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Глава 1

Интегрирование уравнений первого
порядка

Лекция I
1 сентября 2023 г.

Обыкновенное дифференциальное уравнение — уравнение, в которой независимая переменная (в
обыкновенных — скалярная) обычно обозначается x, а искомая функция — y(x).

Дифференциальное уравнение порядка m — уравнение вида f
(
x, y, y′, . . . , y(m)

)
= 0.

Основателем теории дифференциальных уравнений (и современного анализа вообще) считается
Исаак Ньютон. Важным примером дифференциального уравнения можно считать уравнение дви-
жения материальной точки по прямой — сила, действующая на точку как-то зависит от времени,
координаты точки, и её скорости, получается уравнение mẍ = f(t, x, ẋ).

Ищем функцию y(x) из уравнения y′ = f(x, y).

В данном курсе всегда будем предполагать, что функция f (правая часть дифференциального
уравнения) непрерывна.

Пусть G ⊂ R2
x,y — область (открытое связное множество), причём f ∈ C(G), то есть f непрерывна

в данной области.

Функция y : (a, b) → R называется решением уравнения y′ = f(x, y) на промежутке (a, b), если

1. y дифференцируема.

2. {(x, y(x)) | x ∈ (a, b)} ⊂ G.

3. Выполняется равенство y′(x) ≡ f(x, y(x)) при x ∈ (a, b).

Замечание. Две функции, заданные на разных промежутках — разные решения.

Примеры.

• y′ = ky, где k ∈ R. В качестве G естественно брать всю плоскость R2
x,y. Из анализа известно,

что любая функция y(x) = C · ekx является решением на любом промежутке.

Замечание. В данном случае ни C = 0, ни k = 0 не являются проблемой.

Определение 1.0.1 (Интегральная кривая). График произвольного решения.

Если область — существования и единственности, то интегральные кривые данного уравне-
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ния покрывают её всю: через каждую точку проходит ровно одна из кривых.

x

y

• Рассмотрим уравнение y′ = 1
2y . Функция не определена при y = 0, естественно возникают две

области G1 = {(x, y) | y > 0} и G2 = {(x, y) | y < 0}. На каждой из них функция определена
и непрерывна.

y′(x) =
1

2y(x)
⇒ 2y(x)y′(x) = 1 ⇒ (y2(x))′ = 1

Теперь уже из анализа понятно, что y2(x) имеет вид x+ C для некой константы C.

В G1 решением является y(x) =
√
x+ C, в G2 — y(x) = −

√
x+ C. Эти решения определены

не для всех значений x, а только для тех, где x+C > 0 (равенство нулю также недопустимо,
необходимо существование производной).

Обычно у дифференциального уравнения бесконечно много решений, даже не принимая в расчёт,
что они могут быть заданы на разных промежутках.

Естественно искать решения с некоторыми свойствами — ограниченные решения, периодические
решения, так далее.

Основное время мы посвятим так называемой задаче Коши. В неё фиксирована точка (x0, y0) ∈ G,
а функция y : (a, b) → R называется решением задачи Коши с начальными данными (x0, y0),
если y — решение на (a, b), причём x0 ∈ (a, b), y(x0) = y0. Геометрический смысл задачи Коши —
решение с интегральной кривой, проходящей через (x0, y0).

В вопросе о единственности решения Коши простое определение дать непросто — всякое реше-
ние на каком-то интервале можно сузить на меньший интервал, и никакое решение абсолютно
единственным являться не может.

Определение 1.0.2 (Точка единственности решения задачи Коши). Точка (x0, y0) ∈ G, такая, что
для любых двух решений y1(x), y2(x) задачи Коши с начальными данными (x0, y0) существует
интервал (α, β) ∋ x0, такой, что y1(x) ≡ y2(x) при x ∈ (α, β).

Контрпример.

Рассмотрим уравнение y′ = 3 3
√
y2. Здесь правая часть определена и непрерывна на всей плоскости.

Рассмотрим задачу Коши с начальными данными (0, 0).

Есть очевидное решение y′(x) ≡ 0, x ∈ R.

Есть решение y(x) =

{
0, x < 0

x3, x > 0
. Это тоже решение, так как функция дифференцируема всюду

(в том числе в нуле), причём равенство выполняется.
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Эти два решения не совпадают ни на каком интервале, содержащем 0, таким образом (0, 0) точкой
единственности данной задачи Коши не является.

Тем не менее, вскоре мы увидим, что, например, точка (1, 1) — точка единственности соответству-
ющей задачи Коши.

Теорема 1.0.1 (Теорема существования). Если правая часть непрерывна в данной области G, то
для любой точки (x0, y0) ∈ G существует решение задачи Коши.

Доказательство. Теорема Пеано с существовании решения: (теорема 2.2.1).

Теорема 1.0.2 (Теорема единственности). Если и f , и ∂f
∂y обе непрерывны в данной области G,

любая точка (x0, y0) ∈ G — точка единственности.

Доказательство. Любая из теорем существования и единственности: (теорема 2.2.2) или (теоре-
ма 2.2.4).

Если выполнены оба условия, то G — область существования и единственности.

Рассмотрим уравнение y′ = f(x, y) на G. Рассмотрим точку (x0, y0), и проведём через эту точку
соответствующую интегральную кривую. В точке (x0, y0) к ней можно провести касательную, её
угловой коэффициент будет y′(x0) = f(x0, y0).

Определение 1.0.3 (Поле направлений). Проведём через каждую точку (x0, y0) отрезок с угловым
коэффициентом f(x0, y0).

Факт 1.0.1. y(x) — решение на промежутке (a, b) ⇐⇒ ∀x ∈ (a, b) : y(x) касается отрезка из
поля направлений (соответствующего точке (x, y(x))).

Вопрос о решении уравнений достаточно сложный, сейчас мы будем рассматривать несколько
типов уравнений, для которых решения можно находить «в более или менее явном виде».

1.1 Уравнения первого порядка, разрешённые относительно част-
ных производных

Рассмотрим уравнение y′ = f(x, y), f ∈ C(G).

Функция u : H → R, где область H ⊂ G, называется (первым) интегралом уравнения в H, если

1. u ∈ C1(H).

2. ∂u
∂y ̸= 0 в H.

3. Для любого решения y(x) на (a, b), такого, что ∀x ∈ (a, b) : (x, y(x)) ∈ H функция u(x, y(x))
является постоянной на x ∈ (a, b).

Вспомним точную формулировку теоремы о неявной функции.

Теорема 1.1.1 (О неявной функции). Рассмотрим функцию F : H → R, где H ⊂ R2, такую, что
F ∈ C1(H), ∃(x0, y0) ∈ H : F (x0, y0) = 0, причём ∂F

∂y (x0, y0) ̸= 0.

Тогда существуют два интервала I, J ⊂ R (I ∋ x0, J ∋ y0), и существует функция z ∈ C1(I), такая,
что

F (x, y) = 0, x ∈ I, y ∈ J ⇐⇒ y = z(x)

Теорема 1.1.2 (Об интеграле). Пусть u(x, y) — интеграл в H ⊂ G. Тогда ∀(x0, y0) ∈ H найдутся
интервалы I ∋ x0, J ∋ y0, и ∃Y ∈ C1(I), такие что

1. Y — решение задачи Коши с начальными данными (x0, y0)

2. ∀(x, y) ∈ I × J : u(x, y) = u(x0, y0) ⇐⇒ y = Y (x).
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Доказательство. Рассмотрим F (x, y) := u(x, y) − u(x0, y0). Функция F удовлетворяет условиям
теоремы о неявной функции (∂F∂y ̸= 0 по определению интеграла).

По теореме о неявной функции ∃z(x), такая, что F (·, ·) на множестве I × J обнуляется ровно на
точках вида (x, z(x)).

С другой стороны, по теореме существования найдётся решение y(x) на промежутке I0 ∋ x0.
Можно сузить I0 так, чтобы I0 ⊂ I, y(I0) ⊂ J . По определению интеграла u(x, y(x)) постоянно, то
есть равно u(x0, y(x0)).

Отсюда видим, что сужение z на I0×J0 и является искомой функцией Y — неким сужением y.

Лекция II
8 сентября 2023 г.

y′ = f(x), f ∈ C(a, b)

Из анализа известно, что для любой точки (x0, y0) ∈ (a, b)×R существует и единственно решение,
проходящее через данную точку

y(x) = y0 +

x∫
x0

f(t) dt

1.2 Дифференциальные уравнения с разделяющимися пере-
менными

y′ = m(x)n(y)

где m ∈ C(a, b), n ∈ C(α, β).

Имеет смысл искать решение в области G = (a, b)× (α, β).

Предположим, что ∃y0 ∈ (α, β) : n(y0) = 0. Тогда в числе прочих решений есть y(x) ≡ y0,
определённая при x ∈ (a, b).

Теперь что происходит в прочих местах? Пусть I = (α′, β′) выбрано так, что ∀y ∈ I : n(y) ̸= 0.
Обозначим I0 = (a, b). Выберем x0 ∈ I0, y0 ∈ I.

При подстановке y′(x) = m(x)n(y(x)) получаем уравнение y′(x)
n(y(x)) = m(x), что можно проинтегри-

ровать.

x∫
x0

y′(t)

n(y(t))
dt =

x∫
x0

m(s) ds

∥∥∥y(t) = z y′(t) dt = dz
∥∥∥

y(x)∫
y(x0)

dz

n(z)
=

x∫
x0

m(s) ds

Введём две первообразные M(x) =
∫
m(x) dx (определена на (a, b)) и N(y) =

∫
dy
n(y) (определена

на I).

Тогда мы получаем равенство N(y(x))−M(x) = N(y(x0))−M(x0). Отсюда мы получаем интеграл
U(x, y) = N(y)−M(x). В самом деле,

• U ∈ C1((a, b)× (α′, β′)).

