ∈ V G:

hϕ(v) = h
1

|G|
∑
g∈G

gv =
1

|G|
∑
g∈G

(hg)v = ϕ(v)

Из-за усреднения, то есть деления на |G|, также верно, что ∀v ∈ V G : ϕ(v) = v, то есть ϕ —
проектор.

2.9.2 Усреднение линейных отображений

Пусть π : G→ GL(U), ρ : G→ GL(V ) — представления.

Тогда утверждается, что HomK(U, V ) несёт структуру линейного представления группы G. Иными
словами, сопоставим π, ρ⇝ Hom(π, ρ).

Hom(π, ρ) : G→ GL(Hom(U, V ))

g 7→ (ϕ 7→ ρgϕπ
−1
g )

Здесь Hom(π, ρ)g получается из коммутативного квадрата

U U

V V

πg

ρg

ϕ Hom(π,ρ)g(ϕ)

Таким образом, два представления дали новое представление, теперь уже на множестве не строк
или столбцов, а на множестве матриц.

Так как Hom по отношению к U контравариантен, то πg возводится в степень −1. По отношению
к V же Hom ковариантен и для ρg не берётся обратный.

Теперь мы можем усреднять уже сами линейные отображения.
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Определение 2.9.2 (Усреднение линейного отображение).

HomK(U, V )→ HomK(U, V )G

ϕ 7→ 1

|G|
∑
g∈G

ρgϕπ
−1
g

Образ состоит из элементов
{
ϕ ∈ HomK(U, V ) | ∀g ∈ G : ρgϕπ

−1
g = ϕ

}
= HomK[G](U, V ). В даль-

нейшем вместо HomK(U, V ) будем писать Hom(U, V ), вместо HomK[G](U, V ) — HomG(U, V ).

2.10 Теорема Машке

G — конечная группа, K — поле характеристики p ̸ | |G|. Все представления конечномерны.

Определение 2.10.1 (Вполне приводимое представление). Для любого G-инвариантного подпро-
странства U ⩽ V : ∃G-инвариантное дополнение W . Иными словами, кольцо K[G] полупросто.

Теорема 2.10.1. В данных условиях все представления вполне приводимы.

Доказательство. Для G-инвариантного подпространства U ⩽ V : ∃W — какое-то (необязательно
G-инвариантное) дополняющее подпространство: U ⊕W = V .

Мы не умеем усреднять подпространства, поэтому поступим так. Всякое подпространство — образ
или ядро какого-то линейного отображения. А линейные отображения усреднять мы только что
научились.

Положим в качестве ϕ : V → V проектор V на U вдоль W . Усредним ϕ:

ϕ0 =
1

|G|
∑
g∈G

πgϕπ
−1
g

Утверждается, что ϕ0 — проектор на U :

• Проверим, что Im(ϕ) ⩽ U . ∀v ∈ V :

ϕ0(v) =
1

|G|
∑
g∈G

πg ϕ(π
−1
g (v))︸ ︷︷ ︸
∈U

∈ U

• Так как ϕ — U -инвариантно, то ∀u ∈ U :

ϕ0(u) =
1

|G|
∑
g∈G

πgϕ(π
−1
g (u)) = πgπ

−1
g u = u

Лемма 2.10.1. Предположим, что M,N — R-модули, и ψ : M → N,ϕ : N → M

односторонне обращают друг друга: M N M
ψ ϕ

id

. Тогда N ∼= M ⊕ Kerϕ (в

группах в аналогичном случае прямая сумма заменится на полупрямое произведение).

Доказательство леммы.

Докажем, что N = Imψ ⊕Kerϕ. Так как ψ инъективно, то Imψ ∼=M .

• Проверим, что Imψ∩Kerϕ = {0}. Рассмотрим x ∈ Imψ∩Kerϕ. Так как он в образе
ψ, то ∃y ∈M : x = ψ(y), тогда ϕ(ψ(y)) = 0, откуда y = 0, и x = 0.

• Проверим, что Imψ +Kerϕ =M . Рассмотрим z ∈ N , для него t := ψ(ϕ(z)) лежит в
Im(ψ), причём z − t ∈ Ker(ϕ): ϕ(z − t) = ϕ(z)− ϕ(ψ(ϕ(z))) = 0.
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Выбрав в качестве ψ вложение, и рассмотрев R = K[G], получаем, что Im(ϕ) выделяется прямым
слагаемым.

Замечание (Относительно разницы между проекцией и проектором). Если V = U ⊕W , то ϕ : V →
U — проекция на U параллельно W , определена так: ϕ(u+ w) = u.

Проектор — это отображение ϕ : V → V , которое также переводит ϕ(u+w) = u. Различие состоит
в области значений.

Следствие 2.10.1. Пусть charK ̸ | |G|. Если все неприводимые представления одномерны, то
группа абелева.

Доказательство. Рассмотрим регулярное представление K[G], как K[G]-модуля: reg : G→ End(K[G]).

K[G] =
|G|⊕
k=1

Vk, где Vk просты: dimF (Vk) = 1. Тогда получается, что Im(G) ⊂ D(|G|,K), здесь

D(n,K) — диагональные матрицы порядка n.

Следствие 2.10.2. В условиях теоремы Машке имеет место полная приводимость: неприво-
димые представления совпадают с неразложимыми представлениями.

Любое конечномерное представление равняется прямой сумме неприводимых.

Таким образом, задачи теории обыкновенных представлений свелись

• к классификации неприводимых представлений G над K, и

• к разложению любого представления в прямую сумму неприводимых.

2.10.1 Унитаризуемость

Пусть K = C, V = Cn.

Теорема 2.10.2 (Теорема Машке над C). Для любого представления конечной группы G над
C : ∃G-инвариантное положительно определённое эрмитово скалярное произведение.

Доказательство теоремы Машке над C. Вспомним про эрмитово скалярное произведение B :
V × V → C — полуторалинейное и эрмитовски симметричное (B(u, v) = B(v, u)).

Дополнительно можно считать, что ∀v ∈ V : B(v, v) ⩾ 0, причём B(v, v) = 0 ⇐⇒ v = 0.
Это классическое эрмитово (унитарное) скалярное произведение, превращающее V в гильбертово
пространство:

B


u1...
un

 ,

v1,...
vn


 = u1v1 + · · ·+ unvn

Пусть π : G → GL(Cn) = GL(n,C). Научимся усреднять B, чтобы действие элементов груп-
пы сохраняло скалярное произведение. Скалярное произведение B унитарно, если ∀u, v ∈ V :
B(gu, gv) = B(u, v).

Будем придерживаться обозначений x∗ = xt — эрмитовски сопряжённая матрица к x.

Переписав унитарность в терминах матрицы Грама: ∀u, v ∈ Cn, g ∈ G : u∗v = u∗π∗
gπgv, получаем

именно, что образ π должен лежать в U(n,C). Здесь U(n,C) def=
{
x ∈ GL(n,C) | xtx = e = xxt

}
—

классическая унитарная группа. Кстати, U(n,C) — компактная группа относительно комплексной
топологии, «а компактная группа — это почти что конечная группа».

B0(u, v) :=
1

|G|
∑
g∈G

B(πg(u), πg(v))

B0 — полуторалинейная эрмитова положительно полуопределённая форма.
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Теперь относительно B0 все операторы πh (h ∈ G) унитарны:

B0(πh(u), πh(v)) =
1

|G|
∑
g∈G

B(πgh(u), πgh(v)) = B0(πh(u), πh(v))

Вообще, для всякой эрмитовской полуторалинейной формы B : V × V → C, определена унитарная
группа.

Определение 2.10.2 (Унитарная группа). U(B)
def
= {a ∈ GL(V ) | ∀x, y : B(ax, ay) = B(x, y)}.

Следствие 2.10.3. Любое представление конечной группы над C унитаризуемо, то есть экви-
валентно унитарному: ρ : G→ U(n,C).

В унитарном представлении ортогональное дополнение к G-инвариантному подпространству
само G-инвариантно. В частности, отсюда вытекает теорема Машке предыдущего парагра-
фа над C.

Доказательство. Если U — G-инвариантное подпространство в V , B — G-инвариантное поло-
жительно определённое эрмитово скалярное произведение на V , то U⊥ тоже G-инвариантно и
U ⊕ U⊥ = V . В самом деле ∀u ∈ U, v ∈ U⊥:

B(u, πg(v)) = B(π−1
g (u)︸ ︷︷ ︸
∈U

, v) = 0

Лекция XV
14 сентября 2016 г.

Всё, касающееся усреднения, можно обобщить на компактные группы с усреднением по мере
Хаара — вместо суммирования и взятия среднего берётся интеграл. Это называется гармонический
анализ.

2.11 Характеры Фробениуса

В дальнейшем все характеры будут именно характерами Фробениуса.

Пусть π : G → GL(V ) — конечномерное представление конечной группы над полем K, которое
вскоре будет характеристики 0.

Выберем базис e1, . . . , en. При фиксированном базисе представление на самом деле является мат-
ричным.

tr(x) = x1,1 + · · ·+ xn,n = λ1 + · · ·+ λn

где λ1, . . . , λn — собственные числа x. Они, вообще говоря, могут не лежать в базовом поле, но их
сумма лежит.

Сопоставим представлению π : G→ GL(n,K) характер Фробениуса представления π.

χπ : G→ K

g 7→ tr(πg)

1. Характер зависит только от класса эквивалентности π. Два эквивалентных представления
имеют равные характеры.

2. Характер не обязательно является гомоморфизмом!
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3. Для двух представлений π : G → GL(U); ρ : G → GL(V ) можно определить π ⊕ ρ : G →
GL(U ⊕ V ).

(π ⊕ ρ)g(u, v) = (πg(u), ρg(v))

χπ⊕ρ = χπ + χρ, так как tr

(
x 0
0 y

)
= tr(x) + tr(y).

4. χπ⊗ρ = χπ · χρ, так как tr(x⊗ y) = tr(x) · tr(y), об этом см. (раздел 2.20).

5. Пусть π ≡ 1 — главное представление. χ(π) = dim(V ) = deg(π), так как tr

1 0
. . .

0 1

 = n.

6. Характер является центральной функцией на G.

Определение 2.11.1 (Центральная функция (функция класса)). Функция, постоянная на
классах сопряжённых элементов.

Иными словами, h ∼G g ⇒ χπ(h) = χπ(g). Так как ∃f ∈ G : h = f−1gf , то πh = π−1
f πgπf .

7. Пусть g ∈ G, |G| = m < ∞. Тогда (πg)
m = e. Значит, все собственные числа любой матрицы

πg являются корнями m-й степени из единицы.

χπ(g) ∈ F
(

m
√
1
)
, где F — простое подполе в K, то есть

{
Fp, char(K) = p > 0

Q, char(K) = 0

Если char(K) = 0, то χπ(g) ∈ A, где A — целые алгебраические числа (сумма корней из
единицы лежит там, так как каждый корень из единицы лежит там, и A — кольцо).

Над полем же комплексных чисел 1
ω = ω. Если K ⩽ C, то χπ(g−1) = χπ(g).

С другой стороны, χπ(g−1) — характер двойственного представления.

Определение 2.11.2 (Двойственное к π : G→ GL(V ) представление). Левое представление
π∗ : G→ GL(V ∗). Для η ∈ V ∗, v ∈ V :

((η)π∗
g)(v) = η(πg(v))

Чтобы писать операторы слева, то π сопоставляем

π∗ : G→ GL(n,K)

g 7→ π−t
g

tr(xt) = tr(x), поэтому χπ∗(g) = χπ(g
−1).

Следствие 2.11.1. Над K ⩽ C : χπ∗ = χπ.

Таким образом, если построено над C представление, у которого не все характеры веще-
ственные, сразу строится сопряжённое — другое неприводимое (двойственное и обычное
представления неприводимы одновременно) — представление.

8. Пусть K ⩽ C. Тогда ∀g ∈ G : |χπ(g)| ⩽ n = χπ (1G), так как характер — сумма корней из
единицы.

9. χHom(π,ρ) =?

10. χ∧m
(π)

= . . . . В частности, χ∧2(π) = 1
2 (χπ(g)

2−χπ(g2)). Дискретная теория вероятностей —
применение теории представлений конечных групп, поэтому эта штука похожа на дисперсию.

11. χSm(π) =?. В частности, χS2(π) = 1
2 (χπ(g)

2 + χπ(g
2)). Можно удостовериться, что так как в

характеристике нуль S2(π)⊕
∧2

(V ) ∼= V ⊗ V , то χ∧m
(π)

+ χSm(π) = χ(π ⊗ π).

Интересный факт (Теорема Фробениуса). Пусть charK = 0. Тогда π ∼ ρ ⇐⇒ χπ = χρ.
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Доказательство. Будет доказана с использованием соотношения Шура (соотношения ортогональ-
ности) (следствие 2.15.5).

Контрпример (В теореме Фробениуса важна нулевая характеристика). Пусть char(K) = p > 0.

Существует главное представление 1G :
G → K∗

g 7→ 1
.

Но если взять π = 1G ⊕ · · · ⊕ 1G︸ ︷︷ ︸
p+1

, то χπ = χ(1G).

2.12 Представления абелевых групп. Лемма Шура

Пусть группа G — конечная абелева группа ([G,G] = {1}, |G| <∞).

Пусть K — алгебраически замкнутое поле, char(K) = 0. Так как все характеры лежат в A, то
достаточно считать, например, что K = C.

Лемма 2.12.1 (Лемма Шура). Любое неприводимое представление конечной абелевой группы
над алгебраически замкнутым полем одномерно.

Доказательство. Пусть h, g ∈ G. Тогда πh · πg = πgh = πhg = πg · πh. Таким образом, ∀h ∈ G : πh
— сплетающий оператор для π.

Но π неприводимо, тогда ∀h ∈ G : πh — гомотетия. Но тогда все одномерные подпространства
G-инвариантны, и из неприводимости deg(π) = 1.

Следствие 2.12.1. Если π — неприводимое представление G над K, то одномерный характер
— в точности само представление: π = χπ : G→ K∗ = GL(1,K).

Контрпример. Если поле не замкнуто, то лемма Шура, конечно, неверна. Не существует точного
одномерного представления C4 над R, так как над R нет первообразного корня четвёртой степени
из 1.

2.12.1 Классификация циклических групп

Пусть Cn = ⟨g⟩ = {g0, g1, . . . , gn−1}. Построим таблицу, где столбцы отвечают элементам группы,
строки — характерам.

Рассмотрим для примера C2, C3, C4.

C2 1 −1
χ0 1 1
χ1 1 −1

C3 1 g g2

χ0 1 1 1
χ1 1 ω ω2

χ2 1 ω2 ω

C4 1 g g2 g3

χ0 1 1 1 1
χ1 1 i −1 −i
χ2 1 −1 1 −1
χ3 1 −i −1 i

Так как в Cn: gn = 1, то для всякого представления π: (χπ(g))n = π(g)n = π(gn) = 1. Отсюда сразу
восстанавливаются остальные элементы, и получается, что χi(gj) = ωij , где ω — произвольный
фиксированный первообразный корень n-й степени из единицы.

Полученная матрица — матрицы дискретного преобразования Фурье.

2.12.2 Классификация представлений произвольных конечных абелевых групп

Расклассифицировав таким образом представления всех циклических абелевых группы, мы, на
самом деле, классифицировали вообще представления всех конечных абелевых групп.

Воспользуемся теоремой о классификации всех конечнопорождённых абелевых групп, всякая ко-
нечная абелева группа — прямая сумма циклических групп.

Ссылаясь на
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Интересный факт. Групповая алгебра K[H ×G] есть K[H]⊗K K[G] (раздел 2.21).

мы можем получить следующее. Пусть

χ : H → K∗

θ : G→ K∗ — два характера. Тогда χ⊗ θ =
у нас всё одномерно

χθ :
H ×G → K∗

(h, g) 7→ χ(h)θ(g)

Таким образом, все характеры абелевой группы получаются перемножением всевозможных харак-
теров циклических слагаемых из прямой суммы.

Пример.

Рассмотрим простейшую нециклическую группу V = C2
=⟨h⟩
⊕ C2

=⟨g⟩
= {1, h, g, hg}. Для неё таблица

характеров
1 h g hg

χ0

χ1

χ2

χ3

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

=

(
1 1
1 −1

)
⊗
(
1 1
1 −1

)

2.12.3 Одномерные представления любых конечных групп

Разумеется, все одномерные представления неприводимы.

Таким образом, описать одномерные представления — часть задачи.

Мы умеем описывать представления абелевых групп. Для произвольной группы имеется функтор

абелианизации G⇝ Gab def
= G/[G,G].

Чтобы для группы получить представление, исходя из факторгруппы, надо воспользоваться ин-
фляцией: пусть H P G.

π : G/H → GL(V )

↓
π̃ : G → GL(V )

g 7→ π(g +H)

Поскольку приводимость зависит только от образа, то инфляция неприводимого представления
неприводима.

Если абелианизация нетривиальна, то таким образом получаются какие-то нетривиальные пред-
ставления.

Теорема 2.12.1. Пусть K — алгебраически замкнутое поле, char(K) = 0. Тогда у конечной группы
G имеется |G/[G,G]| различных (не эквивалентных) одномерных представлений (и они являются
инфляциями неприводимых одномерных представлений G/[G,G]).

Доказательство. Только что было предъявлено |G/[G,G]| таких представлений. Обратно, если
π̃ : G → GL(1,K) = K∗ — какое-то представление, то [G,G] ⩽ Ker(π̃) — это отображение в
абелеву группу.

Тогда π̃ соответствует его дефляция π : G/H → GL(1,K) = K∗.

Лекция XVI
21 сентября 2016 г.
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2.13 Формулировка теоремы Бёрнсайда — Фробениуса, пер-
вые примеры

G — конечная группа, K — алгебраически замкнутое поле, char(K) = 0. На самом деле, результаты
верны для поля разложения группы G, такого, что char(K) ̸ | |G|).

Пусть π1, . . . , πs — все различные (неэквивалентные) неприводимые представления G над K. Пусть
n1, . . . , ns и χ1, . . . , χs — степени и характеры π1, . . . , πs соответственно.

Интересный факт (Теорема Бёрнсайда — Фробениуса).

1. s — количество классов сопряжённых элементов группы G.

2. |G| = n21 + · · ·+ n2s (sum of squares formula)

3. ni | |G|, что может быть усилено до ni | |G : C(G)|, или даже до ni | |G : A|, где A P G —
произвольная нормальная подгруппа. Более того, ni ⩽ |G : A|, где A ⩽ G — произвольная
абелева подгруппа (но уже не факт, что есть делимость).

2.13.1 Таблицы характеров. Конечные расширения колец

Пусть χ1, . . . , χt — характеры неприводимых представлений, C1, . . . , Cs — классы сопряжённых.
Таблица характеров — таблица следующего вида, где в ячейке χi, Cj стоит значение χi(Cj).