• ∂U
∂y = 1

n(y) ̸= 0.
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• Для всякого решения y(x)

d

dx
U(x, y(x)) =

∂

∂x
U(x, y(x)) +

∂

∂y
U(x, y(x)) · y′(x) = −m(x) +

1

n(y(x))
m(x)n(y(x)) = 0

1.3 Замена переменных

В уравнении y′ = f(x, y) можно ввести новую независимую переменную v, и новую искомую
функцию w, связанные тождествами

x = V (v, w) y =W (v, w)

Подставив, мы получим новое дифференциальное уравнение, которое может быть легче решить.

Примеры.

• y′ = f(ax + by). Будем считать, что ab ̸= 0, иначе неинтересно. Оставив x независимой
переменной, заменим w = ax + by. Теперь w′ = a + by′ = a + bf(w), что есть уравнение с
разделяющимися переменными.

• Ещё одним примером является уже знакомое нам уравнение с разделяющимися переменными
y′ = m(x)n(y) при n(y(x)) ̸= 0.

Тут, заменив, w =
∫

1
n(y) dy = N(y) получаем уравнение dw

dx = 1
n(y) · y

′ = m(x).

1.4 Линейное дифференциальное уравнение первого порядка

y′ = p(x)y + q(x)

где p, q ∈ C(a, b). Обозначив f(x, y) = p(x)y + q(x) на области G = (a, b) × R, видим, что f, ∂f∂y ∈
C(G), откуда G — область существования и единственности.

1. Рассмотрим однородное уравнение y′(x) = p(x)y, как бы заменив q(x) на 0.

• y(x) ≡ 0 — решение на x ∈ (a, b).

• Рассмотрим G+ = {(x, y) | x ∈ (a, b), y > 0}. Пусть (x0, y0) ∈ G+.
x∫

x0

dy

y(t)
=

x∫
x0

p(s) ds

log(y(x))− log(y(x0)) =

x∫
x0

p(s) ds

y(x) = y0 · exp

 x∫
x0

p(s) ds



Это решение, проходящее через точку (x0, y0).

• Для области G− аналогичные рассуждения выдают тот же ответ y(x) = y0·exp

(
x∫

x0

p(s) ds

)
.

Таким образом, множество всех решений — это

{
y(x) = y0 · exp

(
x∫

x0

p(s) ds

)
| (x0, y0) ∈ G

}
,

причём здесь записано единственное решение, проходящее через (x0, y0). Тем не менее, пока
то, что G — область существования и единственности даёт гарантии лишь локальной един-
ственности, и то, что никаких других решений нет (кроме сужений данного), мы докажем
позднее (теорема 2.3.2).
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2. Метод Лагранжа (метод вариации произвольной постоянной). Будем искать решения

неоднородного уравнения y′ = p(x)y + q(x) в виде y(x) = c(x) exp

(
x∫

x0

p(s) ds

)
, где c ∈

C1(a, b).

Продифференцировав, получим y′(x) = c′(x) exp

(
x∫

x0

p(s) ds

)
+ c(x)p(x) exp

(
x∫

x0

p(s) ds

)
.

Хочется, чтобы выполнялось равенство y′(x) = p(x)y + q(x), это эквивалентно равенству

c′(x) exp

(
x∫

x0

p(s) ds

)
= q(x), откуда получаем

c(x) =

∫
q(x) exp

−
x∫

x0

p(s) ds

 dx

3. Заметим, что если y1(x) — решение неоднородного уравнения (y′(x) = p(x)y+ q(x)), y2(x) —
решение соответствующего однородного (y′(x) = p(x)y), то y1 + y2 — тоже решение данного
неоднородного уравнения.

Получаем довольно громоздкую формулу для решения задачи Коши

y(x) = exp

 x∫
x0

p(t) dt

 ·

y0 + x∫
x0

q(t) exp

−
x∫

x0

p(s) ds

 dt


1.5 Уравнение Бернулли

y′ = p(x)y + q(x)ym

При m = 0, 1 уравнение обращается в ранее рассмотренное линейное дифференциальное.

Если m > 0, то y ≡ 0 является решением, теперь ограничим уравнение на область y > 0.

y′ = p(x)y + q(x)ym

y′

ym
= p(x)y1−m + q(x)∥∥∥w = y1−m

∥∥∥
w′ = (1−m)y−m · y′

1

1−m
w′ = p(x)w + q(x)

1.6 Уравнение Рикатти

y′ = ay2 + bxα, ab ̸= 0

Бернулли показал, что уравнение Рикатти можно проинтегрировать для α ∈
{

−4k
2k−1 | k ∈ Z

}
; а

после этого (в 1841 году) Лиувилль показал, что при данных α (и ещё при α = −2) уравнение
интегрируется, а при всех остальных — не интегрируется вообще.

Рассмотрим класс элементарных функций — {степенные, показательные, суммы, произведения,
логарифм. . . } и замкнём его относительно конечного числа взятий композиций, взятий обратных
и взятий первообразных. Лиувилль показал, что ни одно решение уравнения Рикатти при α, не
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являющимся показателем Бернулли, не принадлежит данному классу, именно поэтому интегриро-
ванием никак не получить решение уравнения Рикатти.

После этого теория дифференциальных уравнений пошла по другому пути — перестали искать
новые методы интегрировать решения, зато стали искать методы получать свойства решений, не
получая их самих.

Лекция III
15 сентября 2023 г.

1.7 Дифференциальное уравнение 1 порядка в симметричной
форме. Уравнение Пфаффа

Определение 1.7.1 (Дифференциальная 1-форма). Выражение вида F = m(x, y) dx + n(x, y) dy,

где m,n ∈ C1(G), причём ∀(x, y) ∈ G :

[
m(x, y) ̸= 0

n(x, y) ̸= 0
. Рассматривается пока как некий формальный

объект.

Определение 1.7.2 (Интегральная кривая формы F ). Векторнозначная функция γ : (a, b) → G,
γ(t) =

(
γ1(t) γ2(t)

)
— регулярная гладкая кривая, такая, что γ1, γ2 ∈ C1(a, b), (γ̇1)

2
+(γ̇2)

2 ̸= 0, и
наконец m(γ(t))γ̇1(t) + n(γ(t))γ̇2(t) ≡ 0.

Сведём уравнение Пфаффа F = 0 к обыкновенному дифференциальному уравнению.

Рассмотрим два уравнения
dy

dx
= −m(x, y)

n(x, y)

dx

dy
= − n(x, y)

m(x, y)

В первом y искомая функция, x — независимая переменная, во втором — наоборот.

Рассмотрим t0 ∈ (a, b). Здесь γ̇1(t0) ̸= 0 (или γ̇2(t0), несущественно). Значит, ∃(α, β) ⊂ (a, b) : ∀t ∈
(α, β) : γ̇1(t) ̸= 0.

На данном промежутке γ1 обратима, уравнение γ1(t) = x разрешимо единственным образом:
∃γ−1

1 (x) =: t.

Положим y(x) = γ2(γ
−1
1 (x)). Проверим, что это решение

dy

dx
= γ̇2(γ

−1
1 (x)) · 1

γ̇1(γ
−1
1 (x))

=
γ̇2(t)

γ̇1(t)
= −m(γ(t))

n(γ(t))
= −m(x, y)

n(x, y)

Таким образом, наличие интегральной кривой γ параметрически задаёт решение уравнения Пфаф-
фа.

Замечание. Верно и обратное: пусть y(x) — решение уравнения dy
dx = −m(x,y)

n(x,y) . Здесь подойдёт

γ(t) =
(
t y(t)

)
. Теперь γ̇1 = 1, γ̇2 = dy

dt = dy
dx = −m(x,y)

n(x,y) = −m(γ1,γ2)
n(γ1,γ2)

. Теперь несложно убедиться в
равенстве m(γ(t))γ̇1(t) + n(γ(t))γ̇2(t) ≡ 0

Замечание. Уравнение Пфаффа стоит понимать, как совокупность двух вышеприведённых уравне-
ний

dy

dx
= −m(x, y)

n(x, y)

dx

dy
= − n(x, y)

m(x, y)

Деление на дифференциал можно формализовать, но лектор делать этого не собирается.

1.7.1 Уравнение в полных дифференциалах

Рассмотрим такое уравнение Пфаффа

F = m(x, y) dx+ n(x, y) dy = 0

10



что существует U(x, y), U ∈ C2(G), такая, что m = ∂U
∂x , n = ∂U

∂y .

В этом случае F называется точной формой.

Теорема 1.7.1. Если F — точная форма, то ∀(x0, y0) ∈ G : ∃ окрестность V ∋ (x0, y0), такая, что
U является интегралом одного из двух уравнений:

dy

dx
= −m

n
или

dx

dy
= − n

m

Доказательство. Предположим, что n(x0, y0) ̸= 0. Тогда ∃V ∋ (x0, y0) : ∀(x, y) ∈ V : n(x, y) ̸= 0.

Рассмотрим уравнение dy
dx = −m

n в V . Действительно, U ∈ C1, частная производная по y не
обнуляется, осталось проверить, что на неком промежутке (a, b) интеграл от решения постоянен.

d

dx
U(x, y(x)) =

∂U

∂x
(x, y(x)) +

∂U

∂y
(x, y(x)) · y′(x) = m+ n

dy

dx
= m+ n ·

(
−m
n

)
≡ 0

Это очень удобно, но как проверять, что форма точная?

Если F — точная форма, то выполнены условия

∂m

∂y
=

∂2U

∂x∂y

∂n

∂x
=

∂2U

∂y∂x

оказывается, данное условие не только необходимое, но и в некотором роде достаточное.

Теорема 1.7.2. Докажем достаточность для прямоугольника (a, b)× (α, β).

Если условия выполнены на прямоугольнике, то F — точная форма.

Доказательство. Построим U ∈ C2(G) с заданными частными производными.

U :=

x∫
x0

m(s, y) ds+ ϕ(y), ϕ ∈ C2

Найдём ϕ так, чтобы выполнялось второе равенство.

∂U

∂y
=

∂

∂y

x∫
x0

m(s, y) ds+ ϕ′(y) =

x∫
x0

∂m

∂y
(s, y) ds+ ϕ′(y) =

=

x∫
x0

∂n

∂s
(s, y) ds+ ϕ′(y) = n(x, y)− n(x0, y) + ϕ′(y)

хотим
= n(x, y)

Значит, надо выбрать ϕ′(y) = n(x0, y), откуда в качестве ϕ подходит
y∫

y0

n(x0, t) dt.

Получившаяся формула не выглядит симметричной:

U(x, y) =

x∫
x0

m(s, y) ds+

y∫
y0

n(x0, t) dt

Тем, что F задана на прямоугольнике мы пользовались тогда, когда записали данный интеграл —
путь интегрирования должен быть внутри области задания F .
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Если же F не является точной формой, то ищется интегрирующий множитель µ(x, y), µ ∈ C1, µ ̸=
0, такая, что µF — точная форма.

Тогда уравнения F = 0 и µF = 0 эквивалентны.

Простой пример, когда можно найти интегрирующий множитель — уравнение с разделяющимися
переменными m(x)n(y) dx+ dy = 0.

Если n(y) ̸= 0, то в качестве множителя подойдёт 1
n(y) . Получится форма m(x) dx + 1

n(y) dy = 0,
которая уже точна.
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Глава 2

Системы дифференциальных
уравнений

Будем обозначать независимую переменную t, а производные по t — точкой: dx
dt = ẋ.

2.1 Системы, разрешённые относительно старших производ-
ных

Ищем n функций x1(t), . . . , xn(t), фиксируем n натуральных чисел m1, . . . ,mn.

Записаны n уравнений вида

dmjxj
dtmj

= fj(t, x1, . . . , x
(m1−1)
1 , x2, . . . , x

(m2−1)
2 , . . . , . . . , xn, . . . , x

(mn−1)
n )

Данная система называется системой порядка m, где m = m1 + · · ·+mn.

Примеры (Важные частные случаи).

• Нормальная система. m1 = · · · = mn = 1. Здесь все уравнения упрощаются до

ẋj = fj(t, x1, . . . , xn)

• Дифференциальное уравнение порядка m при n = 1.

x(m) = f(t, x, . . . , x(m−1))

На самом деле, любое уравнение несложно свести к нормальной системе. Покажем это на примере
уравнения порядка m.

Рассмотрим нормальную систему с m искомыми функциями y0, . . . , ym−1 вида

ẏ0 = y1

ẏ1 = y2

. . .

ẏm−2 = ym−1

ẏm−1 = f(t, y0, y1, . . . , ym−1)

Тогда если x(t) — решение уравнения порядка m, то в качестве решений системы подойдут
yk = x(k), и наоборот, если нашлись {yk}m−1

k=0 — решение системы, то x = y0 является реше-
нием уравнения.
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2.1.1 Векторная запись нормальной системы

Введём x(t) =

x1(t)...
xn(t)

, f : (G ⊂ R × Rn) → Rn, (t, x) 7→

f1(t, x)...
fn(t, x)

. Условимся за произ-

водные и интегралы векторов обозначать их покоординатно: ẋ =

ẋ1...
ẋn

 ∫
f dt =


∫
f1 dt
...∫
fn dt


Условимся в качестве нормы вектора считать максимум модуля его координат |x| = max

1⩽i⩽n
|xi|.

Определение 2.1.1 (Решение на (a, b)). Отображение x : (a, b) → Rn, такое, что

1. ∃ẋ(t) на (a, b).

2. ∀t ∈ (a, b) : (t, x(t)) ∈ G.

3. ∀t ∈ (a, b) : ẋ(t) = f(t, x(t)).

Определение 2.1.2 (Решение задачи Коши с начальными данными (t0, x0) на (a, b)). Отображение
x : (a, b) → Rn, такое, что

• x — решение на (a, b),

• x(t0) = x0.

2.2 Существование и единственность решения задачи Коши

Введём эквивалентное интегральное уравнение x(t) = x0 +
t∫

t0

f(s, x(s)) ds.

Определение 2.2.1 (Решение интегрального уравнения на (a, b)). Отображение x : (a, b) → Rn,
такое что

1. x непрерывно,

2. ∀t ∈ (a, b) : (t, x(t)) ∈ G,

3. Выполнено равенство ∀t ∈ (a, b) : x(t) = x0 +
t∫

t0

f(s, x(s)) ds.

Лемма 2.2.1 (Об эквивалентости интегрального уравнения). Функция x(t) — решение задачи
Коши с начальными данными (t0, x0), если и только если x(t) — решение эквивалентного
интегрального уравнения.

Доказательство.

⇒. Из (1) решение задачи Коши x непрерывно, значит из (3) его производная непрерывна.
Теперь остальное доказывается интегрированием ẋ(t) = f(t, x) по t на промежутке ⟨t0, t1⟩:

слева получается x(t1)− x(t0), справа
t1∫
t0

f(s, x(s)) ds.

⇐. Так как f(t, x(t)) ∈ C((a, b)), то ∃ d
dt

t∫
t0

f(s, x(s)) ds = f(t, x(t)), откуда на самом деле x ∈

C1((a, b)). Теперь остальное получается дифференцированием равенства x(t) = x0+
t∫

t0

f(s, x(s)):

слева получится ẋ(t), справа d
dt

(
x0 +

t∫
t0

f(s, x(s)) ds

)
= f(t, x(t)).

Лекция IV
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22 сентября 2023 г.

2.2.1 Теорема Пеано о существовании решения

Пусть G ⊂ Rn+1
t,x . Рассмотрим решение x(t) с условием ẋ = f(t, x).

Ранее мы рассматривали решения на интервале x : (a, b) → Rn, такие, что уравнение обращается
в верное равенство.

Позволим себе расширить множество решений, на концах отрезка вычисляя односторонние про-

изводные. Заметим, что x(t) = x0 +
t∫

t0

f(s, x(s)) ds — по-прежнему эквивалентное интегральное

уравнение.

Теорема 2.2.1 (Пеано, о существовании решения). Если f ∈ C(G), то ∀(x0, t0) ∈ G : ∃ решение
задачи Коши с начальными данными (t0, x0).

Доказательство. Сведёмся к разрешимости эквивалентного интегрального уравнения. Зафикси-

руем (t0, x0) ∈ G, введём α, β > 0 так, что параллелепипед R =
{
(t, x)

∣∣∣|t− t0| ⩽ α, |x− x0| ⩽ β
}
⊂

G.

Выберем M > 0 : |f(t, x)| ⩽ M в R. Пусть h := min
(
α, β

M

)
. Докажем существование решения на

замкнутом промежутке [t0−h, t0+h] — промежутке Пеано. Для простоты докажем существование
решения на [t0, t0 + h], слева будет аналогично.

Зафиксируем N ∈ N, разобьём [t0, t0 + h] на N равных кусков точками tk := t0 + kh
N . Построим

на этом разбиении ломаную Эйлера g(t). g(t) будет определяться индуктивно: поочерёдно для
k = 1..N положим g(t) = g(tk)+f(tk, g(tk))(t−tk) на [tk, tk+1], что определено, если (tk, g(tk)) ∈ G.
В частности, изначально положим g(t) = x0 + f(t0, x0)(t− t0) на [t0, t1].

У этой ломаной есть производные во всех внутренних точках звеньев. Определим также ġ(tk).
ġ(t0) := f(t0, x0) и ġ(tk) = lim

t→tk−0
ġ(t).

Лемма 2.2.2. Докажем, по индукции для k = 1..N , что для t ∈ [t0, tk]

1. g(t) определена

2. |g(t)− x0| ⩽M(t− t0)

3. g(t) = x0 +
t∫

t0

ġ(s) ds

Доказательство леммы.

База: Для k = 1: g определена на [t0, t1], как записано выше. |g(t)− x0| =

∣∣∣∣∣ t∫t0 f(t0, x0) ds
∣∣∣∣∣ ⩽

M(t− t0) ⩽Mh, так как (t0, x0) ∈ R, откуда |f(t0, x0)| ⩽M . Также (3) очевидно, так как
на данном единственном звене g линейна.

Переход: Докажем для k+1. По индукции g(tk) определена, причём |g(tk)− x0| ⩽M(t−
t0) ⩽Mh ⩽ β и |tk − t0| ⩽ h ⩽ α. Таким образом, (tk, g(tk)) ∈ R ⊂ G, откуда g определена
и на [tk, tk+1]. (2) и (3) опять (как и в базе) следуют из того, что

g(t) = g(tk) + f(tk, g(tk))(t− tk) = x0 +

tk∫
t0

ġ(s) ds+

t∫
tk

ġ(s) ds = x0 +

t∫
t0

ġ(s) ds

Теперь устремим число точек N на ломаной к +∞.

Последовательность функций Φ = {ϕm(t)}∞m=1, бьющих из [a, b] в Rn называется
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• равномерно ограниченной, если ∃H > 0 : |ϕm(t)| ⩽ H для t ∈ [a, b],m ∈ N.

• равностепенно непрерывной, если ∀ε > 0 : ∃δ > 0 : ∀m, t, t′ : |t− t′| < δ ⇒ |ϕm(t)− ϕm(t′)| ⩽
ε .

Интересный факт (Лемма Арцела — Асколи). В равномерно ограниченной равностепенно непре-
рывной последовательности функций можно выделить сходящуюся подпоследовательность.

Покажем, что {gN (t))}∞N=1 равномерно ограничена и равностепенно непрерывна, то есть к ней
применима данная лемма.