C1 = {1} · · · Cs
χ1 = 1 1 · · · 1
χ2 deg π2 · · · χ2(Cs)
...

...
. . .

...
χs deg πs · · · χs(Cs)

Разумеется, у всякой группы есть тривиальное представление, его характер обычно пишут первой
строчкой; χπ(1) = deg π, и помимо этих свойств, уже указанных в таблице, есть ещё множество
других (теорема 2.14.1,следствие 2.16.2,лемма 2.22.1 и прочие).

Пусть R ⩽ A — коммутативные кольца с единицей.

Определение 2.13.1 (a ∈ A — целое над R). a — корень унитального многочлена с коэффициен-
тами из R: ∃p ∈ R[t] : lc(p) = 1, eva(p) = 0. Множество элементов A, целых над R, обозначается
IntA(R).

В частности, целые алгебраические числа A — те комплексные числа, которые целы над Z.

Определение 2.13.2 (A целое над R). ∀a ∈ A : a — целый над R.

Определение 2.13.3 (A — конечное над R). A — конечно порождено, как модуль над R.

Лемма 2.13.1. Пусть A ⊂ B ⊂ R — цепочка конечных расширений. Тогда A конечно над R.

Лемма 2.13.2. Пусть A = R[a1, . . . , an], где ai — целые над R. Тогда A конечно над R.

Доказательство. Пусть k — степень ai, то есть ai — корень унитального многочлена с коэффи-
циентами из R степени k. Тогда aki ∈

〈
a0i , . . . , a

k−1
i

〉
.

Далее индукция с применением предыдущей леммы.

Теорема 2.13.1. Если R ⊂ A — конечное расширение, и a ∈ A, то a — целый над R.

Доказательство. Пусть ma : A→ A — гомоморфизм R-модулей умножения на a. ma ∈ EndR(A).

Пусть x1, . . . , xn порождают A над R. xi · a =
n∑
j=1

ci,jxj Обозначим = (ci,j), тогда xa = Cx.

χC(C) = 0 по теореме Гамильтона — Кэли (это, кстати, полиномиальное равенство, можно исполь-
зовать, что оно было доказано над алгебраически замкнутым полем).
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0 = χC(C)x = χC(a id)x. Так как 1 ∈ Lin(x1, . . . , xn), то χC(a) · 1 = 0, откуда χC(a) = 0, и
a ∈ IntA(R).

Следствие 2.13.1. R ⊂ A — конечно ⇐⇒ A порождено как R-алгебра конечным числом целых
элементов.

Возвращаясь к таблице характеров, получаем, что χπ(g) ∈ A (почему? можно сослаться на то, что
tr(πg) — сумма собственных чисел, но это можно было сделать и раньше).

2.13.2 Представления неабелевых групп

Маленькими неабелевыми группами являются S3 = D3, D4, Q8.

Все представления Dn одномерны или двумерны, а с представлениями Sn всё совсем не так просто,
на сегодняшний день про них известно всё, но это очень большая непростая история.

Пусть имеется перестановочное действие G ↷ X. Тогда ему соответствуют линейное действие на

функциях X → K: G↷ KX =

{ ∑
x∈X

axδx

}
, или на формальных комбинациях: G↷

 ∑
x∈X

почти все ax нули

axx

.
Несмотря на то, что эти записи вылядят идентичными (в случае конечного X), они различаются
— различаются действием G.

На функции f : X → K элементы g ∈ G действуют так: (fg)(x) = f(gx). Но так как речь о левых
действиях, то (g−1f)(x) = f(gx).

Обозначим
⊕
x∈X

Kx = K[X] за множество формальных комбинаций X с коэффициентами из K.

Действие G переставляет базис данного векторного пространства над K, и перестановке базиса
отвечает линейное действие на

⊕
x∈X

Kx.

Оказывается, из примера действия группы самой на себе сдвигами (трансляциями) получаются все
представления групп.

Рассмотрим левое регулярное представление G↷ G:

G×G→ G

g, x 7→ gx

Ему соответствует линейное действие G↷ K[G].

Действие Sn, переставляющее базисные элементы V (dimV = n) не является неприводимым.

Примеры (Представления неабелевых групп).

• Sn ↷ [n]. Если (e1, . . . , en) — базис Kn, то имеется естественное линейное действие Sn ↷
Kn, σei = eσ(i).

Действие не неприводимо: здесь есть одномерное инвариантное подпространство U = K(e1+
· · ·+en). Согласно теореме Машке, у данного подпространства есть инвариантное дополнение
W . Если подумать, то окажется, чтоW = K(e1−e2)+· · ·+K(en−1−en) = {

∑
aiei |

∑
ai = 0}.

Sn действует на W , это стандартное представление σ.

Интересный факт. В характеристике нуль σ неприводимо.

• Конкретизируем: рассмотрим S3. [S3, S3] = A3. |S3/[S3, S3]| = 2. Таким образом, у S3 два
одномерных представления — главное (единица 1S3

) и ещё одно (знак sgn : S3 → K∗).

Сопряжённых классов у S3 три — тип единицы (1,1,1), тип транспозиции (1,2), тип 3-цикла
(3). Порядки классов оттуда — 1, 3, 2 соответственно.
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Неприводимых представлений будет столько же, сколько и классов — три. Используя sum of
squares theorem, можно узнать степень третьего представления. 6 = n21 + n22 + n23 = 12 + 12 +
x2 ⇒ x = 2 (ещё можно использовать, что x ∈ N — число, делящее индекс центра).

K(e1 − e2) + K(e2 − e3) под действием S3 = ⟨(12), (23)⟩ преобразуется в себя под действи-

ем матриц (12) 7→
(
−1 1
0 1

)
; (23) 7→

(
1 0
1 −1

)
. Это ещё одно неприводимое представление

S3. При нём 3-цикл (123) переходит в
(
0 −1
1 −1

)
, и считая следы этих матриц, мы можем

построить таблицу характеров.

1 (13) (123)
1 1 1 1
sgn 1 −1 1
χσ 2 0 1

У этой таблицы есть множество замечательных свойств, но они будут выведены позднее.

• Группа Q8 задаётся копредставлением
〈
i, j, k

∣∣i2 = j2 = k2 = ijk = −1
〉

= {±1,±i,±j,±k}
(при условии (−1)2 = 1). |Q8| = 8 = 23, то есть Q8 — 2-группа. C(Q) = {±1}. Таким
образом, у неё четыре одномерных представления. Классов сопряжённых элементов в данной
группе пять: Q8 = {1} ⊔ {−1} ⊔ {±i} ⊔ {±j} ⊔ {±k}.

1 (1) −1 (1) ±i (2) ±j (2) ±k (2)
1 1 1 1 1 1
χ1 1 1 −1 −1 1
χ2 1 1 −1 1 −1
χ3 1 1 1 −1 −1
χ4 2 −2 0 0 0

В скобках в первой строке пишется количество элементов в соответствующем классе сопря-
жённых.

Последнему представлению соответствуют матрицы Паули, которые построил Кэли: H ={(
z w
−w z

)
| z, w ∈ C

}
при выборе базиса {1, i} в C получает базис(

1 0
0 1

) (
i 0
0 −i

) (
0 1
−1 0

) (
0 i
i 0

)
(Данное представление точное, поэтому неприводимое — у всех одномерных представлений
−1 лежит в ядре). Это и есть образы 1, i, j, k при неком двумерном представлении Q8.

Определение 2.13.4 (Точное представление (faithful representation) π : G → GL(n,K)).
Ker(π) = 1.

• Теперь посмотрим на диэдральную группу Dn =
〈
x, y
∣∣x2 = y2 = (xy)n = 1

〉
при n = 4.

D4 = {1, x, y, xy, yx, xyx, yxy, xyxy = yxyx}. Образующие отвечают симметриям квадрата
относительно диагонали и серединного перпендикуляра к стороне.

C(D4) = {1, xyxy = yxyx}. Снова D4/C(D4) = V . Здесь таблица характеров такая

1 (1) xyxy = yxyx (1) {x, yxy} (2) {y, xyx} (2) {xy, yx} (2)
1 1 1 1 1 1
χ1 1 1 −1 −1 1
χ2 1 1 −1 1 −1
χ3 1 1 1 −1 −1
χ4 2 −2 0 0 0

Последняя строка получена, как точное представление — симметрии квадрата в R2.

x 7→
(
1 0
0 −1

)
y 7→

(
0 1
1 0

)
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И хотя таблицы характеров D4 и Q8 одинаковы, но группы неизоморфны, и различие заклю-
чается, например, в том, что у D4 есть двумерное представление над R, а у Q8 нет.

2.14 Соотношения ортогональности Шура (лемма Шура в мат-
ричной форме)

Пусть π : G→ GL(U), ρ : G→ GL(V ) — два неприводимых представления группы G над одним и
тем же полем K.

Пусть ϕ : U → V — произвольное K-линейное отображение. Сопоставим ему усреднение

ϕ0 =
1

|G|
∑
g∈G

ρgϕπ
−1
g

это уже K[G]-линейное отображение, или сплетающий оператор.

Пусть теперь K алгебраически замкнуто, char(K) = 0 (на самом деле достаточно, чтобы характе-
ристика не делила порядок группы).

Лемма 2.14.1 (Лемма Шура).

• Если U ≇ V , то ϕ0 = 0.

• Если же π = ρ (в частности, U = V ), то тогда ϕ0 — гомотетия с коэффициентом
tr(ϕ0)
dimV = tr(ϕ)

dimV .

Доказательство. ϕ0 =

λ · · · 0
...

. . .
...

0 · · · λ

, а при π = ρ матрица сопрягается (и след не меняется).

Выберем в U базис u1, . . . , um и в V базис v1, . . . , vn. Базисом линейных отображений U → V

являются ϕi,j :

U → V

uh 7→

{
vi, h = j

0, h ̸= j

. Матрица ϕi,j в данных базисах равна ei,j .

Лекция XVII
21 сентября 2016 г.

Теорема 2.14.1 (Соотношения ортогональности Шура). Пусть B : KG ×KG → K — симметриче-
ское скалярное произведение: B(χ, θ) = 1

|G|
∑
g∈G

χ(g)θ(g−1).

1. Если π ≁ ρ, то ∀i, j, k, l : B(πi,j , ρk,l) = 0.

2. Если π = ρ, то B(πi,j , πk,l) =
1

deg(π)δi,lδj,k.

Доказательство. Подставим в качестве ϕ = ei,j ∈M(n,m,K) — линейный оператор Kn → Km.

Для представлений π и ρ в фиксированных базисах определены матричные элементы:

πi,j : G→ K

g 7→ π(g)i,j

и аналогично для ρ:

ρk,l : G→ K

g 7→ ρ(g)k,l

Усредним ϕ = ei,j , получится некое ϕ0. В случае π ≁ ρ: ϕ0 равно нулю, откуда B(π, ρ) = 0.
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Иначе, если π = ρ, то ∃λ ∈ K : ϕ0 = λ id, то есть (ϕ0)k,l = λδk,l. Посчитаем λ: tr(ϕ0) =
1
|G|

∑
g∈G

tr(πgei,jπ
−1
g ) = 1

|G|
∑
g∈G

tr(ei,j) = δi,j . Отсюда deg(π) · λ = δi,j .

Замечание. Для поля C можно устроить эрмитово скалярное произведение C : KG ×KG → C

C(χ, θ) =
1

|G|
∑
g∈G

χ(g)θ(g)

Чаще всего мы будем вычислять скалярное произведение от характеров.

Тогда теорема говорит о том, что все матричные элементы πi,j для всех неприводимых представле-
ний π образуют ортогональный базис пространства CG относительно скалярного произведения C.
Для компактных групп это называется теоремой Петера — Вейля.

Следствие 2.14.1. Пусть π(1), . . . , π(m) — все неэквивалентные неприводимые представления
G. Тогда набор функций

{
π
(i)
k,l | 1 ⩽ i ⩽ m, 1 ⩽ k, l ⩽ deg(π(i))

}
линейно независим.

Доказательство. Рассмотрим матрицу B
(
π
(i)
k,l, π

(j)
k′,l′

)
, она невырождена: это ортогональная пря-

мая сумма
m∑
j=1

deg(π(j)) одномерных подпространств (отвечающих диагональным матричным эле-

ментам) и
m∑
j=1

deg(π(j))(deg(π(j))−1)

2 гиперболических плоскостей.

Заметим, что dimKG = |G|. В этом пространстве нашлись n21 + · · · + n2s линейно независимых
функций (здесь ni = deg(π(i)).

Из теоремы Веддербарна — Артина сразу следует, что они ещё и являются системой образующих
(для замкнутого поля хорошей характеристики).

Мы же это докажем используя технику характеров для замкнутого поля характеристики нуль.

2.15 Первое соотношение ортогональности

Лемма 2.15.1. Оказывается, что если χ, θ — характеры конечномерных представлений над
C, то C(χ, θ) = B(χ, θ). Тем не менее, это разные скалярные произведения (одно эрмитово,
другое симметрическое).

Доказательство. В самом деле, если π — унитарное представление, то π−1
g = πg

t. Любое пред-
ставление эквивалентно унитарному (теорема Машке над C).

Пусть Im(π) ∈ U(n,C). Тогда B(πi,j , πk,l) = 1
|G|

∑
g∈G

πi,j(g)πk,l(g
−1) = 1

|G|
∑
g∈G

πi,j(g)πl,k(g) =

C(πi,j , πl,k). В частности, пусть (π(m))1⩽m⩽s — все неприводимые представления. Тогда набор{
π
(m)
i,j ·

√
deg(π(m)) | 1 ⩽ m ⩽ s, 1 ⩽ i, j ⩽ deg π(m)

}
ортонормирован.

Осталось заметить, что характер — сумма собственных чисел (которые корни из единицы), стоя-
щих на диагонали, а для корней из единицы ω : ω = ω−1.

Теорема 2.15.1 (Первое соотношение ортогональности). Если χ, θ — характеры неприводимых
представлений, то B(χ, θ) = δχ,θ.
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Доказательство. Используем (теорема 2.14.1). Положим χ = π1,1+· · ·+πn,n и θ = ρ1,1+· · ·+ρn,n.

Если π ≁ ρ, то всегда B(πi,i, ρj,j) = 0.

Если же π ∼ ρ, то можно сопрячь матрицу не меняя след, считаем, что π = ρ. Тогда

B(χ, θ) =
1

deg(π)
+ · · ·+ 1

deg(π)︸ ︷︷ ︸
deg(π)

= 1

Вспомним, что характеры постоянны на классах сопряжённости, иначе говоря, центральные функ-
ции на G.

Следствие 2.15.1. Характеры неприводимых представлений линейно независимы.

Доказательство. Напишем линейную зависимость λ1χ1 + · · · + λtχt. По очереди скалярно пере-
множая с χi, получаем λiB(χi, χi) = 0, откуда все коэффициенты в зависимости нулевые.

Следствие 2.15.2. Количество различных неприводимых характеров не превосходит количе-
ство классов сопряжённых элементов.

Доказательство. Прямо следует из линейной независимости.

Дальше уже мы считаем char(K) = 0, в последующих следствиях не подойдёт не делящая порядок
группы.

Следствие 2.15.3. Пусть π — любое представление G. Тогда кратность вхождения неприво-
димого πi в π равна B(χπ, χi) (где χi := χπi

).

Доказательство. По теореме Машке π есть сумма неприводимых представлений:

π = π⊕m1
1 ⊕ · · · ⊕ π⊕mt

t

Следовательно, χπ = m1χ1 + · · ·+mtχt, и B(χπ, χi) = mi.

Следствие 2.15.4 (Теорема Ремака — Крулля — Шмидта). Разложение представления на непри-
водимые определено однозначно с точностью до изоморфизма.

Замечание. Теорема доказывается в гораздо меньшей общности, чем она верна, и используются
гораздо более сильные средства, чем те, которые нужны, но что поделать.

Следствие 2.15.5 (Теорема Фробениуса). π ∼ ρ, если χπ = χρ. Ещё раз отметим, что это верно
только в характеристике нуль.

Доказательство. Всякое неприводимое представление входит в π и ρ с равной кратностью.

Следствие 2.15.6. ∀ представления π : B(χπ, χπ) = 1 ⇐⇒ π неприводимо.

Доказательство. Пусть π = π⊕m1
1 ⊕· · ·⊕π⊕mt

t . Отсюда следует, что B(χπ, χπ) = m2
1+· · ·+m2

t .

Следствие 2.15.7 (Ортогональность первой строке таблицы характеров). Если χ ̸= 1 — характер
неприводимого представления, то

∑
g∈G

χ(g) = 0.

Предостережение. Основной ошибкой начинающих является то, что при подсчёте B(χ, θ) =∑
g∈G

χ(g)θ(g−1) взятие обратного забывается. Всякому классу сопряжённых элементов C ⊂ G мож-

но сопоставить другой класс C−1 ⊂ G, и в общем случае совсем необязательно, что C = C−1.
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2.16 Разложение представление на неприводимые. Sum of squares
formula

Рассмотрим регулярное представление G — действие G слева на групповой алгебре.

reg : G↷ K[G]→ K[G]

g,
∑
h∈G

ahh 7→ ahgh

Посчитаем характер данного представления.

Пусть G ↷ X — действие. С ним связано линейное представление на пространстве с базисом X
π : G↷ K[X].

Теорема 2.16.1 (Fixed points formula). χπ(g) = |FixX g| (где FixX g = {x ∈ X | gx = x}).

Доказательство. Матрицы, в которые отправляются элементы G — матрицы-перестановки. След
такой матрицы равен количеству единичек на диагонали, то есть количеству неподвижных точек.

Следствие 2.16.1. χreg = |G| · δg,1G .

Доказательство. Только единица оставляет какие-то элементы на месте, и для неё все точки
неподвижны.

Пусть K — алгебраически замкнутое поле, char(K) = 0.

Теорема 2.16.2. Каждое неприводимое представление πi группы G входит в разложение регуляр-
ного с кратностью ni := deg(πi).

reg = π⊕n1
1 ⊕ · · · ⊕ πns

s

Доказательство. Вычислим B(χreg,χi
) =

∑
g∈G

χreg(g)χi(g
−1) = 1

|G| · |G| · χi(1) = ni.

Замечание. Это же следует и из теоремы Веддербарна — Артина, причём даже не в характеристике
нуль. Матричное кольцо M(n,K) раскладывается в прямую сумму ровно n неприводимых левых
идеалов — в качестве слагаемых подойдут столбцы {x ∈M(n,K) | ∀j ̸= i : x∗,j = 0}.

Следствие 2.16.2. |G| = n21 + · · ·+ n2t .

Доказательство. Регулярное представление раскладывается в сумму n1 неприводимых степени
n1, n2 неприводимых степени n2, . . .

Следствие 2.16.3. Функции π
(i)
j,k образуют базис пространства KG (здесь π(i)

j,k — матричный
элемент i-го неприводимого представления в клетке в строке j и столбце k).