Равномерная ограниченность следует из ∀N, t ∈ [t0, t0 + h] : |gN (t)− x0| ⩽ M(t − t0) и неравен-
ства треугольника: |gN (t)| ⩽ |x0| +Mh. Равностепенная непрерывность следует из интегрального
представления:

|gN (t′)− gN (t)| =

∣∣∣∣∣∣
t∫

t′

ġN (s) ds

∣∣∣∣∣∣ , причём ġN (s) — значение f в какой-то точке R

Таким образом, в g найдётся сходящаяся подпоследовательность, для краткости записи будем
считать, что сама gN ⇒

N→∞
g(t) на [t0, t0 + h]. Проверим, что g действительно является решением

эквивалентного интегрального уравнения.

• g(t) непрерывна, так как к ней равномерно сходятся gN .

• (t, gN (t)) ∈ R, а так как R замкнуто, и имеется и поточечная сходимость, то (t, g(t)) ∈ R.

• Осталось показать, что g удовлетворяет самому равенству

g(t) = x0 +

t∫
t0

f(s, g(s)) ds

Для этого запишем

gN (t) = x0 +

t∫
t0

ġN (s) ds = x0 +

t∫
t0

f(s, gN (s)) ds+

t∫
t0

(ġN (s)− f(s, gN (s))) ds

Так как f равномерно непрерывна на R, то f(s, gN (s)) ⇒
n→∞

f(s, g(s)). Отсюда её можно заменить

под интегралом, и осталось показать, что

∣∣∣∣∣ t∫t0 (ġN (s)− f(s, gN (s))) ds

∣∣∣∣∣ стремится к нулю.
Выберем ε > 0, для него найдётся такая δ, что

∀(t, x), (t′, x′) ∈ R : |t− t′| < δ, |x− x′| < δ ⇒ |f(t′, x′)− f(t, x)| < ε

Рассмотрим достаточно большие N , такие, что

∀t ∈ [t0, t0 + h] : ∃k : |t− tk| <
h

N
< δ и |gN (t)− g(t)| < δ

Так как |gN (tk)− gN (t)| ⩽M |tk − t| ⩽M h
N , то при достаточно больших N

ġN (s)− f(s, gN (s)) ds ⩽ ε

Интегрируя по отрезку, чья длина ограничена, получаем, что весь интеграл

∣∣∣∣∣ t∫t0 (ġN (s)− f(s, gN (s))) ds

∣∣∣∣∣
стремится к нулю при N → ∞.

Лекция V
29 сентября 2023 г.

16



2.2.2 Теорема Пикара о существовании и единственности решения

Пусть f : (G ⊂ Rn+1
t,x ) → Rn.

Определение 2.2.2 (f липшицева в H ⊂ G). ∃L ∈ R : ∀(t, x), (t, x′) ∈ H : |f(t, x)− f(t, x′)| ⩽
L|x− x′|. Пишут f ∈ Lipx(H).

Определение 2.2.3 (f локально липшицева в G). ∀(t0, x0) ∈ G : ∃V ∋ (t0, x0) : f ∈ Lipx(V ).
Пишут f ∈ Lipx,loc(G).

Запишем f в координатном виде f =

f1...
fn

, где fi дифференцируема по x. Введём матрицу Якоби

∂f

∂x
=


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xn


Определение 2.2.4 (Операторная норма A ∈M(n,R)). ∥A∥ = max

|x|=1
|Ax|. Здесь |x| = 1 по-прежнему

значит
n

max
i=1

|xi| = 1.

Свойства.

• Операторная норма произведения не превосходит произведения операторных норм: ∥A ·B∥ ⩽
∥A∥ · ∥B∥.

• Операторная норма степени не превосходит степени операторных норм: ∥Am∥ ⩽ ∥A∥m.

Лемма 2.2.3. Если ∂fi
∂xj

∈ C(G) (то есть матрица Якоби непрерывна в G), то f ∈ Lipx,loc(G).

Доказательство. Рассмотрим (t0, x0) ∈ G, найдутся такие α, β > 0: R = {(t, x) | |t− t0| ⩽ α, |x− x0| ⩽ β} ⊂
G. Пусть V = IntR, L = max

(t,x)∈R

∥∥∥( ∂fi
∂xj

)∥∥∥.
Тогда для (t, x1), (t, x2) ∈ V можно рассмотреть g(s) = f(t, sx1 + (1− s)x2), s ∈ [0, 1].

|g(1)− g(0)| =

∣∣∣∣∣∣
1∫

0

∂g

∂s
ds

∣∣∣∣∣∣ =
∣∣∣∣∣∣

1∫
0

∂f

∂x
(t, sx1 + (1− s)x2) ds

∣∣∣∣∣∣ |x1 − x2| ⩽ L |x1 − x2|

Пусть f ∈ C(G),Lipx,loc(G), пусть K ⊂ G — компакт.

Лемма 2.2.4. Тогда f ∈ Lipx(K).

Доказательство. Предположим, что это не так. Выберем последовательность {Lk}, стремящу-
юся к бесконечности, для каждого k найдётся пара точек (tk, xk), (tk, x

′
k) ∈ K, для которых не

выполнено условие Липшица.

Выберем подпоследовательность, такую, что (tk, xk, x̃k) −→
k→∞

(t̃, x̃, x̃′).

• Если x̃ = x̃′, то рассмотрим окрестность V ∋ (t̃, x̃), такую, что f ∈ Lipx(V ). При достаточно
больших k точки (tk, xk), (tk, x

′
k) ∈ V , противоречие.

• Если же x̃ ̸= x̃′, то мы рассмотрим g(t, x, y) = f(t,x)−f(t,y)
|x−y| . Эта функция определена и непре-

рывна в некоторой окрестности точки (t̃, x̃, x̃′). Тогда ∃W ∋ (t̃, x̃, x̃′), L ∈ R: |g(t, x, y)| ⩽ L в
W .

При достаточно больших k : (tk, xk, x
′
k) ∈W , противоречие.
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Лемма 2.2.5 (Gronwall (Гронуолл)). Пусть ϕ(t) — неотрицательна и непрерывна на (a, b). Пусть

∃t0 ∈ (a, b), λ, µ ∈ R⩾0 : ϕ(t) ⩽ λ+ µ

∣∣∣∣∣ t∫t0 ϕ(s) ds
∣∣∣∣∣. Утверждается, что тогда ϕ(t) ⩽ λeµ|t−t0|.

Доказательство. Рассмотрим t ⩾ t0, при t ⩽ t0 аналогично.

ϕ(t) ⩽ λ+ µ

t∫
t0

ϕ(s) ds =: Φ(t)

Φ̇(t) = µ · ϕ(t) ⩽ µΦ(t), откуда Φ̇− µΦ ⩽ 0.

e−µ(t−t0)
(
Φ̇(t)− µΦ(t)

)
⩽ 0 ⇐⇒ d

dt
(e−µ(t−t0)Φ(t)) ⩽ 0

Таким образом, e−µ(t−t0)Φ(t) ⩽ λ ⇐⇒ ϕ(t) ⩽ Φ(t) ⩽ λeµ(t−t0).

Следствие 2.2.1. Если ∃t0 ∈ (a, b), µ ∈ R⩾0 : ϕ(t) ⩽ µ

∣∣∣∣∣ t∫t0 ϕ(s) ds
∣∣∣∣∣, то ϕ(t) ≡ 0

Теорема 2.2.2 (Picard (Пикар)). Если f ∈ C(G),Lipx,loc(G) ⇒ G — область существования и
единственности.

Доказательство. Для начала докажем, что ∀(x0, y0) ∈ G: задача Коши разрешима.

Рассмотрим α, β > 0 такие, что R = {(t, x) | |t− t0| ⩽ α, |x− x0| ⩽ β} ⊂ G. Выберем M > 0 : |f | ⩽
M в R.

Согласно лемме (лемма 2.2.4) f ∈ Lipx(R). Пусть h = min
(
α, β

M

)
.

Докажем существование решения на промежутке [t0 − h, t0 + h] методом последовательных при-
ближений Пикара. Рассмотрим {ϕk(t)}k∈N0

, определённые по правилу

ϕ0(t) ≡ x0 ϕk+1(t) = x0 +

t∫
t0

f(s, ϕk(s)) ds

Лемма 2.2.6. ∀k ∈ N0 : ϕk(t) определена и непрерывна на [t0 − h, t0 + h], и её график
лежит в R.

Доказательство леммы.

База: При k = 0 утверждение верно.

Переход: Докажем для k+1. Так как (t, ϕk(t)) ∈ R ⊂ G, то ϕk+1 определена и непрерывна

на [t0−h, t0+h]. Осталось проверить, что |x−x0| ⩽ β, что следует из

∣∣∣∣∣ t∫t0 f(s, ϕk(s)) ds
∣∣∣∣∣ ⩽

M |t− t0| ⩽Mh ⩽ β.

Лемма 2.2.7. ϕk(t) ⇒ ϕ(t) равномерно на [t0 − h, t0 + h].
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Доказательство леммы.

Рассмотрим ψk(t) =

{
ϕ0(t), k = 0

ϕk(t)− ϕk−1(t), k > 0
. Тогда надо показать, что ряд

∞∑
k=0

ψk(t)

сходится равномерно. Воспользуемся критерием Вейерштрасса: при

k ⩾ 1 : |ψk(t)| ⩽
M

L

|L(t− t0)|k

k!

Докажем это по индукции для t ⩾ t0 (для t ⩽ t0 аналогично).

База: |ψ1(t)| = |ϕ1(t)− ϕ0(t)| =

∣∣∣∣∣ t∫t0 f(s, x0) ds
∣∣∣∣∣ ⩽M(t− t0) =

M
L

L(t−t0)
1

Переход:

|ψk+1(t)| = |ϕk+1(t)− ϕk(t)| =

∣∣∣∣∣∣
t∫

t0

[f(s, ϕk(s))− f(s, ϕk−1(s))] ds

∣∣∣∣∣∣ ⩽
⩽

t∫
t0

|f(s, ϕk(s))− f(s, ϕk−1(s))|ds ⩽ L

t∫
t0

|ϕk(s)− ϕk−1(s)|ds

Воспользовавшись индукционным предположением, получаем

|ψk+1(t)| ⩽ L

t∫
t0

M

L

Lk(s− t0)
k

k!
ds =

M

L
· Lk+1

t−t0∫
0

sk

k!
ds =

M

L

Lk+1(t− t0)
k+1

(k + 1)!

Отсюда моментально следует равномерная сходимость ряда
∑
k⩾0

|ψk(t)| ⩽
∑
k⩾0

M
L

(Lh)k

k! = M
L e

Lh.

Вспомним, что ϕk+1(t) = x0+
t∫

t0

f(s, ϕs(s)) ds. Так как ϕk равномерно сходятся к некоторой функции

ϕ, f равномерно непрерывна на своей области определения — компакте, значит, f(t, ϕk(t)) ⇒
f(t, ϕ(t)), откуда ϕ — решение эквивалентного интегрального уравнения.

Теперь осталось доказать, что всякая точка — точка единственности. Рассмотрим (t0, x0) ∈ G,
пусть есть два решения задачи Коши x1(t), x2(t) с этими начальными данными.

Найдётся интервал (a, b) ∋ t0, такой, что графики x1, x2 на этом интервале лежат в параллелепи-
педе R; каждое из решений удовлетворяет уравнению

ϕ(t) = x0 +

t∫
t0

f(s, ϕ(s)) ds

Вычитая одно решение из другого, получаем

|x1(t)− x2(t)| =

∣∣∣∣∣∣
t∫

t0

(f(s, x1(s))− f(s, x2(s))) ds

∣∣∣∣∣∣
Аргументы лежат в компакте R, значит, можно оценить

|x1(t)− x2(t)| =

∣∣∣∣∣∣
t∫

t0

(f(s, x1(s))− f(s, x2(s))) ds

∣∣∣∣∣∣ ⩽ L

t∫
t0

|x1(s)− x2(s)|ds

Применяя следствие леммы Гронуолла (следствие 2.2.1), получаем x1 − x2 ≡ 0.
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Теорема 2.2.3 (Об области единственности). Предположим, что G — область единственности.
Пусть x1(t), x2(t) — два решения на (a, b). Предположим, что ∃t0 ∈ (a, b) : x1(t0) = x2(t0). Утвер-
ждается, что тогда x1 ≡ x2.

Доказательство. Множество {t ∈ (a, b) | x1(t) = x2(t)} замкнуто в (a, b), рассмотрим его гранич-
ную точку. Если она есть, то в ней нарушается условие единственности.

Лекция VI
6 октября 2023 г.

2.2.3 Теорема о существовании и единственности решения методом сжима-
ющих отображений

Теорема 2.2.4 (О существовании решения. Метод сжимающих отображений). Пусть ẋ = f(t, x), f ∈
C(G),Lipx,loc(G), (t0, x0) ∈ G. Берём тот же самый параллелепипед R = {(t, x) | |t− t0| ⩽ α, |x− x0| ⩽ β},
фиксируем M > 0, ограничивающее f на параллелепипеде, L — константа Липшица.

Вводим h = min
(
α, β

M

)
. Теперь ещё уменьшим h: Lh0 < 1.

Докажем существование решения на промежутке [t0 − h, t0 + h].

Рассмотрим пространство X =
{
ϕ ∈ C1 ([t0 − h, t0 + h] → Rn) | ∀t ∈ [t0 − h, t0 + h] : (t, ϕ(t)) ∈ R

}
.

Введём на X метрику ρ(ϕ1, ϕ2) = max
t∈[t0−h,t0+h]

|ϕ1(t)− ϕ2(t)|.

Интересный факт. Данная метрика превращает X в полное метрическое пространство.

Определим оператор L : X → X:

L(ϕ)(t) = x0 +

t∫
t0

f(s, ϕ(s)) ds

Очевидно, неподвижная точка данного оператора является решением эквивалентного интегрально-
го уравнения.

• Проверим, что L бьёт в X. Пусть ψ = L(ϕ). Тогда |ψ(t)− x0| =

∣∣∣∣∣ t∫t0 f(s, ϕ(s)) ds
∣∣∣∣∣. Поскольку

график ϕ лежит в R, то |f(s, ϕ(s))| ⩽M , откуда величина интеграла не превосходит Mh ⩽ β.

• Проверим, что L — сжимающий оператор. Пусть ϕ1, ϕ2 ∈ X. Оценим

ρ(L(ϕ1),L(ϕ2)) = max
t∈I

∣∣∣∣∣∣
t∫

t0

(
f(s, ϕ1(s))− f(s, ϕ2(s))

)
ds

∣∣∣∣∣∣ ⩽
⩽ max

t∈I
L

∣∣∣∣∣∣
t∫

t0

ρ(ϕ1, ϕ2) ds

∣∣∣∣∣∣ ⩽ max
t∈I

L|t− t0| · ρ(ϕ1, ϕ2) < ρ(ϕ1, ϕ2)

• Согласно теореме Банаха L имеет единственную неподвижную точку, откуда решение инте-
грального уравнения существует и единственно.

Замечание. Если рассмотреть доказательство теоремы Банаха, то получится, что доказатель-
ство (теорема 2.2.4) по существу повторяет доказательство (теорема 2.2.2). Тем не менее, теорема
Пикара чуть сильнее, в ней длина промежутка h не зависит от константы Липшица.
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2.3 Продолжимость решений

ẋ = f(t, x), x ∈ Rn, f ∈ C(G), G — область единственности. Пусть x(t) — решение на (a, b).

Определение 2.3.1 (y(t) — продолжение x(t) вправо за b). y — решение на (a, b′), где b′ > b и
∀t ∈ (a, b) : x(t) = y(t).

Теорема 2.3.1. Решение x(t) продолжается вправо на (a, b) ⇐⇒ ∃ lim
t→b−0

x(t) = β и (b, β) ∈ G.

Доказательство.

⇒. Пусть y — продолжение на (a, b′). b ∈ (a, b′), и lim
t→b−0

x(t) = lim
t→b−0

y(t) = y(b). Так как y —

решение, то (b, y(b)) ∈ G.

⇐. Согласно теореме о существовании, для некоего h на промежутке (b−h, b+h) ∃z(t) : z(b) = β.

Рассмотрим y(t) =

{
x(t), t ∈ (a, b)

z(t), t ⩾ b
, определённое на (a, b+ h). Покажем, что y — решение.

Так как x не определено в b, то (лемма 2.3.1) здесь не работает. Применим следствие теоремы
Лагранжа: если на (a, b) существует производная ẏ(t), и ∃ lim

t→b−0
ẏ(t) = A, то тогда A —

производная слева y(t) в точке b. Отсюда получаем, что производные у y в точке b слева и
справа равна lim

t→b
f(t, y(t)) = f(b, β).

Определение 2.3.2 (Полное (непродолжимое) решение x(t) на (a, b)). Решение, которое не про-
должимо ни вправо за b, ни влево за a.

Полные решения являются самым естественным объектом для изучения в этой теории.

Теорема 2.3.2. Если f ∈ C(G), G — область единственности, то ∀(t0, x0) ∈ G : ∃! полное решение
задачи Коши с начальными данными (t0, x0).

Доказательство.

Лемма 2.3.1. Пусть z1, z2 — два произвольных решения уравнения z′ = f(x, z), пе-
ресекающихся в точке (x0, z0). Тогда решения можно склеить: например, z3(x) ={
z1(x), x < x0

z2(x), x ⩾ x0
тоже является решением.

Доказательство леммы.

z3 дифференцируема слева от x0, так как там она совпадает с z1, дифференцируема
справа от x0, так как там она совпадает с z2, и дифференцируема в x0, так как там её
производные слева и справа равны f(x0, z0). Также очевидно, что действительно z′3 =
f(x, z3).

T = {(a, b) ∋ t0 | ∃x(t) — решение задачи Коши на (a, b) с данными (t0, x0)}. Положим A = inf
(a,b)∈T

a;

B = sup
(a,b)∈T

b.

Пусть xA — решение на (A, b′) для некоего b′ > t0.

Пусть xB — решение на (a′, B) для некоего a′ < t0.

Определим x(t) =

{
xA(t), t ⩽ t0

xB(t), t ⩾ t0
на (A,B). Оно корректно определено (лемма 2.3.1), и оно

полное из определения T .

Единственность решения также имеет место: если x, x̃ — два решения, совпадающие в какой-
то точке (x0, t0), то они равны на всех точках области определения, так как множество точек
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{(t, y) | x(t) = y = x̃(t)} замкнуто, и к граничной точке можно применить теорему об единственно-
сти.

Замечание. Рассмотрим уравнение y′ = f(y), где для простоты f(0) = 0,∀y > 0 : f(y) > 0. Область
G = {(x, y) | y > 0} — область единственности, что следует из существования интеграла.

Таким образом, имеется полное решение, утверждается, что при достаточно малых x оно доста-
точно близко к нулю. В самом деле, в противном случае производная положительна и отделена от
нуля.

Теорема 2.3.3 (О полном решении и компакте). Пусть K ⊂ G — компакт. Тогда ∃∆ = ∆(K) > 0,
такое, что для любого полного решения x(t) на (a, b): если b <∞, то ∀t ∈ (b−∆, b) : (t, x(t)) /∈ K.
Аналогично, если a > −∞, то ∀t ∈ (a, a+∆) : (t, x(t)) /∈ K.