Доказательство. Они линейно независимы, и их количество равно |G| = dimK(KG).

2.17 Второе соотношение ортогональности (для столбцов)

Будем рассматривать представления G над C.

Пусть χ1, . . . , χt — характеры неприводимых представлений.

В первой соотношении были фиксированы две строки таблицы характеров, и суммирование было
по столбцам. Сейчас сделаем наоборот.
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Теорема 2.17.1. Пусть h, g ∈ G, предположим, что нам уже известно, что количество классов
сопряжённости s = t (теорема 2.19.1).

t∑
i=1

χi(h)χi(g) =

{
|CG(g)|, g ∼ h
0, g ≁ h

Доказательство. Пусть 1, g2, . . . , gs — представители классов сопряжённых элементов, χ1, . . . , χs
– различные неприводимые характеры.

Составим матрицу A = (ai,j)1⩽i,j⩽s, где ai,j =
√∣∣gGj ∣∣ · χi(gj).

Обозначим mh := |gGh |. Первое соотношение ортогональности выглядит так: 1
|G|

s∑
h=1

mhχi(gh)χj(gh) =

δi,j

Если для матрицы A ∈M(n,C) обозначить за A∗ её эрмитовски сопряжённую A∗ def= A
t
, то видно,

что из первого соотношения ортогональности 1
|G|A ·A

∗ = E. Отсюда сразу получается 1
|G|A

∗A = E:

1

|G|

s∑
h=1

√∣∣gGi ∣∣ · ∣∣gGj ∣∣ · χh(gi)χh(gj) = 1

|G|

√∣∣gGi ∣∣ · ∣∣gGj ∣∣ s∑
h=1

χh(gi)χh(gj) = δi,j

При i ̸= j получаем
s∑

h=1

χh(gi)χh(gj) = 0, иначе i = j, и так как |gGi | = |G : CG(gi)|, то |gGi |
|G| =

1
|CG(gG)| , то получается искомая формула.

Лекция XVIII
28 сентября 2016 г.

2.18 Усреднение с весом (averaging with weight)

Раньше все усреднения использовали меру Хаара — все элементы группы имели одинаковый вес
∀g ∈ G : µ(g) = 1

|G| .

Оказывается, можно проделать то же самое для гораздо более широкого класса мер.

Пусть ϕ ∈ Hom(U, V ). Усредним его с помощью f , получив G-инвариантное ϕf . В качестве f здесь
могут выступать центральные функции, поясним это ниже.

Рассмотрим пространство центральных функций на G: cfK(G)
def
=
{
f ∈ KG | ∀g, h ∈ G : f(hg) = f(h)

}
.

Также рассмотрим представление π : G→ GL(V ). Пусть f ∈ cfK(G).

Определим усреднение π(f) =
1
|G|

∑
g∈G

f(g)πg.

Замечание. Если f — необязательно центральная функция, то при отождествлении GK и K[G]
(δg ↔ g) получаем, что π(g) = πg. В общем случае π(f) = π(f), если π рассматривается, как
отображение K[G]→ End(V ).

Лемма 2.18.1. Утверждается, что π(f) ∈ EndK[G](V ), то есть π(f) коммутирует со всеми πg.

Доказательство. Проверим, что ∀g ∈ G : πgπ(f) = π(f)πg.

∀x ∈ G, u ∈ V : π(f)(xu) =
1

|G|
∑
g∈G

f(g)︷ ︸︸ ︷
xx−1

g(xu) = x
1

|G|
∑
g∈G

f(xgx−1)(x−1gx)u = xπ(f)(u)

Замечание. Обратное тоже верно в таком смысле: если для любого представления усреднение по
функции f — G-инвариантно, то усреднение производится по центральной функции.
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Лемма 2.18.2. Пусть f ∈ cfK(G), пусть π — неприводимое представление G над алгебраически
замкнутым полем K, charK = 0. Положим deg π = n.

Тогда π(f) — гомотетия с коэффициентом 1
nB(f, χπ∗).

Доказательство. π(f) — гомотетия по лемме Шура. Посчитаем коэффициент λ =
tr(π(f))

n гомоте-
тии.

λ =
1

n

1

|G|
∑
g∈G

f(g) tr(πg)︸ ︷︷ ︸
χπ(g)

=
1

n

1

|G|
∑
g∈G

f(g) · χπ∗(g−1)

2.19 Количество неприводимых представлений конечной груп-
пы

Как обычно, K алгебраически замкнуто, char(K) = 0 (на самом деле верно и для поля разложения,
char(K) ̸ | |G|).

Теорема 2.19.1. Количество неприводимых различных (неэквивалентных) представлений G над
K равно количеству классов сопряжённых элементов в G.

Доказательство. Пусть c1, . . . , cs — классы сопряжённых элементов, π1, . . . , πt, χ1, . . . , χt — непри-
водимые представления и их характеры соответственно. Характеры — ортонормированная система
функций, по отношению к билинейной форме B, и они являются центральными функциями.

Базис cfK(G) — характеристические функции классов сопряжённости δci : x 7→

{
1, x ∈ ci
0, x /∈ ci

.

Так как χ1, . . . , χt линейно независимы, то t ⩽ s.

Чтобы доказать, что t = s, надо убедиться, что χ1, . . . , χt — полная ортонормированная система,
то есть нет никакой ненулевой центральной функции, ортогональной всем χt.

∀f ∈ cfK(G) : B(f, χi) = 0
?⇒ f = 0

Пусть ∀i : B(f, χi) = 0. Тогда при усреднении получаем ∀i : (πi)(f) = 0.

Так как каждое представление раскладывается в прямую сумму неприводимых, то вообще любое
представление усредняется в ноль, например, регулярное reg : G → GL(K[G]). Пусть (eg)g∈G —
базис K[G]. Таким образом, reg(f)(e1) = 1

|G|
∑
g∈G

f(g)regg(e1) = 1
|G|

∑
g∈G

f(g)eg. Но так как eg —

базис, то все коэффициенты равны нулю.

Действительно, f оказалась равна нулю, откуда χi — полная система, и s = t.

Лекция XIX
19 октября 2016 г.

2.20 Дальнейшие конструкции над представлениями

• Тензорное произведение представлений

Пусть π : G→ GL(U), ρ : G→ GL(V ) — два представления одной группы.

(π, ρ)⇝ π ⊗ ρ :
G → GL(U ⊗ V )
g 7→ πg ⊗K ρg

Замечание. Это совсем не сермяжная истина, это эквивалентно тому, что диагональ опреде-

лена так: ∆ :
K[G] → K[G]
g 7→ g ⊗ g . Для алгебр Ли будет всё совсем иначе.
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Если ввести базис, то окажется, что (π⊗ρ)g = πg⊗ρg, где ⊗ — кронекеровское произведение
матриц. А мы знаем, что tr(x ⊗ y) = tr(x) · tr(y), то есть если перемножить характеры двух
каких-то представлений, то получится тоже характер какого-то представления: χπ ·χρ = χπ⊗ρ.

Конечно, π ⊗ ρ необязательно неприводимо, но если одно из π и ρ одномерно, а другое
неприводимо, то результат — тоже неприводимое произведение (какое-то другое).

Именно так в общем случае строятся представления — берутся все представления, которые
можно построить, дальше их тензорные произведения (например, степени), они снова раскла-
дываются на неприводимые, и так теоретически может найтись всё, но это надо доказывать.

• Наружное тензорное произведение (outward tensor product).

Пусть π : H → GL(U), ρ : G→ GL(V ) — два представления разных групп.

Сопоставим им представление π ⊠ ρ :
H ×G → GL(U ⊗ V )
(h, g) 7→ πh ⊗ ρg

. В матрицах это опять же

кронекеровское произведение матриц.

Замечание. В сравнении с предыдущим пунктом получаем π ⊗ ρ = resG×G
G (π ⊠ ρ).

Их не надо путать, произведение неприводимых непременно неприводимо только если произ-
ведение наружное, а иначе — как правило приводимо.

• m-я внешняя степень.

Пусть π : G → GL(V ). Сопоставим ему
∧m

(π) :
G → GL(

∧m
(V ))

g 7→
∧m

(πg)
. По линейности

определяется ∧m
(π)g(u1 ∧ · · · ∧ um) = πg(u1) ∧ · · · ∧ πg(um)

то есть
∧m

(π)g =
∧m

(πg). Можно посчитать χ∧2
(π)

(g) = 1
2 (χπ(g)

2 − χπ(g2)).

• Точно так же определяется m-я симметрическая степень.

Пусть π : G → GL(V ). Сопоставим ему Sm(π) :
G → GL(Sm(V ))
g 7→ Sm(πg)

. По линейности

определяется
Sm(π)g(u1 ∧ · · · ∧ um) = πg(u1) · . . . · πg(um)

то есть Sm(π)g = Sm(πg).

Полезно помнить формулу для симметрического квадрата χ∧2
(π)

(g) = 1
2 (χπ(g)

2 + χπ(g
2)).

Видно, что
∧2

(π)⊕ S2(π) = π ⊗ π, и действительно χ∧2
(π)

+ χS2(π) = χπ⊗π.

2.21 Представления прямого произведения групп

В данном разделе на самом деле говорится, что K[H ×G] = K[H]⊗K K[G].

Замечание. На модуле A ⊗ B умножение достаточно вводить на разложимых тензорах, и обычно
его определяют по формуле (a1⊗b1)(a2⊗b2) = (a1a2⊗b1b2). Таким образом, тензорное произведение
алгебр — алгебра. Но мы докажем не это.

Теорема 2.21.1. Любое неприводимое представление группы H×G над алгебраически замкнутым
полем характеристики нуль K имеет вид π ⊠ ρ, где π, ρ — неприводимые представления H и G
соответственно. Обратно, любое такое π ⊠ ρ неприводимо.

Доказательство. Сначала докажем, что π ⊠ ρ неприводимо для неприводимых π, ρ.

Ранее была определена билинейная форма BG : KG × KG → K, BG(χ, θ) = 1
|G|

∑
g∈G

χ(g)θ(g−1),

и доказано, что характер χ — характер неприводимого представления, если B(χ, χ) = 1 (след-
ствие 2.15.6).
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Посчитаем BH×G(χπ⊠ρ, χπ⊠ρ). Так как χπ⊠ρ(h, g) = χπ(h)⊗ χρ(g), то

BH×G(χπ⊠ρ, χπ⊠ρ) =
1

|H ×G|
∑

h∈H,g∈G

χπ(h)χρ(g)χπ(h
−1)χρ(g

−1) =

=
1

|H|
∑
h∈H

χπ(h)χπ(h
−1) · 1

|G|
∑
g∈G

χρ(g)χρ(g
−1) = BH(χπ, χπ)BG(χρ, χρ) = 1

Но так как получено ровно столько представлений, сколько и есть классов сопряжённых элемен-
тов, то из соображений количества больше представлений нет. Та же выкладка показывает, что
получены неэквивалентные представления:

BH×G(χπ⊠ρ, χπ′⊠ρ′) =
1

|H ×G|
∑

h∈H,g∈G

χπ(h)χρ′(g)χπ′(h−1)χρ(g
−1) =

=
1

|H|
∑
h∈H

χπ(h)χπ′(h−1) · 1

|G|
∑
g∈G

χρ(g)χρ′(g
−1) = BH(χπ, χπ′)BG(χρ, χρ′) = δπ,π′ · δρ,ρ′

Замечание. Теорема верна и при K, являющимся полем разложения, charK ̸ | |G|.

Лекция XX
24 октября 2016 г.

2.22 Свойства целочисленности представлений

Пусть π : G → GL(n,C) — неприводимое представление (deg π = n). Для любого g ∈ G : gm =
1 ⇒ πmg = πgm = π1 = id, то есть все собственные числа πg — корни степени m из единицы. В
частности, χπ(g) ∈ Z

[
m
√
1
]
⩽ A.

Пусть C ⊂ G — класс сопряжённых элементов.

Лемма 2.22.1.
∑
g∈C

χπ(g)
deg(π) ∈ A.

Доказательство.
∑
g∈C

πg является центральным элементом:

∑
g∈C

πg · πx = πx ·
∑
g∈C

πg

Тем самым (лемма Шура), ∃λ ∈ C :
∑
g∈C

πg = λ id. Посчитаем след: tr

(∑
g∈C

πg

)
= nλ, но на самом

деле λ ∈ A, например, так как это корень характеристического многочлена
∑
g∈C

πg (а
∑
g∈C

g ∈ K[G]

— целый элемент над K (теорема 2.13.1)).

Следствие 2.22.1. Над C степень любого неприводимого представления делит порядок группы.

Доказательство. Пусть π — неприводимое представление. Пусть χ = χπ. Тогда B(χ, χ) = 1 ⇐⇒∑
g∈G

χ(g)χ(G−1) = |G|. Теперь поделим обе части равенства на n.

∑
C⊂G

χ(C)︸ ︷︷ ︸
∈A

∑
h∈C

χ(h)

n︸ ︷︷ ︸
∈A

=
|G|
n

Отсюда |G|
n ∈ A, но по лемме Гаусса A ∩Q = Z.
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Теорема 2.22.1 (Следствие из предыдущей). Над C степень n любого неприводимого представле-
ния π : G→ GL(V ) делит индекс центра.

Доказательство. Рассмотрим π⊠m : Gm = G× · · · ×G︸ ︷︷ ︸
m

→ GL(V ⊗m). Оно неприводимо, но точным

не является. Пусть H := {(h1, . . . , hm) ∈ C(G)m | h1 · . . . · hm = 1} P Gm.

Можно рассмотреть дефляцию представления π⊠m : G/H → GL(V ⊗m). Она всё ещё неприводима
— образ остался прежним.

Порядок факторгруппы равен |G|m
|C(G)|m−1 = |G|·|G : C(G)|m−1, степень представления равна deg(π)m.

Тогда
(deg(π))m

∣∣∣ |G| · |G : C(G)|m−1

и так как это верно для любого m ∈ N, то deg(π)
∣∣∣ |G : C(G)|.

Интересный факт. Пусть K = C, A ⩽ G — абелева подгруппа. Тогда степень неприводимого

представления не больше |G : A|, а если A P G, то deg(π)
∣∣∣ |G : A|.

2.23 Индуцированные представления

Пусть H P G. Тогда можно построить инфляцию представления π : G/H → GL(V ), это будет
представление

π̃ : G→ GL(V )g 7→ πgH

Обратно, если π : G→ GL(V ) и H ⩽ Ker(π), то есть дефляция

π̃ : G/H → GL(V )gH 7→ πg

Теперь пусть H ⩽ G — просто подгруппа. По представлению π : G → GL(V ) можно постро-
ить ограничение resGH(π). Однако совсем необязательно ограничение неприводимого представления
неприводимо.

Чтобы пройти в обратную сторону, построим по представлению подгруппы представление группы.
π : H → GL(V ). Построим индуцированное представление indGH(π) : G →? В конструкции
индуцированного представления участвует не только само представление π, но и действие G ↷
G/H.

2.23.1 Расширение скаляров

Пусть K/F — расширение полей (F ⩽ K). Пусть V — векторное пространство над K, его можно
рассматривать, как векторное пространство над F — надо забыть про умножение на элементы K,
не лежащие в F .

Можно сделать наоборот. Если U — векторное пространство над F , то можно сделать векторное
пространство над K: о K ⊗F U можно мыслить, как о векторном пространстве над K: действие
устроено так:

α(β ⊗ x) = (αβ)⊗ x, при α, β ∈ K,x ∈ U

dimK(K ⊗F U) = dimF (U), конструкция называется расширением скаляров.

Дальше будем действовать по аналогии с этим при определении индуцированного представления.
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2.23.2 Компактная индукция (compact induction)

Если дано представление π : H → V , то V является K[H] модулем. Чтобы превратить его в K[G]
модуль, можно взять тензорное произведение

K[G]⊗K[H] V

Тут стоит остановиться и пояснить, что есть тензорное произведение над некоммутативным коль-
цом.

Определение 2.23.1 (Сбалансированное отображение ϕ). ϕ(uλ, v) = ϕ(u, λv).

Определение 2.23.2 (Биадддитивное отображение ϕ). ϕ(u, v1 + v2) = ϕ(u, v1) + ϕ(u, v2) и ϕ(u1 +
u2, v) = ϕ(u1, v) + ϕ(u2, v).

Пусть R — необязательно коммутативное кольцо, U — правый R-модуль, V — левый R-модуль.
Тогда U ⊗R V — абелева группа со сбалансированным биаддитивным отображением ϕ : U × V →
U ⊗R V , удовлетворяющая следующему универсальному свойству:

Для любой абелевой группы A, любого сбалансированного биаддитивного ψ : U × V → A: ∃!θ :
U ⊗R V → A — гомоморфизм абелевых групп.

U × V U ⊗R V

A

ψ

ϕ

θ

Пусть M — правый модуль над R, N — левый модуль над R, R — необязательно коммутативное
кольцо. Тогда M ⊗R N — абелева группа, которую можно представить в виде

M ⊗R N =M ⊗Z N/ ⟨m⊗ αn−mα⊗ n|m ∈M,n ∈ N,α ∈ R⟩

Если M является S − R-бимодулем, то M ⊗R N является левым S-модулем (структура вводится
естественным образом). Надо всё-таки проверить корректность: например, модуль, по которому
происходит факторизация, должен быть S-инвариантным.

Пусть ϕ : R → S — гомоморфизм колец. Ему сопоставляется функтор ϕ# : S-mod → R-mod.
S-модуль M превращается в R-модуль так: r ·m = ϕ(r) ·m. Если ϕ — вложение колец, то функтор
ϕ# — забывающий, S-модуль превращается в R-модуль.

Также можно сопоставить ϕ# : R-mod → S-mod — расширение скаляров. Получаем левый S-
модуль ϕ#(M) = S ⊗RM , где S рассматривается, как S −R-бимодуль.

Теперь пусть ϕ : H → G — гомоморфизм групп. Тогда его можно продолжить до гомоморфизма
групповых алгебр ϕ : F [H]→ F [G].

Если U — F [H]-модуль, соответствующий представлению π, то ϕ#(U) — F [G]-модуль. Если H ⩽
G и ϕ — вложение, то соответствующее представление — индуцированное с представления π,
обозначим его indGH(π).

Наоборот, если ρ — представление группы G, V — соответствующий F [G]-модуль, то ϕ#(V )
— F [H]-модуль. Если H ⩽ G и ϕ — вложение, то соответствующее представление — сужение
представления π, обозначается resGH(π).

В частности, если G — абелианизация H, то ϕ : H ↠ G сюръективно. Его можно продолжить до ϕ :
F [G]↠ F [Gab]. Тогда ограничение представления ϕ# — инфляция, индуцированное представление
ϕ# — дефляция.