Доказательство. ∃α, β > 0 : ∀(t0, x0) ∈ K : Rα,β(t0, x0) := {(t, x) | |t− t0| ⩽ α, |x− x0| ⩽ β} ⊂ G.
Здесь (наверно) используется факт о том, что непрерывная функция на компакте достигает своего
наименьшего значения.

Положим R =
⋃

(t0,x0)∈K

Rα,β(t0, x0). Это тоже компакт. Например, это непрерывный образ произве-

дения компактов при отображении
K ×Rα,β(0, 0) → G

x, y 7→ x+ y
.

∃M > 0 : |f(t, x)| ⩽M в R. Положим h = min(α, β
M ). Мы доказывали, что ∀(t0, x0) ∈ K: ∃ решение

задачи Коши с начальными данными (t0, x0) на [t0 − h, t0 + h].

Положим ∆ = h
2 , предположим, что ∃t0 ∈ (b − ∆, b) : (t0, x(t0)) ∈ K. Обозначим за z(t) решение

задачи Коши на промежутке [t0, t0 + h]. Склеив решения, получаем противоречие с тем, что x —
полное решение.

Рассмотрим уравнение ẋ = f(t, x), G = (a, b)× Rn.

Определение 2.3.3 (Сравнимая с линейной система). ∃p(t), q(t) ∈ C1((a, b) → R⩾0), такие, что в
G выполнено неравенство:

|f(t, x)| ⩽ p(t)|x|+ q(t)

Теорема 2.3.4. Любое полное решение системы, сравнимой с линейной, определено на (a, b).

Доказательство. От противного: пусть x(t) — полное решение на (a1, b1) ⊊ (a, b). Для опреде-
лённости b1 < b. Выберем t0 ∈ (a1, b1), положим x0 = x(t0).

Рассмотрим эквивалентное интегральное уравнение x(t) = x0 +
t∫

t0

f(s, x(s)) ds. Здесь верно, что

[t0, b1] ⊂ (a, b), откуда p, q ограничены: p(t) ⩽ P, q(t) ⩽ Q

Оценим для t ∈ [t0, b1):

|x(t)| ⩽ |x0|+

∣∣∣∣∣∣
t∫

t0

f(s, x(s)) ds

∣∣∣∣∣∣ ⩽ |x0|+

∣∣∣∣∣∣
t∫

t0

(P |x(s)|+Q) ds

∣∣∣∣∣∣ ⩽ |x0|+Q |t− t0|︸ ︷︷ ︸
N

+P

t∫
t0

|x(s)|ds

Это условие леммы Гронуолла (лемма 2.2.5). Значит, на данном промежутке |x(t)| ⩽ NeP |t−t0| ⩽
NeP (b1−t0).

Получили противоречие с предыдущей теоремой: b1 — правый конец промежутка определённости
полного решения, но график не покидает компакт.
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2.4 Линейные системы дифференциальных уравнений

ẋ = p(t)x+ q(t), где x(t), q(t) ∈ Rn, p(t) ∈Mn×n.

Раз и навсегда условимся, что p(t) ∈ C(a, b) и q(t) ∈ C(a, b) тоже. Область определения правой
части G можно ввести, как (a, b) × Rn. f ∈ C(G),Lipx,loc(G) (так как ∂f

∂x = p(t)). Значит, G —
область существования и единственности, причём |f(t, x)| ⩽ ∥p(t)∥ · |x|+ |q(t)|.

Согласно (теорема 2.3.4) всякое полное решение определено на (a, b).

Лекция VII
13 октября 2023 г.

Рассматриваем уравнение ẋ = p(t)x + q(t), где x ∈ Rn, p, q ∈ C(a, b). Мы показали, что G =
(a, b) × Rn — область существования и единственности, и (применим теорему об уравнениях,
сравнимых с линейными) что любое полное решение определено на (a, b).

Теорема 2.4.1 (О существовании и единственности).

1. ∀(t0, x0) ∈ G: ∃ полное решение задачи Коши с начальными данными (t0, x0) на (a, b).

2. Если же x1(t), x2(t) — решения на (a, b), и ∃(t0, x0) : x1(t0) = x0 = x2(t0), то тогда x1 ≡ x2.

2.4.1 Однородные линейные системы дифференциальных уравнений

Рассмотрим однородное уравнение ẋ = P (t)x.

Замечание. Теория, которая здесь излагается, применима на самом деле не только для веществен-
ных, но и для комплексных решений — можно заменить Rn на Cn.

Теорема 2.4.2. Множество решений ẋ = P (t)x — векторное пространство над R (или над C).

Рассмотрим матрицы Φ ∈Mn×n(R):

Φ(t) =
(
x1(t) · · · xn(t)

)
где xi(t) — решения.

Определение 2.4.1 (Определитель Вронского (вронскиан)). W (t)
def
= detΦ(t).

Лемма 2.4.1. Если ∃t0 ∈ (a, b) :W (t0) = 0, то W (t) ≡ 0 на (a, b).

Доказательство. Из линейной алгебры известно, что ∃c =

c1...
cn

 ̸= 0, такой, что Φ(t0)c = 0.

Рассмотрим y(t) = c1x1(t) + · · · + cnxn(t). Это тоже решение, но так как y(t0) = 0, то по теореме
единственности y ≡ 0. Таким образом, Φ(t)c ≡ 0, то есть detΦ(t) ≡ 0.

Следствие 2.4.1. Если ∃t0 ∈ (a, b) :W (t0) ̸= 0, то W не обращается в нуль на (a, b).

Определение 2.4.2 (Фундаментальная матрица системы). Матрица Φ(t) =
(
x1(t) · · · xn(t)

)
с

ненулевым вронскианом.

Теорема 2.4.3. У любой системы существует фундаментальная матрица.

Доказательство. Фиксируем t0 ∈ (a, b). Пусть x01, . . . , x
0
n — набор линейно независимых векторов.

По теореме о существовании ∀k = 1..n : ∃ решение xk(t) задачи Коши с начальными данными
(t0, x

0
k).

Составим Φ(t) =
(
x1(t) · · · xn(t)

)
. В точке t0 вронскиан ненулевой.
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Теорема 2.4.4 (Теорема об общем решении). Пусть Φ(t) — фундаментальная матрица. ∀x(t) —
решение линейной однородной системы ∃!c ∈ Rn : x(t) = Φ(t)c.

Доказательство. Фиксируем t0 ∈ (a, b). Обозначим x0 = x(t0).

Так как W (t0) ̸= 0, то у системы Φ(t0)c = x0 существует единственное решение c ∈ Rn. Но тогда
y(t) = Φ(t)c — тоже решение, по теореме о единственности x ≡ y.

Следствие 2.4.2. Множество решений системы является векторным пространством размер-
ности n.

Задача о нахождении фундаментальной матрицы, вообще говоря, неразрешима в размерности n ⩾
2.

Так, рассмотрим уравнение ÿ + tαy = 0. Оно сводится к линейной системе второго порядка{
ẏ = z

ż = −tαy

Если y(t) — ненулевое решение, то функция x(t) = 1
y ẏ будет обладать свойством

ẋ =
1

y2
(ẏ)2 +

1

y
ÿ = −x2 − tα

Мы получили уравнение Рикатти, про которое Лиувилль доказал, что оно в общем случае нераз-
решимо.

Теорема 2.4.5. Так как фундаментальная матрица Φ(t) — строка базисных векторов — то множе-
ство всех фундаментальных матриц — это Φ ·GL(n,R) = {Φ · g | g ∈ GL(n,R)}.

Теорема 2.4.6. Если Φ(t) — строка решений (необязательно образующих фундаментальную мат-
рицу) системы ẋ = P (t)x. Тогда

Φ̇ = P · Φ

Замечание (О комплексном случае). Если P (t) — вещественная матрица, то x(t) = y(t) + iz(t)
является решением для y, z ∈ C1(Rn) если и только если и y, и z являются решениями.

Предложение 2.4.1 (Об овеществлении фундаментальной матрицы). Пусть Φ(t) =
(
x1(t) x2(t) · · ·

)
— вообще говоря, комплексная фундаментальная матрица, у которой x2 = x1.

Тогда Ψ(t) =
(
ℜ(x1(t)) ℑ(x1(t)) x3 · · ·

)
— тоже фундаментальная матрица.

Доказательство.

Ψ = Φ ·

1/2 1/2i 0
1/2 −1/2i 0
0 0 E



2.5 Линейные системы с постоянными коэффициентами

Пусть A ∈M(n,R), рассмотрим уравнение ẋ = Ax.
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2.5.1 Метод Эйлера

Станем искать x(t) ̸= 0 в виде γeλt, где γ ∈ Rn, λ ∈ R.

Это является решением ровно в тех случаях, когда λγeλt = Aγeλt, то есть λγ = Aγ. Иными
словами, λ — собственное число A.

Ограничимся случаем, когда все собственные числа λk вещественные, и A диагонализуема (нет
блоков размера ⩾ 2 в нормальной жордановой форме).

Φ(t) =
(
γ1e

λ1t · · · γne
λnt
)
является фундаментальной матрицей, так как векторы γ1, . . . , γn

линейно независимы.

Случаи комплексных собственных чисел или не диагонализуемой A здесь рассматривать не будем.

2.5.2 Матричная экспонента

Пусть A ∈M(n,C). Рассмотрим полное метрическое пространствоM(n,C) с расстоянием ρ(A,B) =
∥A−B∥ — операторной нормой.

Определение 2.5.1 (Матричная экспонента).

eA =

∞∑
k=0

1

k!
Ak

Факт 2.5.1. Матричная экспонента определена корректно; ряд eA сходится.

Доказательство. В силу полноты пространства достаточно доказать, что последовательность

Σm :=
m∑

k=0

1
k!A

k фундаментальна. Для m > l оценим

∥Σm − Σl∥ =

∥∥∥∥∥
m∑

k=l+1

1

k!
Ak

∥∥∥∥∥ ⩽
m∑

k=l+1

1

k!
∥A∥k

Если обозначить σm =
m∑

k=1

1
k!∥A∥

k, то ∥Σm − Σl∥ ⩽ σm − σl. Так как ряд для скалярной экспо-

ненты сходится, то выполняется условие фундаментальной последовательности: σm − σl −→ 0 при
min(l,m) → ∞.

Свойства (Матричная экспонента).

• Пусть A и B сопряжены: B = S−1AS. Тогда eB = S−1eAS.

Доказательство. Частичные суммы полностью совпадают: сопряжение — автоморфизм.

• Для a, b ∈ C : ea · eb = ea+b. Для коммутирующих матриц A,B ∈M(n,C):

eA+B = eA · eB

Доказательство. Так как ряды для матричных экспонент сходятся абсолютно (достаточно
требовать абсолютной сходимости только для одного ряда), то можно записать

eA · eB =

∞∑
k=0

∞∑
m=0

Ak

k!
· B

m

m!
=

∞∑
k=0

∞∑
m=0

1

(m+ k)!

(
m+ k

k

)
AkBm

Так как A и B коммутируют, то это
∞∑
s=0

1
s! (A+B)s = eA+B .

• Рассмотрим A ∈M(n,C), t ∈ C. Тогда d
dte

At = A · eAt.
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Доказательство. Рассмотрим Σm :=
m∑

k=0

1
k!A

ktk.

d

dt
Σm = AΣm−1

Так как ряд сходится абсолютно (этого достаточно? видимо да, теорема о дифференцировании
ряда из матанализа), то его производная — предел производных частичных сумм.

Лекция VIII
20 октября 2023 г.

Мы остановились на том, что рассматривалось уравнение ẋ = Ax, где x ∈ Rn.

Так как d
dte

At = A · eAt, то несложно видеть, что eAt =
(
x1, . . . , xn

)
— фундаментальная матрица

решений.

В частности, при t = 0 : e0 = E, вронскиан не равен нулю при t = 0 (значит, всегда).

2.5.3 Вычисление матричной экспоненты

Рассмотрим матрицу A ∈M(n,R).

Согласно теореме Жордана (жорданова нормальная форма) ∃S ∈ GL(n,R) : S−1AS = J =
diag(J1, . . . , Jp), где

Jp =


λ 1 0

. . .
. . .
. . . 1

0 λ

 — жорданова клетка некоего размера с неким собственным числом λ

Разложим J в сумму диагональной и нильпотентной матрицы: J = λE + I, где

E =

1 0
. . .

0 1

 и I =


0 1 0
...

. . .
... 1
0 · · · · · · 0


Так как экспонента коммутирует с сопряжением (S−1eAtS = eS

−1AS·t = eJt), то чтобы вычислить
eAt достаточно вычислять экспоненту от жордановой нормальной формы.

(Jt)k = diag((J1t)k, . . . , . . . , (Jpt)k) eJt = diag
(
eJ1t, . . . , eJpt

)
Научимся вычислять экспоненту от одного жорданового блока J = Jn(λ): eJt = eλEt+It.

Так как λE и I коммутируют, то e(λE+I)t = eλEt · eIt.

Дальше считается eλEt = diag(eλt, . . . , eλt) и eIt =
∞∑
k=0

1
k! (It)

k =


1 t · · · tr−1

(r−1)!

. . .
...

. . . t
0 1

.
Если S−1eAtS = eJt, то eAt = SeJtS−1 — фундаментальная матрица решений.

Так как S обратима, то в качестве фундаментальной матрицы можно взять и просто матрицу SeJt.
Помимо того, что данное вычисление требует на одно матричное умножение меньше, есть ещё
одно объяснение, почему фундаментальное решение правильно выражать в таком виде.
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В методе Эйлера ẋ = Ax и ищется решение в виде γeλt, где λ — собственное число A, и γ —
соответствующий собственный вектор.

Если λ1, . . . , λn ∈ R — собственные числа A, и каждое — кратности 1, то жорданова форма —
diag(λ1, . . . , λn). Тогда eJt = diag

(
eλ1t, . . . , eλnt

)
.

Жорданова форма была взята из сопряжения S−1AS = J ⇐⇒ AS = SJ . Обозначив S =(
γ1 . . . γn

)
, получаем A(γ1, . . . , γn) = (γ1, . . . , γn)diag(λ1, . . . , λn)

Таким образом, столбцы матрицы S — в точности собственные векторы, получаемые в методе
Эйлера.

2.5.4 Оценка фундаментальной матрицы

Рассматриваем систему ẋ = Ax, ей соответствует фундаментальная матрица Φ(t) = eAt.

Теорема 2.5.1. Предположим, что ∃a ∈ R : ∀k : a > ℜ(λk).

Тогда ∃C > 0 :
∥∥eAt

∥∥ ⩽ Ceat при t ⩾ 0.

Доказательство. J = S−1AS ⇒ eJt = S−1eAtS ⇒ eAt = SeJtS−1.

Всякий элемент матрицы eJt — это либо нуль, либо функция от t вида eλp·t

k! · Poly(t), k ⩽ n. Если
умножить каждый элемент на e−at, то видно∣∣∣∣e−at e

λpt

k!

∣∣∣∣Poly(t) = 1

k!
e(ℜ(λp)−a)tPoly(t) −→

t→+∞
0

Тогда для любого элемента матрицы jl,m, стоящего на позиции (l,m) в матрице eJt : ∃cl,m > 0:
|e−at ·jl,m| ⩽ cl,m при t ⩾ 0, так как непрерывная функция, убывающая к нулю на +∞, ограничена.

Тогда и норма
∥∥e−ateJt

∥∥ ограничена некой константой C0, откуда ∥eJt∥ ⩽ C0e
at при t ⩾ 0.

2.6 Случай Лаппо-Данилевского

Хотя в общем случае системы ẋ = A(t)x неразрешимы, можно ещё в одном случае выписать
фундаментальную матрицу для системы ẋ = A(t)x с непостоянными коэффициентами.

Пусть A ∈ C(a, b).

Теорема 2.6.1 (Лаппо-Данилевский). Пусть существует t0 ∈ (a, b) : A(t)·

(
t∫

t0

A(s) ds

)
=

(
t∫

t0

A(s) ds

)
·

A(t). Тогда exp

(
t∫

t0

A(s) ds

)
— фундаментальная матрица.

Доказательство. Рассмотрим производную экспоненты d
dte

I(t), где обозначили I(t) :=
t∫

t0

A(s) ds.

Частичная сумма для производной равна d
dt

m∑
k=0

1
k! (I(t))

k =
m∑

k=0

1
k!

d
dt (I(t) · . . . · I(t))︸ ︷︷ ︸

k

Так как I(t)

коммутирует с A(t), то данная сумма раскрывается в

A(t)

m−1∑
k=0

1

k!
I(t)k −→

m→∞
A(t)eI(t)
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2.7 Неоднородные линейные системы

Теперь рассматриваем неоднородную систему ẋ = p(t)x + q(t), где p, q ∈ C(a, b), p(t) ∈ M(n,R) —
матрица, q(t) ∈ Rn — вектор.

Параллельно с этим рассмотрим соответствующую однородную систему ẋ = p(t)x, пусть Φ(t) — её
фундаментальная матрица.

Теорема 2.7.1. Если y(t) — некое решение неоднородной системы, то всякое решение представимо
в виде y(t) + Φ(t)c, где c ∈ Rn.

Доказательство. Пусть ỹ(t) — какое-то решение неоднородной системы. Рассмотрим разность
ỹ − y, она является решением однородной системы.

Для поиска данного решения неоднородной системы y(t) мы воспользуемся методом Лагранжа —
вариации постоянной. Ищем y(t) в виде Φ(t)α(t), где α : R → Rn непрерывна (α ∈ C(R → Rn)).

ẏ = Φ(t) · α̇+ Φ̇(t) · α = Φ(t)α̇+ p(t)Φ(t)α

Получается равенство Φ(t)α̇ = q(t). α̇ = Φ−1(t)q(t) (Φ обратима и непрерывна, так как вронскиан
ненулевой, и элементы обратной матрицы можно явно выразить).

Подойдёт α =
∫
Φ−1(t)q(t) dt. Тогда решением является

y(t) = Φ(t)

∫
Φ−1(t)q(t) dt

Лекция IX
27 октября 2023 г.

2.8 Периодические линейные системы

Периодические системы — системы вида ẋ = p(t)x+ q(t), где x ∈ Rn, p, q ∈ C(R), причём ∃ω > 0 :
p(t+ ω) ≡ p(t), q(t+ ω) ≡ q(t).

Лемма 2.8.1. Если x(t) — решение системы, то его сдвиг на период y(t) = x(t + ω) — тоже
решение.

Рассмотрим однородную периодическую систему ẋ = p(t)x.

Теорема 2.8.1 (Флоке (Floquet)). Если Φ(t) — фундаментальная матрица однородной системы, то
∃G(t), R — матрицы, такие, что G — ω-периодична, R постоянна, и имеет место представление
Φ(t) = G(t)eRt.

Доказательство.

Лемма 2.8.2 (О существовании логарифма). Пусть B ∈ M(n,C). Тогда detB ̸= 0 ⇐⇒
∃A : eA = B.

Доказательство леммы.

⇐. Можно сослаться на алгебру: собственные числа экспоненты — экспоненты соб-
ственных чисел A. Можно рассмотреть eAt, как фундаментальную матрицу, в ней
столбцы линейно независимы.

⇒. Докажем существование логарифма у жордановой клетки: в нормальной жордановой
форме матрица является прямой суммой жордановых клеток.