Заметим, что K[G]⊗K[H] V — фактормодуль модуля K[G]⊗K V :

Если v1, . . . , vn — базис V над K, то над K базисом K[G] ⊗K V является система g ⊗ vi. При
появлении дополнительных соотношений стало возможным переносить элементы из H по другую
сторону ⊗: gh⊗ v = g ⊗ hv.
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Пусть T = {x1, . . . , xt} — правая трансверсаль к H в G, то есть ∀g ∈ G : ∃!i = 1..t, h ∈ H : g = xih.

G = x1H ⊔ · · · ⊔ xtH

Лемма 2.23.1. Базисом K[G]⊗K[H]V при фиксированной трансверсали T = (x1, . . . , xt) и базисе
(v1, . . . , vn) являются xi ⊗ vj .

В частности, dimK(indGH(V )) = |G : H|dimK(V ).

Лекция XXI
26 октября 2016 г.

Построение индуцированного модуля выглядело так: строится G-модуль V = indGH(U), такой, что

1. U ⩽ V .

2. V = x1U ⊕ · · · ⊕ xtU .

3. Вводится линейное действие G↷ V .

Без упоминания тензорного произведения весьма утомительно проверять, что данная конструкция
не зависит от выбора представителей.

2.23.3 Полная индукция (complete induction)

В то время как компактная индукция является аналогом прямой суммы, полная индукция является
аналогом прямого произведения, то есть для бесконечных групп конструкция — куда больше. Для
конечных групп же конструкции изоморфны, что вскоре будет показано.

Рассмотрим множество H-инвариантных функций, покамест обозначим его с большой буквы

IndGH(U) = {f : G→ U | ∀h ∈ H,x ∈ G : f(hx) = πh(f(x))}

Теперь устроим действие G↷ IndGH(U) следующим образом:

∀x, g ∈ G, f ∈ IndGH(U) : (gf)(x) = f (xg)

Так как действия на x слева и справа независимы, то определение корректно. Это действительно
действие:

g1(g2f(x)) = g2f(xg1) = f((xg1)g2) = f(x(g1g2))

IndGH(U) можно рассматривать, как K[G]-модуль, найдём базис данного пространства функций.

В отличие от компактной индукции, где элементы H действовали на G справа, здесь всё наоборот,
поэтому нам пригодится левая трансверсаль к H в G. Чтобы всё было согласовано, построим её
по правой трансверсали, взяв обратные: T−1 = {x−1

1 , . . . , x−1
t }.

G = Hx−1
1 ⊔ · · · ⊔Hx

−1
t

Введём функции

fxi,u : G→ U

g 7→

{
πh(u), g = hx−1

i ∈ Hx
−1
i

0, g /∈ Hx−1
i

Если (u1, . . . , un) — базис U , то набор функций fxi,uj
является базисом IndGH(U).

Видим, что базисы indGH и IndGH равномощны. Векторные пространства indGH(U) и IndGH(U) изо-
морфны, но для конечных групп они ещё и являются эквивалентными представлениями.

Теорема 2.23.1. Если |G| <∞, H ⩽ G, U — H-модуль, то indGH(U) ∼= IndGH(U), как G-модули.
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Доказательство. Изоморфизм можно устроить на базисе так: xi ⊗ uj ↔ fxi,uj . G действует на
xi ⊗ u так: пусть gxi = xjh для xj ∈ T, h ∈ H. Тогда

g(xi ⊗ u) = (gxi)⊗ u = (xjh)⊗ u = xj ⊗ πh(u)

С другой стороны, если подействовать тем же элементом g на fxi,u, то получится вот что:

gfxi,u(x) = fxi,u(xg) =

{
πb(u), xg = bx−1

i ∈ Hx
−1
i

0, иначе

Таким образом, gfxi,u отправляет не в ноль элементы x, такие, что x ∈ Hx−1
i g−1. Мы уже ранее

сказали, что x−1
i g−1 = h−1x−1

j . Видим, что

gfxi,u(x) =

{
πb(u) = πbh−1(πh(u)), x = bh−1x−1

j ∈ Hx
−1
j

0, иначе

Действительно, это совпадает с определением fxj ,πh(u), действия на базисах сошлись.

Матрица индуцированного представления выглядит так

πg =

πx−1
1 gx1

· · · πx−1
1 gxt

...
. . .

...
πx−1

t gx1
· · · πx−1

t gxt


где запись означает ненулевое значение πx−1

i gxj
только если x−1

i gxj ∈ H.

Таким образом, матрица индуцированного представления — блочно-мономиальная, и indGH(U) =
x1U ⊕· · ·⊕xtU . Операторы πg сначала переставляют эти слагаемые, а потом на каждом действуют
оператором πh для некоторого h (для каждого U — h — своё).

2.24 Индуцированные характеры

Пусть π : H → GL(U) — представление, χ = χπ. Мы построили indGH(π) =: πG : G→ GL(V = UG).

Посчитаем характер χG : G→ K. Для этого сначала продолжим характер χ до функции на G:

χ0(G) : G→ K

g 7→

{
χ(g), g ∈ H
0, g /∈ H

χ0 — совсем необязательно центральная функция на G.

Теорема 2.24.1. χG(g) =
∑
xi∈T

x−1
i gxi∈H

χ(x−1
i gxi).

Доказательство. Характер — сумма диагональных элементов, и так как матрица πG блочно-
мономиальная, то суммировать надо характеры ровно тех πx−1

i gxi
, где x−1

i gxi ∈ H.

Следствие 2.24.1. χG(g) =
∑
xi∈T

χ0(x−1
i gxi).

Следствие 2.24.2. Чтобы суммировать не по xi ∈ T , а по y ∈ G, надо просто заменить y = xih.
χ — центральная на H функция, поэтому всё сойдётся:

χG(g) =
1

|H|
∑
y∈G

y−1gy∈H

χ(y−1gy)
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Следствие 2.24.3. Объединяя предыдущие два, получаем

χG(g) =
1

|H|
∑
y∈G

χ0(y−1gy)

2.24.1 Формула слияния (fusion formula)

Пусть H ⩽ G, g ∈ G. Посмотрим на gG ∩H, это объединение некоторых классов сопряжённости в
H:

gG ∩H = hH1 ⊔ · · · ⊔ hHm
Эти элементы h1, . . . , hm называются представителями классов сопряжённых с g в H.

Теорема 2.24.2. Если χ — характер H ⩽ G, g ∈ G, h1, . . . , hm — представители классов сопря-
жённых с g в H, то

χG(g) = |CG(g)|
m∑
i=1

χ(hi)

|CH(hi)|

Поскольку g ∼G hi, то CG(g) ∼ CG(hi) и, значит, формулу можно переписать в виде

χG(g) =

m∑
i=1

|CG(hi) : CH(hi)| · χ(hi)

Доказательство. Введём Yi :=
{
y ∈ G | y−1gy ∼H hi

}
, положим Y := Y1 ⊔ · · · ⊔ Ym. Запишем

найденную ранее формулу (следствие 2.24.2) и будем её преобразовывать:

χG(g) =
1

|H|
∑
y∈G

y−1gy∈H

χ(y−1gy) =
1

|H|
∑
y∈Y

χ(y−1gy) =
1

|H|

m∑
i=1

∑
y∈Yi

χ(y−1gy) =
1

|H|

m∑
i=1

|Yi|χ(hi)

Осталось доказать, что |Yi|
|H| =

|CG(g)|
|CH(hi)| .

Для этого заметим, что Yi = CG(g)yiH: ⊂ очевидно, ⊃ показывается так:

y−1gy ∼H hi ⇒ ∃h ∈ H : hy−1gyh−1 = hi, и далее{
y−1
i gyi = hi

hy−1gyh−1 = hi
⇒ yihy

−1 ∈ CG(g)⇒ y ∈ CG(g)yih

Далее для подсчёта количества элементов в двойном смежном классе можно воспользоваться
формулой Фробениуса, учитывая, что CG(g) ∩H = CH(hi).

В нормальной подгруппе H P G видно, что при g /∈ H сумма пустая, то есть характеры, индуци-
рованные с нормальной подгруппы, сконцентрированы на H.

Лекция XXII
26 октября 2023 г.

Интересный факт. Индуцирование транзитивно: пусть F ⩽ H ⩽ G. Тогда indGF (χ) = indGH(indHF (χ)).

2.24.2 Закон взаимности Фробениуса

Пусть H ⩽ G, π : H → GL(U), ρ : G→ GL(V ) — неприводимые представления.

Рассмотрим πG := indGH(π) и ρH := resGH(ρ). Закон взаимности Фробениуса говорит, что πG содер-
жит ρ с той же кратностью, что ρH содержит π.
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Теорема 2.24.3. Пусть χ ∈ cfK(H), ρ ∈ cfK(G). Тогда BG(χ
G, ρ) = BH(χ, ρH). Здесь χG —

индуцирование центральной функции по формулам, полученным ранее (они все дадут одинаковый

результат, так как выведены одна из другой), ρH — ограничение ρ
∣∣∣
H
.

Доказательство.

BG(χ
G, ρ) =

1

|G|
∑
g∈G

χG(g)ρ(g−1) =
1

|G|
1

|H|
∑
g∈G

∑
y∈G

χ(y−1gy)ρ(g−1) =

Заменим порядок суммирования: пусть h = y−1gy.

=
1

|G|
1

|H|
∑
h∈H

∑
y∈G

χ(h)ρ(yh−1y−1) =
1

|G|
∑
y∈G

∑
h∈H

χ(h)ρ(h−1)︸ ︷︷ ︸
BH(χ,ρH)

Следствие 2.24.4. Если A ⩽ G — абелева подгруппа, ρ : G→ GL(U) неприводимо, то deg(ρ) ⩽
|G : A|.

Доказательство. Все неприводимые представления A одномерны. ρ
∣∣∣
A
— прямая сумма неприво-

димых представлений A.

Пусть π — какое-то из них. Тогда ρ входит в indGA(π), но deg(indGA(π)) = |G : A|.

2.24.3 Альтернативное доказательство закона взаимности Фробениуса

В абстрактной ситуации пусть ϕ : R→ S – гомоморфизм необязательно коммутативных колец.

ϕ# : R-mod → S-mod

M 7→ S ⊗RM — задали на M структуру S-модуля

ϕ# : S-mod → R-mod

M 7→M — забывающий функтор

Пусть M — R-модуль, N — S-модуль.

Предложение 2.24.1. Имеет место следующее универсальное свойство:

Для любого гомоморфизма R-модулей ϕ: ∃! гомоморфизм S-модулей ψ : S ⊗RM → N .

M S ⊗RM

N

ϕ

i

ψ

Доказательство. Элементы {1⊗m | m ∈M} порождают S ⊗M . Чтобы диаграмма была комму-
тативной, необходимо равенство ψ(i(m)) = ψ(1 ⊗ m) = ϕ(m). Значит, ψ единственно, если уж
существует.

Зададим на разложимых тензорах ψ(s ⊗ m) = s · ϕ(m). Оно билинейно и распространяется по
линейности на S ⊗RM .

Следствие 2.24.5. Имеет место естественный изоморфизм HomR(M,ϕ#(N)) ∼= HomS(ϕ#(M), N).

В теории категорий такие два функтора ϕ# и ϕ# называются сопряжёнными.

61



Теорема 2.24.4 (Закон взаимности Фробениуса). Предположим, что H ⩽ G, char(F ) = 0 (на
самом деле достаточно char(F ) ̸ | |G|), F алгебраически замкнуто. Пусть даны два представления
π : H → GL(V ), ρ : G→ GL(U).

Тогда Mor(indGH(π), ρ) ∼= Mor(π, resGH ρ).

Отсюда следует BH(χπ, χresGH ρ) = BG(χindG
H π, χρ). Обычно пишут BH(χπ, res

G
H χρ) = BG(ind

G
H πχ, χρ)

Доказательство. Рассмотрим следующую ситуацию.

Пусть ϕ : H ↪→ G — вложение. Пусть V — F [H]-модуль, U — F [G]-модуль.

Тогда HomF [G](ϕ#(V ), U) ∼= HomF [H](V, ϕ
#(U)).

Это F -линейный изоморфизм (проверить), то есть изоморфизм векторных пространств над F .

Пусть U, V — простые модули, поле алгебраически замкнуто и характеристики, не делящей поря-

док группы. Пусть ϕ#(U) =
k⊕
i=1

Vi — разложение в сумму простых F [H]-модулей.

dimF Hom

(
V,

k⊕
i=1

Vi

)
= количество Vi ∼= V (лемма Шура)

Аналогично пусть ϕ#(V ) =
k⊕
i=1

Ui — разложение в сумму простых F [G]-модулей.

dimF Hom(ϕ#(V ), U) = количество Ui ∼= U

Но тогда получается, что количество вхождений V в ϕ#(U) равно количеству вхождений U в
ϕ#(V )

Теперь пусть π =
⊕
πi, ρ =

⊕
ρj — разложение в прямую сумму неприводимых. indGH(π) =⊕

indGH(πi) так как тензорное произведение дистрибутивно относительно прямого произведения:
F [G]⊗ (

⊕
Vi) =

⊕
(F [G]⊗ Vi).

Также resGH(ρ) =
⊕

res ρi, так как res — просто сужение.

Из билинейности B и того, что χπ =
∑

indGH χπi
, χρ =

∑
resGH χρj следует равенство скалярных

произведений в общем случае.
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Глава 3

Теория категорий

Лекция XXIII
14 ноября 2023 г.

До сих пор в повествовании использовались объекты, которые представлялись в системе аксиом
ZFC, как множества.

Теория категорий изучает подчас настолько большие классы объектов-множеств, что в множество
их не поместить. Так, банальным примером является категория всех множеств, и, как широко
известно, множество всех множеств образовать нельзя.

Ввиду этого в теории категорий используются классы. Для наших потребностей достаточно ду-
мать, что классы ведут себя похоже на множество, но лишь могут содержать больше объектов,
чем способно множество. C классами надо обращаться осторожно: например, нельзя создать класс
всех подклассов данного класса.

В дальнейшем повествовании данные теоретико-множественные тонкости будут опущены.

Определение 3.0.1 (Категория C). Совокупность следующих объектов:

• Класс объектов ObjC.

• Для каждых A,B ∈ ObjC множество морфизмов (стрелок) MorC(A,B).

Если (A,B) ̸= (A′, B′) (где A,B,A′, B′ ∈ ObjC), то MorC(A,B) ∩MorC(A
′, B′) = ∅.

Таким образом, по морфизму α ∈ MorC(A,B) однозначно восстанавливаются A,B, их обо-
значают A := source(α), B := target(α)

• Закон композиции морфизмов: ∀A,B,C ∈ ObjC определено

MorC(B,C)×MorC(A,B)→ MorC(A,C)

(α, β) 7→ αβ

Замечание. Иногда композицию записывают в обратном порядке:MorC(A,B)×MorC(B,C)→
MorC(A,C).

• ∀A ∈ ObjC определён тождественный морфизм idA ∈ MorC(A,A), такой, что

∀B,C ∈ ObjC : ∀β ∈ MorC(A,B), γ ∈ MorC(C,A) : β idA = β и idA γ = γ

• Композиция ассоциативна, как только определена:

∀A,B,C,D ∈ ObjC : ∀α ∈ MorC(A,B), β ∈ MorC(B,C), γ ∈ MorC(C,D) : (γβ)α = γ(βα)

Далее будем пользоваться сокращёнными обозначениями:
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• Вместо A ∈ ObjC можно писать A ∈ C.

• Вместо α ∈ MorC(A,B) можно писать α ∈ Mor(A,B) или даже α : A → B, если категория
ясна из контекста. В общем случае морфизм — необязательно отображение, но в конкретных
категориях это так, поэтому удобно мыслить о морфизмах, как о отображениях.

• Также определим класс всех морфизмов данной категории MorC =
⊔

A,B∈C

Mor(A,B).

Примеры (Категории).

• Категория C с одним объектом: ObjC = {A}. Аксиомы категории говорят, что Mor(A,A) —
моноид с нейтральным объектом idA.

• Конкретные категории — неформально говоря, объекты со структурой, где морфизмы сохра-
няют данную структуру).

– Set. Объектами являются множества, морфизмами — отображения.

– Set∗. Объектами являются множества с отмеченной точкой (X,x), x ∈ X, морфизмами
— отображения, сохраняющие отмеченную точку.

– Group — категория групп с гомоморфизмами групп.

– Ring — категория ассоциативных (необязательно коммутативных) колец с единицей с
унитальными гомоморфизмами (сохраняющими единицу).

– Rng — категория ассоциативных (необязательно коммутативных) колец с гомоморфиз-
мами колец.

– CRing — коммутативные кольца с единицей и унитальными гомоморфизмами.

– CRng — коммутативные кольца с гомоморфизмами колец.

– Ab — абелевы группы и аддитивные отображения.

– R-mod — левые R-модули и R-линейные отображения.

– mod-R — правые R-модули и R-линейные отображения.

– VectF — конечномерные векторные пространства и F -линейные отображения.

– Top — топологические пространства и непрерывные отображения.

– Top∗ — базированные топологические пространства (с отмеченной точкой) и непрерыв-
ные отображения, сохраняющие эту точку.

Определение 3.0.2 (Изоморфизм (изо) α : A → B). Двусторонне обратимый морфизм: ∃β : B →
A : αβ = idB , βα = idA.

Замечание. Как и в теории групп, если ∃β, β′ : B → A : αβ = idB , β
′α = idA, то из ассоциативно-

сти β = β′.

Определение 3.0.3 (Малая категория C). ObjC — множество.

Примеры (Ещё категории).

• Определение 3.0.4 (Группоид). Малая категория, в которой всякий морфизм — изоморфизм.

Например, в топологическом пространстве можно ввести аналог фундаментальной группы —
фундаментальный группоид, в котором объекты — некоторые точки пространства, стрелки
— пути из начала стрелки в её конец (отфакторизованные по связанной на концах гомотоп-
ности, естественно).

• Пусть Γ = (V,E) — ориентированный граф.

– PΓ — категория путей в Γ, для x, y ∈ V : MorPΓ
(x, y) — пути из x в y. Композиция

путей — конкатенация.
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– Категория достижимости CΓ. Для x, y ∈ V : |MorCΓ(x, y)| =

{
1, x→ · · · → y

0, y недостижим из x
.

• Пусть (X,⩽) — частично упорядоченное множество, poset. Определим CX . ObjCX = X, |MorCX
(x, y)| ={

1, x ⩽ y

0, иначе
, она часто используется, как индексирующая категория.

• Категория матриц M (над кольцом R с единицей). ObjM = N. MorM(m,n) = Mn×m(R).
Композиция в данной категории — умножение матриц:

Mor(m,n)×Mor(k,m)→ Mor(k, n)

Mn×m(R)×Mm×k(R)→Mn×k(R)

x, y 7→ xy

Как будет видно позже (подраздел 3.3.1), эта категория эквивалентна категории конечномер-
ных векторных пространств.

• Категория стрелок. Пусть C — категория, тогда ArrC — тоже категория. ObjArrC = MorC.
Пусть α : A→ B, β : C → D. Тогда MorArrC

(α, β) = {(ϕ, ψ) | ϕ : A→ C,ψ : B → D,ψα = βϕ}

A B

C D

ϕ ψ

α

β

• Пусть Γ = (V,E) — ориентированный граф, C — категория.

Определим категорию диаграмм в типе Γ в категории C, назовём её DΓ
C.

Предыдущий пример — данный пример для графа Γ следующего вида: • •

Формально ObjDΓ
C = {(fo, fm) | fo : V → ObjC, fm : E → MorC}, причём стрелки согласо-

ваны: ∀x ∈ E : fo(source(x)) = source(fm(x)) и fo(target(x)) = target(fm(x)).

MorDΓ
C

(
(fo, fm), (go, gm)

)
= {ϕ : V → MorC | ϕ(x) ∈ MorC(fo(x), go(x))}, причём морфизма-

ми являются только те ϕ, что ∀(x, y) ∈ E диаграмма ниже коммутативна:

fo(x) fo(y)

go(x) go(y)

ϕ(x) ϕ(y)

fm((x,y))

gm((x,y))

Например, для графа
• •

• •

объекты — это диаграммы вида
A B

C D

α

δ

γ β , а морфизмы

— это диаграммы вида
A B

C D A′ B′

C ′ D′

α

δ

γ β

γ′

α′

δ′

β′

Стоит обратить внимание, что так как DΓ
C — категория всех диаграмм, а не только комму-

тативных, то не весь параллелепипед выше коммутативен. В связи с этим удобнее рассмат-
ривать категорию коммутативных диаграмм, где объектами являются не просто диаграммы,
а коммутативные диаграммы.
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Лекция XXIV
16 ноября 2023 г.

3.1 Универсальные объекты

Пусть C — категория, I, F ∈ C.

Определение 3.1.1 (I — инициальный (начальный) объект). Для любого A ∈ C : |Mor(I, A)| = 1.

Определение 3.1.2 (F — финальный (терминальный) объект). Для любого A ∈ C : |Mor(A,F )| = 1.

Примеры.

• В множествах инициальный объект — пустое множество, финальный — одноэлементное.

• В Group тривиальная группа одновременно является и инициальным, и терминальным объ-
ектом.

Определение 3.1.3 (Нулевой объект). Одновременно финальный и инициальный объект.

• В категории полей таких объектов нет (гомоморфизм полей сохраняет характеристику, и
вообще всякий гомоморфизм полей инъективен).

• В CRing и в Ring инициальный объект — Z, финальный объект — нулевое кольцо (кольцо,
в котором 0 = 1).

• В категории F -алгебр с отмеченной точкой финальный объект — ({0}, 0), а инициальный
объект побольше — (F [x], x). В самом деле, из инициального объекта должна вести (един-
ственная) стрелка в любой другой объект, и данная стрелка должна однозначно определяться
образами отмеченной точки и единицы.

Вспомним универсальное свойство локализации:

R S−1R

A
∀ψ

ϕ

∃!θ

∀ψ : R→ A, такого, что ψ(S) ⊂ A∗ : ∃!θ : S−1R→ A, такой, что диаграмма коммутативна.

Этому соответствует инициальный объект в категории C, такой, что ObjC = {ϕ : R→ A | ϕ(S) ⊂ A∗}
и MorC(ϕ, ψ) = {α : target(ϕ)→ target(ψ) | αϕ = ψ}.

R A

B
ψ

ϕ

α

Вообще, всякий объект с универсальным свойством — инициальный или финальный в некоторой
категории, но для этого именно нужна универсальность — так, у алгебраического замыкания есть
нетривиальные изоморфизмы, оно единственно с точностью до не единственного изоморфизма.

Будем говорить, что объект единственен, если он определён единственным образом с точностью
до единственного изоморфизма.

Предложение 3.1.1. Инициальный объект единственен (если существует).

Доказательство. Пусть I, I ′ — два инициальных объекта. Mor(I, I ′) = {α},Mor(I ′, I) = {β},
αβ ∈ Mor(I ′, I ′), и из инициальности I ′ : αβ = idI′ .

Аналогично βα = idI .
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3.2 Функторы и не только

3.2.1 Противоположная категория

Пусть C — категория, тогда Cop — противоположная категория:

ObjCop = ObjC ∀A,B ∈ Cop : MorCop(A,B) = MorC(B,A)

α ·
C
β = β ·

Cop
α

Неформально говоря, это категория с развёрнутыми стрелками.

Всякому утверждению соответствует двойственное, и, например, доказав, что инициальный объект
единственен, мы автоматически доказали единственность и финального объекта — принцип «два
по цене одного».

3.2.2 Декартово произведение категорий

Пусть B,C — категории.

Определение 3.2.1 (Декартово произведение категорий B×C). Obj(B×C) = Obj(B)×Obj(C),
MorB×C((B,C), (B

′, C ′)) = MorB(B,B′)×MorC(C,C
′). (α, β)(α′, β′) = (αα′, ββ′).

3.2.3 Мономорфизмы и эпиморфизмы

Определим аналоги инъекции и сюръекции. Инъекция не склеивает точки, но в категориях у
объектов нет точек, поэтому надо пойти другим путём.

Определение 3.2.2 (Мономорфизм (моно)). Морфизм α, такой, что его можно сокращать слева:
∀ϕ, ψ : αϕ = αψ ⇒ ϕ = ψ. Имеется в виду, что данное свойство выполняется для всех ϕ, ψ, таких,
что αϕ и αψ определены.

Иными словами, мономорфность α означает, что коммутативность диаграммы ниже влечёт ϕ = ψ.

• • •
ϕ

ψ

α

Замечание. Диаграмма с кратными стрелками называется коммутативной, если композиция любых
двух (или более) стрелок совпадает, но кратные стрелки не обязаны быть равны друг другу.

Двойственно, морфизм называется эпиморфизмом (эпи), если на него можно сокращать справа.

В конкретных категориях совсем не обязательно мономорфизмы — инъективны (хотя это довольно
часто), эпиморфимзы — сюръективны (что уже видно из примеров ниже).

Однако всегда инъекции — моно, сюръекции — эпи.

Примеры.

• В Set мономорфизмы и инъекции совпадают, также как и эпиморфизмы и сюръекции.

• В категории Group мономорфизмы и инъекции тоже совпадают:

G H

Z

α

17→x 17→y

α(x)=α(y)

Чтобы проверить, что α — инъекция, рассмотрим две стрелки Z→ G, отправляющие 1 в два
разных элемента x, y ∈ G. Если α уравнивает все такие стрелки, то есть α(x) = α(y) всегда
влечёт x = y, то α — правда инъекция.
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• В CRing вложение Z ↪→ Q — очевидно, не сюръекция, хотя и эпиморфизм: в компози-
ции Z Q R всякий морфизм из Z или из Q однозначно определяется образом

единицы.

Любая локализация — эпиморфизм, и вообще бывают ещё эпиморфизмы, не являющиеся
композицией сюръекции и локализации, но построить их непросто.

• В Group эпиморфизмы — сюръекции.

Идея доказательства. Всякий морфизм в Group разложим в композицию эпиморфизма
(морфизма на образ) и мономорфизма (вложения образа). Тогда если нашёлся несюръектив-
ный эпиморфизм, то найдётся вложение H ↪→ G, являющееся эпиморфизмом (при H .⩽G).

Рассмотрим амальгамированное произведение G ∗
H
G, оно определено в следующем абзаце.

Рассмотрим две изомрфные копии G : Ĝ ∼= G ∼= G, такие, что Ĝ∩G = H. Амальгамированное
произведение Ĝ ∗

H
G состоит из всевозможных слов ĝ1g1ĝ2g2 · . . . · ĝngn, где ĝi ∈ Ĝ, gi ∈ G.

Ещё надо добавить соотношения


(ĝh) · (h−1g) ∼ ĝ · g
ĝ1 · 1G · ĝ2 = ĝ1 · ĝ2
g1 · 1Ĝ · g2 = g1 · g2

, где ĝ, ĝ1, ĝ2 ∈ Ĝ, g, g1, g2 ∈ G, h ∈ H

и отфакторизовать по их нормальному замыканию. Если H = {1}, то Ĝ ∗
H
G — свободное

произведение. Далее надо доказать, что если ĝ ∈ Ĝ \H, g ∈ G \H, то элементы ĝ, g ∈ Ĝ ∗
H
G

не равны. Если это доказано, то далее видим, что при H .⩽ G нарушается определение
эпиморфизма:

H G G1 ∗
H
G2

g 7→g

g 7→ĝ

• В категории метрических пространств отображения с плотным образом — эпиморфизмы. В
любом хаусдорфовом пространстве это тоже так (но только первой аксиомы отделимости
недостаточно).

3.2.4 (Ковариантные) функторы

Определение 3.2.3 ((Ковариантный) функтор между категориями B и C). Класс отображений

• F : ObjB→ ObjC.

• ∀X,Y ∈B: FX,Y : MorB(X,Y )→ MorC(F(X),F(Y )).

причём отображения должны сохранять композицию и единицу (второе условие обязательно, на-
пример, в категории из одного элемента — моноиде — очевидно недостаточно требовать только со-
хранения композиции, единица априори не сохранится). Функтор обозначают записью F : B→ C.

Определение 3.2.4 (Строгий функтор F). ∀X,Y ∈B : FX,Y инъективно.

Определение 3.2.5 (Полный функтор F). ∀X,Y ∈B : FX,Y сюръективно.

Замечание. Теория категорий — не об объектах, а о морфизмах между ними (хотя часто, допуская
вольность речи, говорят только про объекты, считая, что поведение на морфизмах очевидно).

Важно, как функторы ведут себя на морфизмах, изоморфные объекты могут склеиваться, или
наоборот, у объекта может возникнуть изоморфная копия, и это не должно менять строгость или
полноту функтора.

Примеры (Функторы).

• Забывающие функторы — забывают часть структуры.
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– Любая конкретная категория отображается в Set. Например, Group → Set — строгий
функтор.

– Rng→ Ab — сопоставляем кольцу его аддитивную группу, строгий функтор.

– Rng→Mon — сопоставляем кольцу его мультипликативный моноид, строгий функтор.

• GLn : Ring→ Group, R 7→ GLn(R). Это опять задание функтора на объектах, но морфизмах
его надо продолжить интуитивным образом.

Формально, для ϕ : R → S надо задать (GLn)R,S(ϕ) : GLn(R) → GLn(S). ∀a ∈ GLn(R) :
(GLn)R,S(a)i,j = ϕ(ai,j). Далее надо проверить, что (GLn)R,S(ϕ) (часто его обозначают той
же буквой ϕ) — гомоморфизм групп.

3.2.5 Контравариантные функторы

Контравариантный функтор обращает стрелки.

Определение 3.2.6 (Контравариантный функтор F : B→ C). Функтор Bop → C.

Несложно проверить, что такие функторы взаимно однозначно соответствуют функторам B→ Cop.

В частности, ∀X,Y ∈B : FX,Y : Mor(Y,X)→ Mor(F(X),F(Y )).

Согласно этому определению, контравариантный функтор не является функтором.

Пример (Контравариантный функтор). Пусть C — категория с объектом X ∈ C. Зададим функтор
Mor(_, X) : C → Set. Пусть на объектах он действует по правилу Y 7→ Mor(Y,X), а на морфизмах
— по правилу ϕ 7→ Mor(ϕ,X). Осталось определить Mor(ϕ,X). Это должен быть морфизм в Set

вида Mor(target(ϕ), X)→ Mor(source(ϕ), X). Подойдёт морфизм _ · ϕ : α 7→ α · ϕ.

С контравариантным функтором Mor(_, X) стоит обращаться с чрезвычайной осторожностью.

Y MorC(Y,X)

Y ′ MorC(Y
′, X)

ϕ _·ϕ

Лекция XXV
21 ноября 2023 г.

Можно рассмотреть ковариантную версию: функтор MorC(X, _).

MorC(X, _) : ϕ 7→ [α 7→ ϕα]

Наконец, можно рассмотреть функтор Mor(_, _) : Cop ×C → Set.

Примеры (Не функторы).

• Рассмотрим отображение Center : Group → Group, сопоставляющее группе её центр. Это
не функтор, так как при гомоморфизмах центр необязательно отображается в центр.

Например, рассмотрим полупрямое произведение C2⋌C3
∼= S3. Ему соответствует композиция

C2 ↪→ S3 ↠ C2

Функтор взятия центра отобразит эту цепочку в C2 → {1} → C2, причём композиция — id,
но id не может пропускаться через {1}

• Aut : C → Group, A 7→ Aut(A) — снова не функтор, просто непонятно, как определить его
на морфизмах. Нет разумного способа сопоставить морфизмам A → B и A → A морфизм
B → B.

Примеры.
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• Сопоставление группе коммутанта — функтор.

D : Group→ Group

Пусть ϕ : G→ H. Функтор определён так: D(G) = [G,G],D(ϕ) : [G,G]→ [H,H] — сужение.

• Абелианизация тоже является функтором. ab : Group→ Group, ab(G) = Gab = G/[G,G].

G H Hab

Gab

ab(ϕ)

ϕ

Отображение в абелеву группу содержит коммутант в ядре, поэтому ϕ : G → H можно
пропустить через фактор, и назвать ab(ϕ)

• Категория всех категорий.

Категорию совсем всех категорий рассмотреть не получится, так как класс всех классов не
определён.

Вместо этого рассмотрим категорию всех малых категорий Cat. Морфизмами в ней являются
функторы.

• Категория диаграмм в C типа Γ, которая была рассмотрена ранее — это функторы из путей
PΓ в графе в C:

DΓ(C) = Func(PΓ,C)

• Функторы Func(CΓ,C) из категории достижимости в C — класс коммутативных диаграмм

в C. Например, если Γ — такой граф
A B

C D

, то |Mor(A,D)| = 1, поэтому функтор

должен перевести стрелки A → B → D и A → C → D с равной композицией в стрелки с
равной композицией.

Превратим её в категорию коммутативных диаграмм. Для этого надо ввести морфизмы между
коммутативными диаграммами, об этом ниже.

3.3 Естественные преобразования

«Всё естественно, что не безобразно»

Пусть F,G : B → C — два функтора. Категорию B здесь стоит воспринимать, как индексирую-
щую категорию, как граф, по которому строится категория диаграмм.

Естественное преобразование η : F → G — класс морфизмов {ηB : F(B)→ G(B) | B ∈B},
такой, что ∀ϕ ∈ MorB(A,B) диаграмма коммутирует.

F(A) F(B)

G(A) G(B)

F(ϕ)

G(ϕ)

ηA ηB

Примеры (Естественные преобразования).

• Определитель detn : GLn → GL1. (GL1(R) ∼= R∗.) В данном случае GLn, GL1 : CRing →
Group, проверим, что ∀A,B ∈ CRing.

GLn(A) GLn(B)

GL1(A) GL1(B)

ϕ

ϕ

det det

70



Естественность означает ϕ(det(a)) = det(ϕ(a)), что верно, так как det — многочлен от коэф-
фициентов, а ϕ — гомоморфизм коэффициентов.

• Рассмотрим два функтора M и ∗ : CRing → Mon, отображающие кольцо в моноид его
элементов по умножению, и группу обратимых элементов (являющуюся моноидом) соответ-
ственно. η : R∗ ↪→M(R).

• Вложение — естественное преобразование между коммутантом и тождественным отображе-
нием D, id : Group→ Group:

[G,G] [H,H]

G H

ϕ
∣∣∣
[G,G]

ϕ

• Определение 3.3.1 (Естественный изоморфизм). Естественное преобразование, состоящее из
изоморфизмов.

В категории множеств Set: Mor(X,Mor(Y, Z))↔ Mor(X × Y,Z): g(x)(y) = f(x, y).

Это стоит читать, как естественное преобразование между функторами Mor(_,Mor(_, _)) :
Setop ×Setop ×Set → Set и Mor(_× _, _)) : Setop ×Setop ×Set → Set.

• Под естественным преобразованием V → V ∗∗ подразумевается естественное преобразование
между функторам id и ∗∗ действующих F -mod → F -mod.

Промежуточный функтор ∗ — контравариантен.

V ∗ := MorF -mod(V, F ), значит, V ∗∗ = MorF -mod(MorF -mod(V, F ), F ). Естественное преобра-
зование сопоставляет функционалу ϕ ∈ V ∗ и вектору x ∈ V их каноническое спаривание
εx(ϕ) = ϕ(x) = ⟨ϕ|x⟩.

Это преобразование не является изоморфизмом даже для счётномерных векторных про-
странств — для конечных полей легко проверить различие мощностей.

Естественное преобразование ε : id → ∗∗ можно сузить на категорию VectF конечномерных
векторных пространств, там оно является изоморфизмом в силу подсчёта размерностей.

Контрпример (Неестественное преобразование). Изоморфизм конечномерного векторного простран-
ства, и двойственного к нему.

Неформально, всякое преобразование, в котором не задействованы какие-то выборы, является
естественным.

Рассмотрим два функтора F,G : B→ C. Пусть имеется также функтор H : C → A, и естествен-
ное преобразование η : F → G.

Беря композицию функтора и естественного преобразования, получаем естественное преобразова-
ние Hη = H ◦ η : H ◦F →H ◦G.

Для объекта B ∈B : (Hη)B = H(ηB) : H(F(B))→H(G(B)).

Если же функтор определён так H : A → B, то можно задать естественное преобразование
ηH : F ◦H → G ◦H. Аналогично, (ηH)B = ηH(B).

Пример. Рассмотрим естественные по X и по Y преобразования в категории R-mod, где R —
коммутативное кольцо.

X∗ ⊗ Y → Mor(X,Y )

ϕ⊗ yi 7→ [x 7→ ϕ(x)yi]

Иными словами, имеется естественное преобразование между функторами F(X,Y ) = X∗ ⊗ Y
и Mor, которые действуют R-modop × R-mod → R-mod. Если R — поле, и пространства —
конечномерны, то это естественный изоморфизм, назовём его η.
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Тогда если
H : VectF →VectF ,W 7→ Mor(X,W )

то мы получаем новый естественный изоморфизм Hη : Mor(X,Y ∗ ⊗ Z) ∼= Mor(X,Mor(Y, Z)).

Совмещая с уже ранее полученным изоморфизмом Mor(X⊗Y, Z) ∼= Mor(X,Y ∗⊗Z), получаем ещё
один изоморфизм Mor(X ⊗ Y,Z) ∼= Mor(X,Mor(Y,Z)), как композицию.

Mor(X ⊗ Y,Z) Mor(X,Y ∗ ⊗ Z)

Mor(X,Mor(Y,Z))

Hη

∼

Примеры (Ещё естественные преобразования).

• Естественное преобразование между функторами R-mod → R-mod: R⊗
R
_ ∼= id, или иначе

пишут R⊗RM ∼=M естественно по M .

Элемент
∑
ri ⊗mi равен 1⊗

∑
rimi, и отображается в

∑
rimi.

• MorR-mod(X,MorR-mod(Y,Z)) ∼= BiR-mod(X,Y ;Z) ∼= MorR-mod(X ⊗R Y, Z).

• Естественный изоморфизм в категории конечномерных векторных пространствVectF :Mor(X,Y⊗
Z) ∼= Mor(X ⊗ Y ∗, Z).

3.3.1 Эквивалентность категорий

Изоморфизм категорий помнит слишком много, мы не хотим следить за кратностью изоморфных
объектов.

Определение 3.3.2 (Категории B и C эквивалентны). Существуют функторы F : B → C и
G : C →B, такие, что F ◦G ∼= idC и G ◦F ∼= idB, здесь ∼= — естественный изоморфизм.

Ранее мы фактически доказали, что категории VectF и Vect
op
F эквивалентны (но они не изоморф-

ны).

Лекция XXVI
23 ноября 2023 г.

Пример. Рассмотрим категорию конечномерных векторных пространств VectF и категорию мат-
риц MF . Идеологически правильнее рассматривать ObjMF не как натуральные числа, а как
пространства столбцов. Определим

F : MF →VectF

N = ObjMF ∋ n 7→ Fn

Mor(n,m) ∋ A 7→ оператор умножения на матрицу A

Далее чтобы доказать эквивалентность категорий, то надо либо уметь пользоваться аксиомой выбо-
ра для классов, либо каким-то образом сделать категорию VectF малой (которая пока не является
множеством, но её объекты при фиксированном поле имеют фиксированную мощность, то есть
идеологически не очень большие) Отображение в обратную сторону устроим так. В каждом век-
торном пространстве V выберем базис ⟨v1, . . . , vn⟩, причём в каждом Fn — выберем стандартный
базис, и обратное отображение устроим так:

G : VectF →MF

G(V ) = dimV

G(α) = матрица α в выбранном базисе

Композиция G◦F тождественна, а композиция F◦G не инъективна на объектах, но, тем не менее,
естественно изоморфна тождественному.
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Замечание. Ещё одним способом не пользоваться аксиомой выбора будет рассматривать вместо
VectF категорию базированных векторных пространств — векторных пространств, в которых за-
ранее выбран базис.

Предложение 3.3.1. Рассмотрим функтор F : B → C. F является эквивалентностью кате-
горий ⇐⇒ F — строгий, полный, квазиинъективный (неизоморфные объекты отображаются
в неизоморфные), и, наконец, квазисюръективный (∀C ∈ C : ∃B ∈B : F(B) ∼= C).

3.4 (Ко)эквалайзеры и (ко)пределы

Пусть ϕ, ψ : A→ B

Определение 3.4.1 (Эквалайзер или уравнитель морфизмов ϕ, ψ). Морфизм ε : E → A, уравнива-
ющий ϕ и ψ: ϕε = ψε, причём такой, что ∀ε′ : E′ → A (такого, что ϕε′ = ψε′) ∃!α : E′ → E, такая,
что диаграмма коммутативна

E A B

E′

ϕ

ψ

ε

ε′
α

В Set эквалайзер ϕ, ψ : A→ B — это вложение E ↪→ A, где E = {a ∈ A | ϕ(a) = ψ(a)}.

В категории D, такой, что ObjD = {(E, ε) | ϕε = ψε}, иMorD((E
′, ε′), (E, ε)) = {α : E′ → E | ε′ = εα}

эквалайзер — финальный объект в D(ϕ, ψ). Это сразу показывает, что если уж эквалайзер суще-
стует, то он единственнен.

Для определения коэквалайзера надо развернуть все стрелки:

Пусть ϕ, ψ : B → A.

Определение 3.4.2 (Коэквалайзер). Морфизм ε : A → E, уравнивающий ϕ и ψ: εϕ = εψ, причём
такой, что ∀ε′ : A→ E′ (такого, что ε′ϕ = ε′ψ) ∃!α : E → E′, такая, что диаграмма коммутативна

E A B

E′

ϕ

ψ
α

ε

ε′

В Set коэквалайзер ϕ, ψ : B → A — это факторизация ε : A → A/∼, где ∼ — отношение эквива-
лентности, порождённое ϕ(b) ∼ ψ(b).

ВGroup коэквалайзер ϕ, ψ : G→ H — это факторизация по нормальному замыканию {ϕ(g)ψ(g−1)}.

Предложение 3.4.1. Эквалайзеры — мономорфизмы, коэквалайзеры — эпиморфизмы.

Доказательство. Докажем, что эквалайзер — мономорфизм, второе утверждение следует из двой-
ственности.

Рассмотрим ε — эквалайзер ϕ и ψ, и пусть α, β : X → E — два отображения, таких, что εα =
εβ = θ. Чтобы проверить, что ε — моно, по определению достаточно проверить, что тогда α = β.

E A B

X

ϕ

ψ

ε

α
θ

β

Заметим, что ϕθ = ϕεα = ψεα = ψθ, то есть θ — тоже уравнивает стрелки ϕ и ψ.

Но по определению эквалайзера ε универсален: существует и единственная стрелка X → E
(оставляющая диаграмму коммутативной), значит, α = β, то есть ε — мономорфизм.
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Предложение 3.4.2. Эквалайзер, являющийся эпиморфизмом — изоморфизм.

Доказательство. Пусть ε — эквалайзер. Так как ϕε = ψε, и ε — эпиморфизм, то ϕ = ψ. Но тогда
id : A→ A — тоже эквалайзер, и два эквалайзера отличаются на изоморфизм:

E A B

A

ϕ

ψ

ε

id
ε ∃!

3.5 Произведения и копроизведения

Зафиксируем B,C ∈ C.

Определение 3.5.1 (Произведение B и C). Финальный объект в категории диаграмм
A B

C

.

Морфизмы в данной категории — это стрелка ϕ:

A′

A B

C

γ

β

ϕ
β′

γ′

Произведение обозначается B × C.

Иными словами, произведение B × C — это объект A и морфизмы β : A → B, γ : A → C, такие,
что ∀A′ ∈ ObjC, β′ : A′ → B, γ′ : A′ → C ∃!ϕ : A′ → A : βϕ = β′ и γϕ = γ′. Часто допускают
вольность речи, и говорят о произведении, как об объекте.

Это такой объект, что ∀A ∈ C: функторы F(A) := Mor(A,B) ×Mor(A,C) и Mor(_, B × C) есте-
ственно изоморфны.

Практически всегда в конкретных категориях произведение — декартово произведение вместе с
отображениями — проекциями.

Копроизведение — двойственный объект к произведению, копроизведение обозначается A ⊔B.

Примеры (Копроизведение).

• В Set копроизведение непересекающихся множеств — это действительно дизъюнктное объ-
единение.

• В Group копроизведение — это свободное произведение групп.

• В CRing копроизведение — это тензорное произведение над Z. Умножение на разложимых
тензорах задано в виде (b⊗ c)(b′ ⊗ c′) = bb′ ⊗ cc′.

Лекция XXVII
28 ноября 2023 г.
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3.6 Универсальные и коуниверсальные квадраты

Зафиксируем морфизмы β : B → D и γ : C → D, и рассмотрим коммутативные квадраты в
категории C.

A B

C D

β

γ

Определение 3.6.1 (Pullback (пулбэк)). Коммутативный квадрат выше, такой, что ∀
A′ B

C D

β

γ

:

∃!A′ → A, делающий диаграмму коммутативной:

A′

A B

C D

β

γ

∀

∀∃!

Иными словами, это финальный объект в категории квадратов с фиксированными стрелками β :
B → D, γ : C → D. Неформально (при зажёванных морфизмах) пишут A = B ×D C.

Объект A (вместе со стрелками A→ B,A→ C) — pullback диаграммы C D B
γ β

.

Предложение 3.6.1. Пусть в категории C существуют все произведения и эквалайзеры (или
как минимум те, о которых речь ниже).

Тогда A — pullback C D B
γ β ⇐⇒ A — эквалайзер пунктирных отображений.

B

B × C D

B × C D

C

πB β

πC
γ

Доказательство. Pullback — финальный объект в некоторой категории, поэтому единственность

доказывать не надо. Рассмотрим квадрат
A′ B

C D

β

γ

. По универсальному свойству произведения

B

A′ B × C

C

πB

πC

∃!ϕ

Таким образом, имеется две композиции и уравнивающая стрелка:

A′ B × C D
βπB

γπC

ϕ

Нетрудно видеть, что действительно βπBϕ = γπCϕ. Но тогда уравнивающий морфизм ϕ пропуска-
ется через эквалайзер.
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Примеры.

• Практически во всех конкретных категориях B × C — просто декартово произведение.

Например, рассмотрим Set. Тогда pullback — это эквалайзер двух отображений

B × C → D

(b, c) 7→ β(b)

(b, c) 7→ γ(c)

Таким образом, pullback β и γ — это стрелки

B

{(b, c) | β(b) = γ(c)} B × C

C

πB

πC

• В Ring можно взять удвоение кольца R вдоль идеала I.

R⋉ I R

R R/I
π

π

R ⋉ I = {(a, b) | a, b ∈ R, a ≡ b (mod I)} = {(a, a+ i) | a ∈ R, i ∈ I}. Таким образом, по уни-
версальному свойству pullback’а, для сечения R→ R⋉ I существуют две ретракции

R

R⋉ I R

R R/I
π

π

id

id

Теперь, у нас имеется композиция в категории CRing.

R R⋉ I R

id

Применяя какой-нибудь функтор F : Ring→ Group (например, GLn), получим

F(R) F(R⋉ I) F(R)α β

id

Средняя группа — полупрямое произведение ядра β и образа α.

В таком стиле определяются некоторые базовые объекты K-теории.

• Точно так же можно удваивать группу вдоль нормальной подгруппы, результат будет изомор-
фен полупрямому произведению.

Упражнение 3.6.1. Проверить самостоятельно.

• Пусть в C имеется инициальный объект ∗. Тогда (например, в Rng, Group, mod-R) ядро
можно определить, как pullback:

Ker(ϕ) B

∗ D

ϕ

Но в CRing пулбэк этой диаграммы — что-то странное.

Поэтому можно считать ∗ не инициальным, а нулевым объектом — если нулевой объект
существует, то так определённое ядро будет совпадать со стандартным представлением о нём
(почему?).
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Определение 3.6.2 (Pushout (пушаут)). Двойственный объект к pullback’у. Инициальный объект
в категории коммутативных квадратов с фиксированными морфизмами β, γ:

D B

C A

γ

β

D B

C A

A′

γ

β

∃!

∀

∀

Если D — инициальный объект, то пушаут — просто копроизведение (и если D — финальный, то
pullback — произведение).

Сформулируем двойственное к доказанному утверждению про пулбэки.

Предложение 3.6.2. Пусть в категории C существуют все копроизведения и коэквалайзеры
(или как минимум те, о которых речь ниже).

Тогда A — pushout B D C
β γ ⇐⇒ A — коэквалайзер отображений

B

D B ⊔ C

D B ⊔ C

C

β πB

γ πC

Пушауты неформально обозначают B ⊔D C.

Примеры.

• Пусть имеется коммутативный квадрат в CRing:

D B

C A

γ

β

γ′
β′

Тогда A,B,C — D-алгебры. Отображение B × C → A, (b, c) 7→ β′(b) · γ′(c) — D-билинейно,
как отображение модулей.

Тогда по универсальному свойству тензорного произведения B × C → A пропускается через
тензорное произведение B ⊗D C со вложениями b 7→ b ⊗ 1C , c 7→ 1B ⊗ c, и с умножением,
определённым покомпонентно: (b⊗ c) · (b′ ⊗ c′) = bb′ ⊗ cc′.

Но если единицы нет, то пушаут построить не получится. Наоборот, в CRing не существует
пулбэков.

• В Group pushout — амальгамированное свободное произведение (такой термин употребля-
ют, если A ↪→ B,C, то есть β, γ — моно).

A B

C (B ∗ C)/N

β

γ
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где N — наименьшая нормальная подгруппа, содержащая
{
β(a)γ(a)−1 | a ∈ A

}
.

Обозначается B ∗
A
C.

По-другому, данная конструкция называется HNN (?).

• В категории модулей или абелевых групп всё проще, там вместо свободного произведения
обычное декартово (а именно, прямая сумма — разница появляется, если объектов бесконеч-
ное число, пусть мы и не определяли счётные пушауты).

Упражнение 3.6.2. Дан pushout в произвольной категории:

A B

B C

θ

θ

ϕ

ψ

Следующие условия эквивалентны

• θ — эпи.

• ϕ — изо.

• ψ — изо.

• ϕ = ψ.

3.7 Сопряжённые функторы

Рассмотрим следующую конструкцию: пусть имеется функтор F : B→ C, пусть X ∈ C. Построим
категорию (X ↓ F).

Её объекты — это {(B,ϕ) ∈B×MorC | ϕ : X → F(B)}.

Морфизмы определены так: (B,ϕ)→ (B′, ϕ′) — это

α ∈ MorB(B,B′) |
X

F(B) F(B′)
F(α)

ϕ
ϕ′

.
По-английски эта категория почему-то называется comma category, категория запятой.

Аналогично (F ↓ X) — это категория стрелок F(B)→ X с такими морфизмами α ∈ MorB(B,B′):

F(B) F(B′)

X
ϕ

ϕ′

F(α)

Заинтересуемся инициальными объектами в категории (X ↓ F).

Примеры.

• Пусть F : Group→ Set — забывающий функтор, и зафиксируем X ∈ Set.

Тогда инициальный объект – это свободная группа FX вместе с вложением множеств X ↪→
F(FX).

X

F(FX) F(G)

В самом деле, для любого гомоморфизма множеств X → F(G) должен найтись единствен-
ный гомоморфизм групп FX → G, такой, что диаграмма коммутирует, то есть гомоморфизм
определяется заданием на элементах X, и никаких соотношений нет.
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• Возьмём функтор вложения F : Ab → Group. Пусть G ∈ Group. Тогда инициальный объект
в (G ↓ F) — это такой объект, что из него есть единственный морфизм в другую абелеву
группу:

G

Gab A
∃!

Универсальный функтор Group→ Ab — это абелианизация.

Пусть B,C — категории. Рассмотрим два функтора B C
F

G
.

Определение 3.7.1 (F правый сопряжённый к G, G — левый сопряжённый к F). ∀B ∈B, C ∈ C:
существует биекция между множествами морфизмов MorC(C,F(B)) и MorB(G(C), B), причём
биекция — естественна и по B, и по C. То есть имеется естественная биекция между функторами
Cop ×B→ Set.

Чтобы понять, какой функтор левый сопряжённый, а какой — правый, надо посмотреть на то, где
они стоят внутри Mor. Иногда пишут G ⊣ F

Далее мы проверим, что инициальные объекты в категории X ↓ F имеют самое непосредственное
отношение к сопряжённым функторам.

Лекция XXVIII
30 ноября 2023 г.

3.7.1 Связь сопряжённых функторов и категории запятой

Пусть F : B→ C — какой-то функтор.

Рассмотрим X ∈ C, и вместе с ним категорию (X ↓ F) (раздел 3.7).

Пусть для всех X ∈ C в соответствующих категориях нашлось по инициальному объекту, обозна-
чим их соответственно (G(X), fX). Далее мы хотим показать, что G : C → B — функтор. Для
этого сперва определим его на морфизмах следующим образом:

X X ′

F(G(X)) F(G(X ′))

fX fX′

β

F(G(β))

А именно, (G(X ′), fX′β) ∈ (X ↓ F), и из инициальности (G(X), fX) найдётся единственный
морфизм (G(X), fX) → (G(X ′), fX′β), то есть найдётся единственная стрелка G(X) → G(X ′), и
мы эту стрелку назовём G(β).

Далее надо проверить, что функтор сохраняет композицию.

X X ′ X ′′

F(G(X)) F(G(X ′)) F(G(X ′′))

fX fX′ fX′′

β γ

γβ

F(G(β)) F(G(γ))

F(G(γβ))

По определению G(γβ) — это та единственная стрелка (G(X), fX)→ (G(X ′′), fX′′γβ), которая де-
лает диаграмму коммутативной, и можно заметить, что в качестве этой стрелки подходит G(γ)G(β)
(в проверке используется то, что F сохраняет композицию).
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Наконец, осталось проверить, что G сохраняет единицу, то есть фактически надо проверить, что
диаграмма ниже — коммутативна.

X X

F(G(X)) F(G(X))

idX

fX fX

F(idG(X))

Так как F — сохраняет id, то это действительно правда.

Теорема 3.7.1. Так построенный функтор G : C →B — левый сопряжённый к F.

Доказательство. Определим биекцию ηX,Y : MorC(X,F(Y )) → MorB(G(X), Y ) следующим об-
разом: морфизму f : X → F(Y ) сопоставим такой морфизм ηX,Y (f), что диаграмма коммутативна:

X

F(G(X)) F(Y )

fX
f

F(ηX,Y (f))

Очевидно, что тогда в качестве обратного отображения η−1
X,Y надо выбрать g 7→ F(g)fX .

Теперь докажем, что η — естественное преобразование между функторами [X,Y 7→ MorC(X,F(Y ))]→
[X,Y 7→ MorB(G(X), Y )]. По определению это значит, что ∀α : X ′ → X,β : Y → Y ′ диаграмма
ниже коммутативна.

MorC(X,F(Y )) MorC(X
′,F(Y ′))

MorB(G(X), Y ) MorB(G(X ′), Y ′)

MorC(α,F(β))

MorB(G(α),β)

η−1
X,Y

η−1

X′,Y ′ηX,Y ηX′,Y ′

Это всё морфизмы в Set, проверим коммутативность на элементах.

Для этого будет полезно вспомнить/понять, что такое MorA(α, β) (пусть α, β ∈ Mor(A)).
Так как MorA(_, _) : Aop × A → Set, то MorA(α, β) — некое отображение множеств.
Пусть α : A′ → A, β : B → B′. Тогда α, β : (A,B)→ (A′, B′) — морфизм в Aop ×A.

A,B A′, B′

Mor(A,B) Mor(A′, B′)

α,β

Mor(_,_) Mor(_,_)

?

Значит, Mor(α, β) как-то сопоставляет отображению Mor(A,B) отображение Mor(A′, B′).

A A′

B B′

α

β

Изобразив, какие отображения у нас есть, очевидно, что Mor(α, β) = β · _ · α.

Рассмотрим ψ ∈ MorB(G(X), Y ), она уходит вправо в βψG(α), далее наверх в F(βψG(α))fX′ .

Если же сначала пойти наверх в F(ψ)fX , то потом эта штука уйдёт вправо в F(β)F(ψ)αfX

Эти две штуки равны в точности по определению действия G на морфизмах.

Верно и обратное утверждение (теорема 3.7.2), для этого нам потребуется по сопряжённым функ-
торам восстанавливать fX ∈ MorC(X,F(G(X))).
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Заметим, что ηX,G(X)(fX) = idG(X), то есть имея η : MorC(X,F(Y )) ∼= Mor(G(X), Y ), мы можем
восстановить fX , подставив Y = G(X), и рассмотрев прообраз idG(X) из правой части. Данный
морфизм fX (а точнее естественное преобразование f : id → FG) называется единицей сопряже-
ния.

Теорема 3.7.2. Для сопряжённых функторов B C

F

G

η⊣ (η — естественное преобразование

MorC(_,F(_)) ∼= MorB(G(_), _)), и для любого X ∈ C, категория запятой (X ↓ F) имеет иници-
альный объект, причём он равен (G(X), fX), где fX — единица сопряжения.

Доказательство. Рассмотрим какой-нибудь другой объект (Y, f) ∈ (X ↓ F) (иными словами
Y ∈ B, f ∈ MorC(X,F(Y ))). Надо проверить, что существует и единственна g : G(X) → Y ,
делающая диаграмму коммутативной.

X

F(G(X)) F(Y )

fX
f

F(g)

Так как по стрелке f : X → F(Y ) хочется получить стрелку g : G(X) → Y , то логично пред-
положить, что g = ηX,Y (f). Здесь, конечно, надо использовать естественность преобразования
η : MorC(X,F(Y )) ∼= MorB(G(X), Y ). Изобразим диаграмму этой естественности для морфизма
(idX , g) ∈ MorCop×B((X,G(X)), (X,Y )) (где g := ηX,Y (f)):

MorC(X,F(G(X))) MorC(X,F(Y ))

MorC(G(X),G(X)) MorC(G(X), Y )

F(g)·_

η−1
X,G(X) η−1

X,Y

g·_

Выберем idG(X) ∈ MorC(G(X),G(X)), тогда условие коммутативности диаграммы выглядит так:

F(g)η−1
X,G(X)(idG(X)) = η−1

X,Y (g)

Действительно, это в точности значит F(g)fX = f , то есть g = ηX,Y (f) делает диаграмму комму-
тативной.

Теперь проверим единственность. Пусть g′ — другой морфизм (G(X), fX) → (Y, f) в категории
запятой. Заменив g на g′ в диаграмме выше, получим F(g′)fX = η−1

X,Y (g
′). Так как g′ — морфизм

в категории запятой, то F(g′)fX = f , откуда g′ = g.

Примеры.

• Пусть F : Top → Set — забывающий функтор. Рассмотрим какой-нибудь X ∈ Set, найдём
инициальный объект в категории запятой (X ↓ F).

X

F(G(X)) F(Y )

fX
∀

F(∃!)

Так как хочется, чтобы любому отображению множеств соответствовало единственное непре-
рывное отображение, делающее диаграмму коммутативной, то в качестве G(X) подойдёт X
с дискретной топологией.

Согласно (теорема 3.7.1) этот G — левый сопряжённый к F.
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• Аналогично можно получить правый сопряжённый к F. Здесь, двойственно, надо рассмот-
реть категорию (F ↓ X), и в ней найти терминальный объект.

F(Y ) F(G(X))

X

fX

F(∃!)

∀

Так как теперь отображение множеств должно получить непрерывность, а мы контролируем
топологию на образе, то на G(X) надо определить антидискретную топологию.

Лекция XXIX
5 декабря 2023 г.

3.7.2 Левые сопряжённые к функторам типа забывающих

• Свободные объекты

– Левый сопряжённый к забывающему Group → Set — это свободная группа на данном
множестве.

– Левый сопряжённый к забывающему Mon → Set — это свободный моноид на данном
множестве, слова над данным алфавитом.

– Здесь и ниже R — коммутативное кольцо с единицей.

Левый сопряжённый к забывающему R-Alg → Mon — это полугрупповая алгебра
M 7→ R[M ]. Моноид M вкладывается в мультипликативный моноид R[M ].

– Левый сопряжённый к забывающему R-Alg→ Set — это свободная алгебра на данном
множестве (R-Alg — необязательно коммутативные алгебры с единицей).

Если представить забывающий функтор R-Alg → Set, как композицию двух забы-
вающих, и назвать сопряжённые к ним G1 и G2 соответственно, то окажется, что
Mor(X,F2(F1(Y ))) ∼= Mor(G2(X),F1(Y )) ∼= Mor(G1(G2(X)), Y ).

R-Alg Mon Set

F1

G1 G2

F2

⊣ ⊣

Иными словами, чтобы построить свободную алгебру на множестве S, можно снача-
ла построить свободный моноид FS , а потом на нём ввести структуру полугрупповой
алгебры R[FS ].

• Левый сопряжённый к функтору ∗ : Ring → Group, сопоставляющему кольцу группу его
обратимых элементов — это G 7→ Z[G], групповая алгебра.

• Левый сопряжённый к забывающему функтору R-Alg→ R-mod — это T , тензорная алгеб-
ра.

• Левый сопряжённый к забывающему функтору R-CAlg→ R-mod — это S, симметрическая
алгебра (здесь R-CAlg — коммутативные алгебры над R).

• Внешняя степень
∧
— это левый сопряжённый к функтору из Z-градуированных R-алгебр в

R-модули, сопоставляющий A0 ⊕A1 ⊕ · · · 7→ A1.

• Пусть ϕ : R→ A. Тогда ϕ# : A-mod → R-mod (что является забывающим функтором, если
ϕ инъективно)— левый сопряжённый к ϕ# : R-mod → A-mod, ϕ#(M) = A⊗RM .

• Рассмотрим функтор Cat → Graph, забывающий про композицию морфизмов. Левый сопря-
жённый к данному функтору — категория путей в графе.

• Упражнение 3.7.1. Какие левый и правый сопряжённый к забывающему G-Set → Set?
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3.7.3 Левые сопряжённые к вложениям

• Левый сопряжённый к функтору вложения Ab → Group — это абелианизация. Правого
сопряжённого, наверно, нет — внутри группы нет никакой абелевой подгруппы, сохраняю-
щейся при морфизмах. Можно доказать это строго, увидев, что Ab → Group не сохраняет
пределы (теорема 3.8.1)

• Левый сопряжённый к функтору вложения CRing → Ring — это R 7→ R/[R,R], где [R,R]
— двусторонний идеал, порождённый аддитивными коммутаторами.

• Левый сопряжённый к функтору вложения ϕ# : R-Alg → Ring — это ϕ#, если ϕ : Z → R
— гомоморфизм колец с единицей.

• Левый сопряжённый к функтору вложения Ring→ Rng — это функтор Rng→ Ring, I 7→
Z⊕ I (в результате I стало идеалом). Умножение определено понятным образом: (n+ i)(m+
j) = nm + mi + nj + ij, здесь nm ∈ Z и mi, nj — умножение на целые, полученное из
сложения в I.

• Рассмотрим функтор вложения F : Group→Mon. Какие к нему сопряжённые?

Если G — правый сопряжённый к F, то коединица сопряжения — естественное преобразо-
вание FG→ id.

Mor(F(X), Y )→ Mor(X,G(Y ))

G(M) =M∗ — сопоставляет моноиду группу его обратимых элементов.

Если G — левый сопряжённый к F, то единица сопряжения id → FG. Надо по моноиду
построить группу M 7→ G(M), такую, что M ↪→ G(M).

Есть две конструкции построить по моноиду универсальную группу.

– Пусть N — наименьшая нормальная подгруппа в FM , содержащая все элементы вида
xyz−1, где z = xy в M .

M FM FM/N
в Set

в Mon

– В коммутативном случае ((M,+) — абелев моноид) группу можно составить из фор-
мальных разностей {[A]− [B] | A,B ∈M}, где [A] — класс эквивалентности элемента A
по отношению ∼: A ∼ C ⇐⇒ A+D = C +D.

• Левый сопряжённый к Mor(Y, _):

– В Set: Mor(X,Mor(Y,Z)) ∼= Mor(X × Y, Z), поэтому левый сопряжённый к Mor(Y, _) —
это _× Y .

– В R-mod функтор Mor(Y, _) можно воспринимать, как функтор R-mod → R-mod.
Левый сопряжённый к нему — это _⊗R Y .

– С контравариантными функторами так просто не понять, сопряжённый левый, или пра-
вый, это зависит от того, где навесить op.

Упражнение 3.7.2. Найти какой-то сопряжённый к Mor(_, Y ).

– Пусть C — категория с произведением. Рассмотрим функтор произведения × : C×C →
C.

Левый сопряжённый к этому функтору — это ∆ : C → C ×C, C 7→ (C,C).

Лекция XXX
12 декабря 2023 г.
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3.8 Пределы

Пусть есть последовательность отображений A1 → A2 → . . .? Что естественно считать пределом?

Если отображения — вложения, то естественно пределом считать
⋃
Ai:

A1 ↪→ A2 ↪→ . . .→
⋃
Ai

Мы уже встречали такие объекты: коэквалайзер, копроизведение, поэтому структуру выше есте-
ственно называть не пределом, а копределом.

A B

E

C
∃!

A

A ⊔B C

B

∃!

Эти диаграммы соответствуют графам ниже

• •
•

•

Пусть J — какая-то категория, она будет играть роль индексирующей. Функтор F : J → C —
диаграмма.

Определение 3.8.1 (Конус η над диаграммой F).

1. Объект C ∈ C.

2. ∀J ∈ J: морфизм ηJ : C → F(J).

3. ∀α : J → J ′: соответствующий треугольник коммутативен.

C

F(J) F(J ′)
F(α)

ηJ ηJ′

Это может напомнить естественное преобразование функторов, вот другой взгляд:

Пусть ∆JC = ∆C — функтор из J в C, определённый так: ∆C(J) = C,∆C(α) = idC . Тогда конус
— естественное преобразование ∆C → F, а коконус — естественное преобразование F → ∆C.

Теперь из этих конусов надо создать категорию, чтобы определить предел и копредел, как финаль-
ные объекты в данной категории.

Морфизм конусов ∆C → F и ∆C ′ → F — это такой морфизм ϕ : C → C ′, такой, что все
появившиеся диаграммы коммутативны:

C C ′

F(J)

ϕ

ηJ
η′J
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Другими словами, это такой морфизм ϕ : C → C ′, что диаграмма естественных преобразований
ниже коммутативна:

∆C ∆C ′

F

∆ϕ

Полученная категория конусов — действительно категория, так как морфизмов (∆C → F) →
(∆C ′ → F) не больше, чем MorC(C,C

′).

Определение 3.8.2 (Предел диаграммы F). Финальный объект в категории конусов над F. Обо-
значают пределы lim←−F.

Двойственно, копредел F — инициальный объект в категории коконусов над F.

Копределы пишутся lim−→F.

Примеры (Пределы).

•
lim←−

· · · F [t]/(tn) F [t]/(t2) F [t]/(t)···

Предел факторизаций F [t]/(tn+1) → F [t]/(tn) — это формальные степенные ряды F [[t]]. Это
можно обосновать с топологической точки зрения: например, если взять в качестве открытых
множеств (t), (t2), . . . , то пополнением F [t] по данной топологии будет F [[t]].

• Аналогично, в

· · · Z/(pn) Z/(p2) Z/(p)···

lim←− = Ẑp.

• В общем случае для идеала I P R определяется пополнение R в I: lim←−
n→∞

R/In = R̂I

Примеры (Копределы).

• Пусть S ⊂ R — мультипликативное подмножество коммутативного кольца. Рассмотрим пред-
порядок на S : a ⪯ b ⇐⇒ a | b, и возьмём категорию J, соответствующую данному

предпорядку: ObjJ = S; |MorJ(a, b)| =

{
1, a | b
0, иначе

.

Заведём F : J → CRing, F(s) = Rs. Функтор действует на морфизмах так: если b = ac, то
образ морфизма a→ b — это локализация по частному c

Ra (Ra)c = Rb
λc

Здесь копредел lim−→F = lim−→
s∈S

= S−1R.

Это бывает удобно использовать: если какое-то свойство выполнено для конечнопорождённых
R-алгебр, и сохраняется при копределах, то оно выполнено и в локализации.

Примеры.

• Если J = ∅ — пустая категория, то конус над J → C — это объект C ∈ C, и его предел —
финальный объект.

• Если J = {∗} — категория с одним объектом, то конус над J → C — это стрелка ∗ → C, и
предел этого конуса — сам объект C.
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• Если J = {a, b} с двумя морфизмами — только тождественными — то для функтора F :
a 7→ A
b 7→ B

: lim←−F = A×B, lim−→F = A ⊔B.

• Эквалайзер и пулбэк — тоже пределы.

Определим категорию функторов Func(J,C), объекты которой — функторы, морфизмы — есте-
ственные преобразования. Здесь стоит сказать либо что J — малая категория, либо рассматривать
большие категории (стрелки могут не образовывать множество), либо ещё как-то обойтись с тео-
рией множеств.

Теперь ∆ — функтор C → Func(J,C). Зафиксируем функтор F : J → C, и посмотрим на
категорию запятой (∆ ↓ F) (здесь ∆ рассматривается, как функтор, а F — как объект). В ней
объекты — рассматриваемые конусы над F, морфизмы — морфизмы конусов.

Если рассмотреть предел, как функтор Func(J,C) → C (то есть забыть про стрелки в конусе),
то это действительно будет функтор, определённый так на морфизмах: lim←−(ϕ) := ψ, оно берётся из
диаграммы ниже:

∆C ∆ lim←−F

F

∀

∆(∃!)
∆ lim←−F ∆ lim←−G

F G
ϕ

∆(∃!ψ)

Предложение 3.8.1. Функтор lim←− является правым сопряжённым к ∆, то есть

MorFunc(J,C)(∆C,F) ∼= MorC(C, lim←−F)

естественно по C (естественность по F получается автоматически (это как?)).

Доказательство.
∆C ∆ lim←−F

F

Естественное преобразование ∆ ◦ lim←− → id, полученное из определения предела — коединица
сопряжения.

Двойственно, lim−→ — левый сопряжённый к ∆.

3.8.1 Правый сопряжённый сохраняет пределы

Теорема 3.8.1. Пусть имеются сопряжённые функторы B C

F

G

η⊣ .

Пусть H : J →B. Тогда правый сопряжённый сохраняет пределы: F
(
lim←−H

)
= lim←−FH.

Доказательство.

Лемма 3.8.1. Пусть F,G,H как в теореме, K : J → C — функтор. Тогда

MorFunc(J,C)(K,F ◦H) ∼= MorFunc(J,B)(G ◦K,H)

естественно по K,H.

Доказательство леммы. Возьмём естественное преобразование η : K → F ◦H. Пусть
(гипотетическая) биекция сопоставляет ему преобразование θ : G ◦K →H.
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Определим θ, и проверим, что ∀X,Y ∈ J диаграмма ниже коммутативна.

GK(X) H(X)

GK(Y ) H(Y )

θX

H(ϕ)GK(ϕ)

θY

Для η эта диаграмма выглядит так:

K(X) FH(X)

K(Y ) FH(Y )
ηY

ηX

K(ϕ) FH(ϕ)

Применяя G к диаграмме, получаем следующее (обозначим за f коединицу сопряжения
F и G)

GK(X) GFH(X) H(X)

GK(Y ) GFH(Y ) H(Y )
G(ηY )

G(ηX)

GK(ϕ) GFH(ϕ)

fH(X)

fH(Y )

H(ϕ)

Определим θX := fH(X) · G(ηX), диаграмма выше показывает, что это действительно
естественное преобразование.

Осталось проверить, что композиция ηX ⇝ θX ⇝ ηX , и обратно — тождественна.

Ниже в зависимости от аргумента, ∆ : B→ Func(J,B), или ∆ : C → Func(J,C), оно определено
выше (раздел 3.8).

MorFunc (∆C,F ◦H) ∼= MorFunc (G∆C,H) ∼= MorFunc (∆G(C),H) ∼=
∼= MorB

(
G(C), lim←−H

)
∼= MorC

(
C,F

(
lim←−H

))
Отсюда (по определению предела) следует, что F

(
lim←−H

)
= lim←−F ◦H.

Лекция XXXI
14 декабря 2023 г.

В зависимости от количества морфизмов в индексирующей категории предел называется конечным,
счётным или малым.

Предложение 3.8.2. Пусть C — категория, следующие условия эквивалентны.

1. В C существуют финальный объект, все произведения и все эквалайзеры.

2. В C существуют финальный объект и все пулбэки.

3. В C существуют все конечные пределы.

Схема доказательства. Понятно, что достаточно доказать 1 ⇒ 3, так как 3 ⇒ 2 ⇒ 1 очевидно.
Это доказывается индукцией по количеству морфизмов.

База: если морфизмов нуль, то предел функтора F : J → C — произведение объектов F(J) по
всем J ∈ J.

Переход: При добавлении стрелки J1 → J2 в J обозначим A = F(J1), B = F(J2). Чтобы получить
предел новой диаграммы, надо взять эквалайзер каких-то стрелок.
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Замечание. В случае счётного предела надо добавить условие существования счётного обратного
предела, то есть предела вида

lim←−

· · · • • • •

3.8.2 Схема построения алгебраического замыкания

Пусть имеется поле F . Как построить алгебраическое замыкание?

Пусть P — множество всех унитальных многочленов над F . Введём частичный порядок на
F : f ⪯ g ⇐⇒ f | g. Далее рассматриваем категорию P, построенную по данному частично
упорядоченному множеству.

Рассмотрим функтор P → Field, f 7→ Ff , сопоставляющий многочлену f поле разложения f
— наименьшее (по включению) поле, в котором f раскладывается на линейные множители. Оно
существует, но его изоморфизм может быть не единственен. В частности, чтобы выбрать какое-то
одно поле, в которое будет бить функтор, нужна какая-то версия аксиомы выбора.

В частности (при q = pn), Fq — поле разложения xq − x ∈ Fp[x].

Так вот, тогда копредел этого функтора lim−→
f∈P

Ff — это некоторое кольцо. В этом кольце выбирается

произвольный максимальный идеал m P lim−→
f∈P

Ff . Он есть всегда, если lim−→
f∈P

Ff ̸= {0} (и надо как-

то доказать, что это кольцо — ненулевое), и факторполе lim−→
f∈P

Ff/m называется алгебраическим

замыканием F

3.9 Лемма Йонеды

3.9.1 Примеры представимых функторов

Определение 3.9.1 (Представимый функтор). Ковариантный функтор C → Set, естественно изо-
морфный MorC(A, _) для некоторого A ∈ C.

Любой данный объект A — представляющий объект.

Оказывается, это весьма частая ситуация.

Примеры (Представимые функторы).

• Возьмём аффинное n-мерное пространство An. С одной стороны, это функтор

An : CRing→ Set

R 7→ AnR
def
= {(r1, . . . , rn) | ri ∈ R}

На морфизмах функтор задан понятным образом.

С другой стороны, в классической алгебраической геометрии фиксируют какое-то алгебраи-
чески замкнутое поле, и рассматривают значения этого функтора на данном поле.

Нам это An интересно именно как функтор, и он является представимым: An ∼= Mor(Z[t1, . . . , tn], _).
Если заменить CRing на F -Alg, то An ∼= Mor(F [t1, . . . , tn], _).

Зафиксируем f1, . . . , fm ∈ F [t1, . . . , tn]. Пусть XR ⊂ AnR : XR := {x ∈ AnR | f1(x) = · · · = fm(x) = 0}.
Это тоже функтор, причём он тоже представим: X ∼= MorF -Alg

(
F [t1, . . . , tn]/(f1,...,fm), _

)
.
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• Рассмотрим представимый функтор SLn ∼= Mor(A, _), где A = F [gi,j ]
n
i,j=1 /(det g−1). Для точ-

ности стоит заметить, что здесь SLn бьёт в Set, композиция с забывающим функтором.
Эквивалентно, можно задать какую-то структуру на морфизмах (в данном случае — струк-
туры алгебры Хопфа).

Эта матрица удовлетворяет универсальному свойству ∀R,∀a ∈ SLn(R) : ∃!A→ R : ϕ(g) = a.

В частности, g ∈ SLn(A) — общий элемент, g → idA ∈ Mor(A,A).

3.9.2 Формулировка и доказательство леммы

Пусть F,G : B→ C — два функтора. Обозначим множество естественных преобразований F → G

за Nat(F,G).

Лемма Йонеды говорит об описании множества Nat(Mor(A, _),F) для некоего фиксированного
объекта A. Всякому естественному преобразованию η : Mor(A, _)→ F отвечает её универсальная
компонента ηA : Mor(A,A)→ F(A).

Оказывается, универсальные компоненты хранят в себе всю информацию о естественном преоб-
разовании η. Более того, по элементу ηA(idA), который называется универсальным (или общим)
элементом, преобразование η однозначно восстанавливается.

Лемма 3.9.1 (Йонеда). Пусть F : C → Set, C — малая категория. Пусть A ∈ C.

Тогда Nat(Mor(A, _),F) ∼= F(A) естественно по A и по F.

Доказательство.

• Пусть η : Mor(A, _) → F. Сопоставим этому преобразованию его общий элемент: η ⇝
ηA(idA) ∈ F(A).

• Обратно, попытаемся сопоставить элементу a ∈ F(A) естественное преобразование с таким
общим элементом. Пусть это некое η(a) ∈ Nat(Mor(A, _),F).

Так как η(a) должно быть естественным преобразованием, то должна быть коммутативна
диаграмма (3.1) (при ϕ : X → Y ). В частности для ϕ : A → B, должна быть коммутативна
диаграмма (3.2)

Mor(A,X) F(X)

Mor(A, Y ) F(Y )

η
(a)
X

η
(a)
Y

ϕ·_ F(ϕ)

Рис. 3.1: Общий случай

Mor(A,A) F(A)

ϕ ∈ Mor(A,B) F(B)

η
(a)
A

η
(a)
B

ϕ·_ F(ϕ)

Рис. 3.2: Частный случай X = A

Проверим коммутативность (3.2) на элементе idA. Вниз он уходит в ϕ, далее вправо — в
η
(a)
B (ϕ), что мы и хотим определить.

Если же сначала пойти вправо, то будет η(a)A (idA), и так как мы хотим, чтобы общий элемент

η(a) был равен a, то надо положить η(a)A (idA) = a. Отсюда получаем

η
(a)
B (ϕ) := F(ϕ)(a) (∗)

Это размышление показывает, что при заданном общем элементе η(a)A (idA) = a само преоб-
разование η(a) задаётся единственным образом.

• Так определённое η(a) (∗) является естественным преобразованием: коммутативность (3.1) на
элементе ψ : A→ X сводится к F(ϕ)(η

(a)
X (ψ))︸ ︷︷ ︸

F(ϕ)(F(ψ)(a))

= η
(a)
Y (ϕψ)︸ ︷︷ ︸
F(ϕψ)(a)

, что верно, так как F — функтор.
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• Теперь надо показать естественность биекции. Она, конечно выполняется, так как построение
не зависит ни от каких выборов, но давайте убедимся.

Пусть f : A→ B — морфизм, θ : F → G — естественное преобразование.

Nat(Mor(A, _),F) Nat(Mor(A, _),G) Nat(Mor(B, _),G)

F(A) G(A) G(B)

θ·_

η 7→ηA(idA) η 7→ηA(idA)

θA

?

η 7→ηB(idB)

G(f)

Рис. 3.3: Естественность биекции

• Во-первых, надо проверить коммутативность левого квадратика. η : Mor(A, _)→ F отправля-
ется вниз в ηA(idA), после чего вправо уходит в θA(ηA(idA)). Надо проверить, что это равно
(θ · η)A(idA), но это просто определение композиции естественных преобразований.

• Во-вторых, надо проверить коммутативность правого квадрата, для этого сначала поймём, что

за стрелка Nat(Mor(A, _),G) → Nat(Mor(B, _),G). Mor(B, _)
_·f−→ Mor(A, _). Далее, на есте-

ственных преобразованиях действие устроено так:
λ : Mor(A, _)→ G

µ : Mor(B, _)→ G

Для g ∈ Mor(B,X) :

µX(g) = λX(g · f).

Теперь проверим коммутативность: λ : Mor(A, _) → G отправляется вниз в λA(idA), дальше
вправо в G(f)(λA(idA)). Если же пойти сначала вправо, потом вниз, то будет µB(idB), где µ
определено выше; а именно, µB(idB) = λB(f).

Нарисовав диаграмму (3.2) для случая η = λ, получаем, что idA вниз и вправо уходит в
λB(f), а вправо и вниз — в G(f)(λA(idA)), то есть правый квадрат (3.3) тоже коммутативен:

Mor(A,A) G(A)

Mor(A,B) G(B)

λA

λB

f ·_ G(ϕ)

Таким образом, оба квадрата коммутативны, и вся диаграмма (3.3) коммутативна, то есть
преобразование естественно и по A, и по F (это иллюстрирует, что чтобы проверить есте-
ственность преобразования по нескольким аргументам, достаточно проверять по каждому в
отдельности, а далее воспользоваться коммутативностью диаграмм).

Следствие 3.9.1. Множество естественных преобразований Nat(Mor(A, _),Mor(B, _)) ∼= Mor(B,A).
Категория представимых функторов антиэквивалентна категории C.

Лекция XXXII
19 декабря 2023 г.

3.10 Абелевы категории

Определение 3.10.1 (Предаддитивная категория C). ∀A,B ∈ C : MorC(A,B) образует абелеву
группу, и выполнена дистрибутивность

α(β + γ) = αβ + αγ (β + γ)α = βα+ γα

Нулевой объект может и не существовать в предаддитивной категории, а нулевой морфизм — нуль
абелевой группы — существует, и из дистрибутивности действительно 0 · α = 0 и α · 0 = 0.
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Лемма 3.10.1. Пусть C — предаддитивная категория, A ∈ C. Тогда следующие условия
эквивалентны.

1. A инициальный.

2. A финальный.

3. idA = 0A.

4. |MorC(A,A)| = 1.

Доказательство. Тривиально 1 ⇒ 4 и 4 ⇒ 3. Докажем 3 ⇒ 1; 2 ⇐⇒ 3 будет следовать из
двойственности.

Пусть α : A→ B. Тогда α = α · idA = α · 0A = 0, то есть A — инициальный.

Рассмотрим следующую диаграмму в предаддитивной категории C.

A C B
ι1

π1 π2

ι2

Определение 3.10.2 (Диаграмма выше — бипроизведение).

1. π1ι1 = idA.

2. π2ι2 = idB .

3. ι2π2 + ι1π1 = idC .

Лемма 3.10.2. В предаддитивной категории следующие условия на данную диаграмму экви-
валентны:

1. A C B
ι1

π1 π2

ι2
— бипроизведение.

2. A C B
π1 π2 — произведение.

3. A C Bι1 ι2
— копроизведение.

Доказательство.

Лемма 3.10.3. В бипроизведении π1ι2 = 0 и π2ι1 = 0.

Доказательство леммы.

Домножая ι1π1 + ι2π2 = idC слева на π2, получаем π2ι1π1 + π2 = π2, то есть
π2ι1π1 = 0. Домножая справа на ι1, получаем искомое.

Докажем 1 ⇐⇒ 3, 2 ⇐⇒ 3 следует из двойственности.

1⇒ 3
D

C B

A

ϕ

ϕ2

ϕ1 π1ι1

π2

ι2

Определим ϕ := ι1ϕ1 + ι2ϕ2, тогда π2ϕ = π2ι1︸︷︷︸
0

ϕ1 + π2ι2︸︷︷︸
id

ϕ2 = ϕ2, то есть диаграмма

коммутативна.

Если же π1ϕ = ϕ1 и π2ϕ = ϕ2, то (ι1π1 + ι2π2)︸ ︷︷ ︸
id

ϕ = ι1ϕ1+ ι2ϕ2, то есть никак по другому

задать ϕ нельзя.
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3⇒ 1 Построим ι1 согласно универсальному свойству:

A

A C Bπ1

π2

ι1
idA 0

Аналогично ∃!ι2 : B → C : π2ι2 = idB , π1ι2 = 0.

Отсюда получаем

{
π1(ι1π1 + ι2π2) = π1

π2(ι1π1 + ι2π2) = π2
, а по универсальному свойству такое отобра-

жение только одно — idC :

C

C B

A

id

π1

π2

π2

π1

ι1π1+ι2π2

Определение 3.10.3 (Аддитивная категория). Предаддитивная категория с финальным объектом
и произведениями (любых двух объектов).

Из лемм ясно, что это эквивалентно, например, предаддитивной категории с нулевым объектом и
бипроизведениями.

Определение 3.10.4 (Ядро стрелки ϕ : A→ B). Эквалайзер ϕ и 0.

Лемма 3.10.4. Если C — предаддитивная категория, то (ко)эквалайзер A B
ψ

ϕ

равен

(ко)ядру ϕ− ψ.

Доказательство. ϕε = ψε ⇐⇒ (ϕ − ψ)ε = 0. Эквалайзер — универсальная стрелка с левым
свойством, а ядро — универсальная стрелка с правым свойством.

Интересный факт. Если произведение совпадает с копроизведением, то операцию сложения на
множестве морфизмов можно ввести следующим образом

A B

A⊕B

B B
id

idα

β

(α,β)

ι

π

π

ι

id+ id

⇒ α+ β := (id+ id)(α, β)

Можно проверить, что (если существует нулевой объект) данная операция сложения обладает
всеми требуемыми свойствами, и это — единственный способ её ввести.

Это любопытно, но вроде бы не имеет практических применений — всегда удобнее сначала есте-
ственным образом ввести сложение на стрелках, а потом проверять, что произведение совпадает с
копроизведением.

Определение 3.10.5 (Предабелева категория). Аддитивная категория, в которой у всех морфизмов
есть ядро и коядро.
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Понятно, что можно требовать существование эквалайзера и коэквалайзера у всех пар морфизмов
с одинаковыми началом и концом.

Ещё можно требовать существование всех конечных пределов и копределов, так как категория
аддитивна, то это опять же эквивалентно.

Определение 3.10.6 ((Ко)нормальный мономорфизм (эпиморфизм)). Он является (ко)эквалайзером
(какой-то, неважно какой, пары стрелок).

Определение 3.10.7 (Абелева категория). Предабелева категория, в которой все мономорфизмы
нормальны.

Теорема 3.10.1. В абелевой категории любой морфизм ϕ представляется в виде ϕ = µε, где µ —
моно, ε — эпи, и эпи-моно представление функториально: если в левой диаграмме для ϕ и ϕ′ нашли
какие-то эпи-моно разложения, то в получившейся правой диаграмме ∃! стрелка посередине.

A B

A′ B′

ϕ

ϕ′

α β ⇒
A • B

A′ • B

ε

ε′

α

µ′

µ

β∃!

Доказательство.

Лемма 3.10.5. Для всякой стрелки ϕ: ker coker kerϕ = kerϕ.

Доказательство леммы.

• •

•

• •

ε2
kerϕ

ε1

ker coker kerϕ

ϕ
coker kerϕ

η

1. Разместим на диаграмме стрелки ϕ, kerϕ, coker kerϕ и ker coker kerϕ.

2. ϕ · kerϕ = 0, значит, ϕ пропускается через coker kerϕ: ∃!η.

3. coker kerϕ · ker coker kerϕ = 0, тогда и η · coker kerϕ · ker coker kerϕ = 0, то есть
ϕ · ker coker kerϕ = 0. А значит, ker coker kerϕ пропускается через kerϕ: ∃!ε1.

4. coker kerϕ · kerϕ = 0, тогда и kerϕ пропускается через ker coker kerϕ: ∃!ε2.

5. kerϕ · ε1 = ker coker kerϕ ⇒ kerϕ · ε1 · ε2 = kerϕ, и так как ядра определены с
точностью до единственного изоморфизма, то ε1 · ε2 = id.

6. Аналогично ε2 · ε1 = id

Для каждой стрелки ϕ определим µ — моно и ε — эпи, такие, что ϕ = µε. Положим µ := ker cokerϕ,
ε — то, каким образом пропускается ϕ:

A B •

•

ϕ

∃!ε

cokerϕ

µ

µ, как ядро стрелки — моно. ε — эпи (упражнение).
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Теперь проверим функториальность. Пусть имеются два произвольных эпи-моно разложения двух
произвольных стрелок, докажем, что ∃!ψ, делающая диаграмму коммутативной.

A • B •

A′ • B′ •

ε

ϕ

α

µ

∃!ψ

cokerϕ

β η

ε′

ϕ′

µ′ cokerµ′

1. cokerµ′ ·µ′ · ε′ ·α = 0, так как уже cokerµ′ ·µ′ = 0. Значит, cokerµ′ ·β ·ϕ = 0, тогда cokerµ′ ·β
пропускается (единственным образом) через cokerϕ — получаем η.

2. Так как µ′ — моно, а категория абелева, то он — чьё-то ядро. Cогласно (лемма 3.10.5)
µ′ = ker cokerµ′.

3. ε — эпи, 0 · ε = (cokerϕ · µ) · ε⇒ 0 = cokerϕ · µ.

4. Тогда η · cokerϕ · µ = 0, то есть cokerµ′ · βµ = 0, и βµ единственным образом пропускается
через ker cokerµ′ = µ′ — получается ψ.

5. По построению ψ: βµ = µ′ψ, надо ещё проверить коммутативность левого квадрата. Действи-
тельно, так как µ′ — моно, то µ′(ψε) = µ′(ε′α)⇒ ψε = ε′α.

Факт 3.10.1. Функториальность, заявленная в (теорема 3.10.1), в частности говорит, что
такое разложение стрелки единственно с точностью до единственного изоморфизма.

Доказательство. Пусть ϕ = µε = µ′ε′ для разных мономорфизмов µ, µ′ и эпиморфизмов ε, ε′.

A C B

A′ C ′ B

ε

idA

µ

∃!ζ idB

ε′

∃!ξ

µ′

Согласно функториальности, найдутся ξ и ζ, такие, что диаграмма выше коммутативна. Но тогда
ξζ = idC , так как они оба (и ξζ, и idC) удовлетворяют универсальному свойству (теорема 3.10.1)
по отношению к двум одинаковым разложениям ϕ = εµ. Аналогично ζξ = idC′ .

94


	Полилинейная алгебра
	Полилинейные отображения
	Определение тензорного произведения двух модулей
	Мотивация
	Симметричность
	Тензорное произведение двух модулей
	Базис тензорного произведения двух модулей

	Тензорное произведение нескольких модулей
	Базис тензорного произведения

	Изоморфизмы тензорного произведения
	Геометрическое определение тензорного произведения
	Определение  через `3́9`42`"̇613A``45`47`"603AHom
	Двойственность для 
	Сопряжённость  и `3́9`42`"̇613A``45`47`"603AHom

	Тензорное произведение линейных отображений
	Матрица тензорного произведения линейных отображений
	Кронекеровское произведение и кронекеровская сумма многочленов

	Тензорные пространства
	Операции над тензорами

	Тензорная алгебра
	Градуированные алгебры
	Смена градуировки

	Построение симметрической и внешней алгебр
	Базисы симметрической и внешней степеней

	Другое определение симметрической и внешней алгебр
	Вычисления в алгебре Грассмана
	Элементы матрицы внешней степени
	Элементы обратной матрицы

	Грассманиан

	Теория представлений конечных групп
	Теорема Жордана — Гёльдера
	Радикал Джекобсона и формулировка теоремы Веддербарна — Артина
	Три с половиной языка
	Линейные представления группы G
	Линейные действия
	Структура R[G] модуля над каким-то R-модулем
	Глоссарий терминов

	Сплетающие операторы
	Изоморфизм представлений

	Подпредставление
	Лемма Шура
	Факторпредставление
	Прямая сумма представлений. Неразложимые представления
	Усреднение по конечной группе
	Усреднение векторов
	Усреднение линейных отображений

	Теорема Машке
	Унитаризуемость

	Характеры Фробениуса
	Представления абелевых групп. Лемма Шура
	Классификация циклических групп
	Классификация представлений произвольных конечных абелевых групп
	Одномерные представления любых конечных групп

	Формулировка теоремы Бёрнсайда — Фробениуса, первые примеры
	Таблицы характеров. Конечные расширения колец
	Представления неабелевых групп

	Соотношения ортогональности Шура (лемма Шура в матричной форме)
	Первое соотношение ортогональности
	Разложение представление на неприводимые. Sum of squares formula
	Второе соотношение ортогональности (для столбцов)
	Усреднение с весом (averaging with weight)
	Количество неприводимых представлений конечной группы
	Дальнейшие конструкции над представлениями
	Представления прямого произведения групп
	Свойства целочисленности представлений
	Индуцированные представления
	Расширение скаляров
	Компактная индукция (compact induction)
	Полная индукция (complete induction)

	Индуцированные характеры
	Формула слияния (fusion formula)
	Закон взаимности Фробениуса
	Альтернативное доказательство закона взаимности Фробениуса


	Теория категорий
	Универсальные объекты
	Функторы и не только
	Противоположная категория
	Декартово произведение категорий
	Мономорфизмы и эпиморфизмы
	(Ковариантные) функторы
	Контравариантные функторы

	Естественные преобразования
	Эквивалентность категорий

	(Ко)эквалайзеры и (ко)пределы
	Произведения и копроизведения
	Универсальные и коуниверсальные квадраты
	Сопряжённые функторы
	Связь сопряжённых функторов и категории запятой
	Левые сопряжённые к функторам типа забывающих
	Левые сопряжённые к вложениям

	Пределы
	Правый сопряжённый сохраняет пределы
	Схема построения алгебраического замыкания

	Лемма Йонеды
	Примеры представимых функторов
	Формулировка и доказательство леммы

	Абелевы категории