J = diag(J1, . . . , Js) ⇒ log J = diag(log J1, . . . , log Js)
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Лемма 2.8.3. Пусть Ir =


0 1 0
...

. . .
... 1
0 · · · · · · 0

 — нильпотентная матрица

размера r × r. Пусть λ ̸= 0. Рассмотрим Z =
∞∑
p=1

(−1)p+1

p

(
Ir
λ

)p
.

Тогда eZ = E + Ir
λ .

Доказательство леммы.

На самом деле
∞∑
p=1

(−1)p+1

p

(
Ir
λ

)p
— конечная сумма, так как начиная со

слагаемого под номером r суммируются нули.

Из анализа известно, что при z ∈ C: exp(log(1 + z)) = 1 + z, то есть

∞∑
k=0

1

k!

( ∞∑
p=1

(−1)p+1

p
zp

)k

= 1 + z

Определим σm :=
m∑

k=0

1
k!

(
∞∑
p=1

(−1)p+1

p zp

)k

Тогда видно, что σm+1 − σm = zm+1 · (какая-то аналитическая функция).
Написав σm(z) = a

(m)
0 +a

(m)
1 z+ · · ·+a(m)

m zm+ . . . , получаем, что в частной
сумме σm+1(z) коэффициенты перед z0, . . . , zm такие же.

Тогда при k ⩾ m : σk(z) = 1 + z + zm · (что-то).

Если же рассмотреть вместо z матрицу Ir
λ , то результат вычислений будет

такой же, но большие степени обнуляются. Тогда

σm(eZ) = Er +
Ir
λ

+ 0 eZ = Er +
Ir
λ

Таким образом, при λ ̸= 0: если Js = λEr + Ir, то log(Js) = log(λ)Er + Z (можно
для проверки взять экспоненту, она раскроется в правильную вещь, так как Er

коммутирует с Z).

Так как сопряжение — автоморфизм, то показав существование логарифма у жорда-
новой клетки, мы показали существование логарифма у произвольной матрицы.

Разумеется, логарифм не единственный.

Возьмём фундаментальную матрицу Φ(t). Матрица Φ(t+ ω) — тоже фундаментальная матрица.

Значит, найдётся матрица B ∈ GL(n,C) : ∀t : Φ(t+ω) = Φ(t)B. Так как B невырождена, то можно
рассмотреть R = 1

ω logB,G(t) = Φ(t)e−Rt.

Тогда, конечно, Φ(t) = G(t) · eRt, покажем периодичность G(t).

G(t+ ω) = Φ(t+ ω)e−R(t+ω) = Φ(t)B · e−Rω︸ ︷︷ ︸
e− log(B)=B−1

·e−Rt = Φ(t)e−Rt = G(t)

29



Найденная в теореме Флоке матрица B — матрица монодроми́и. Пусть µi — собственные числа
B. Их называют мультипликаторы, и они не зависят от выбранной фундаментальной матрицы
Φ(t).

Доказательство. Выберем другую фундаментальную матрицу Φ1(t). Её соответствует другая мат-
рица монодромии B1 : Φ1(t+ ω) = Φ1(t)B1.

Но один базис можно выразить через другой: ∃S : Φ1(t) = Φ(t)S. Тогда

Φ(t)SB1 = Φ1(t)B1 = Φ1(t+ ω) = Φ(t+ ω)S = Φ(t)BS

Отсюда B1 = S−1BS, а у сопряжённых матриц спектры совпадают.

Теорема 2.8.2 (О мультипликаторах). Число µ является мультипликатором ⇐⇒ ∃ ненулевое
решение X(t), такое, что X(t+ ω) = X(t)µ.

Доказательство.

⇒. Фиксируем фундаментальную матрицу Φ(t), такую, что Φ(0) = E.

Её матрица монодромии B = Φ(ω). Значит, µ — собственное число Φ(ω), ему соответствует
собственный вектор x0 ̸= 0. Тогда заметим, что x(t) = Φ(t)x0 обладает искомым свойством.

Так как Φ(t) невырождена, то x(t) ̸= 0.

x(t+ ω) = Φ(t+ ω)x0 =

(Φ(t+ ω) = Φ(t)Φ(ω), как фундаментальные матрицы, совпадающие в нуле)

= Φ(t)Φ(ω)x0 = Φ(t)µx0 = µx(t)

⇐. Примерно то же самое.

2.9 Формула Остроградского — Лиувилля (формула Якоби)

Рассмотрим линейную однородную систему ẋ = P (t)x, где x ∈ Rn.

Пусть Φ(t) =
(
x1 · · · xn

)
— фундаментальная матрица.

Пусть W (t) = detΦ(t) — вронскиан.

Теорема 2.9.1 (Формула Остроградского — Лиувилля (формула Якоби)). Тогда d
dtW (t) = tr(P (t))W (t).

Доказательство. Как дифференцируется определитель?

Рассмотрим определитель ∆ =

∣∣∣∣∣∣∣
a1,1(t) · · · a1,n(t)

...
. . .

...
an,1(t) · · · an,n(t)

∣∣∣∣∣∣∣.
Тогда

d

dt
∆ =

∣∣∣∣∣∣∣∣∣
ȧ1,1(t) · · · ȧ1,n(t)
a2,1(t) · · · a2,n(t)

...
. . .

...
an,1(t) · · · an,n(t)

∣∣∣∣∣∣∣∣∣+ · · ·+

∣∣∣∣∣∣∣∣∣
a1,1(t) · · · a1,n(t)

...
. . .

...
an−1,1(t) · · · an−1,n(t)
ȧn,1(t) · · · ȧn,n(t)

∣∣∣∣∣∣∣∣∣
Здесь берётся сумма n определителей, в i-м в i-й строчке стоят производные функций.

Теперь запишем d
dtW (t) =W1(t) + · · ·+Wn(t), где Wi(t) — описанные выше компоненты.
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Пусть xi(t) =

x
(1)
i
...

x
(n)
i

 — решения из фундаментальной матрицы.

W1 =

∣∣∣∣∣∣∣
ẋ
(1)
1 · · · ẋ

(1)
n

...
. . .

...
x
(n)
1 · · · x

(n)
n

∣∣∣∣∣∣∣
Так как xi — решение, то можно выразить ẋ(1)i = p1,1x

(1)
i + · · ·+ p1,nx

(n)
i

В матрице W1 вычтем из первой строчки все строчки с номерами i ⩾ 2, умноженные на p1,i.
Останется матрица p1,1x

(1)
1 · · · p1,1x

(1)
n

...
. . .

...
x
(n)
1 · · · x

(n)
n


Тогда получается, что W1 = p1,1W , и d

dtW =W1 + · · ·+Wn = (p1,1 + · · ·+ pn,n)W .

2.10 Неоднородные линейные системы со специальной правой
частью

Рассмотрим систему ẋ = Ax+ q(t), где x ∈ Rn и q(t) имеет вид

q(t) = eαt ·

r1(t)...
rn(t)


где r1(t), . . . , rn(t) — многочлены.

Положим m — максимальная степень многочлена ri, k — максимальный размер жордановых клеток
(в жордановой форме матрицы A), соответствующих собственному числу α (если таких клеток нет,
то k = 0).

Утверждение 2.10.1. Существует решение в виде x(t) = eαt

p1(t)...
pn(t)

, где pi — многочлены

степени не больше k +m.

Доказательство. Считаем, что A — в жордановой форме. При линейной замене степени много-
членов увеличиться не могут.

Рассмотрим блок Js(β) =


β 1 0

. . .
. . .
. . . 1

0 β

, пусть β ̸= α. Получаются уравнения

ẋ1 = βx1 + x2 + eαtq1(t)

...

ẋs = βxs + eαtqs(t)

Решая уравнения последовательно, снизу вверх, получаем xs = v(t)eβt, откуда

ẋs = v̇(t)eβt + βxs ⇒ v̇ = e(α−β)tqs
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При интегрировании произведения экспоненты (с ненулевым показателем) и многочлена получится
произведение экспоненты и многочлена той же степени.

Таким образом, если α ̸= β, то все решения найдутся степени не выше m.

Если же α = β, то рассматривается блок Js(α) =


α 1 0

. . .
. . .
. . . 1

0 α


ẋ1 = αx1 + x2 + eαtq1(t)

...

ẋs = αxs + eαtqs(t)

Представив xs = v(t) · eαt получаем на v уравнение без экспоненты: v̇ = qs. При интегрировании
степень вырастет на единичку.

Тогда степени многочленов в результате вырастут не больше, чем на k (от изначальной степени
правой части m).
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Глава 3

Линейные дифференциальные
уравнения

Пусть t — независимая переменная, x — искомая функция. Линейное дифференциальное уравнение
имеет вид

x(n) + p1x
(n−1) + · · ·+ pn(t)x = q(t)

где предполагается, что функции p1, . . . , pn, q ∈ C(a, b).

Решением является функция x ∈ Cn(a, b), удовлетворяющая уравнению.

Сопоставим данному уравнению систему с неизвестными y1, . . . , yn.

ẏ1 = y2

ẏ2 = y3
...

ẏn−1 = yn

ẏn = −pny1 − . . . p1yn + q

Если y1, . . . , yn — решение данной системы, то функция x(t) ≡ y1 — решение данного уравнения,
причём ẋ ≡ y2, . . . , x

(n−1) ≡ yn.

При постановке задачи Коши для уравнения надо зафиксировать точку t0 ∈ (a, b) и n чисел
x0, ẋ0, . . . , x

(n−1)
0 , и ищем решение x(t), такое, что

x(t0) = x0
...

x(n−1)(t0) = x
(n−1)
0

Задача Коши разрешима, надо рассмотреть решение системы, такое, что

y(t0) =


x0
ẋ0
...

x(n−1)


Оно найдётся из теоремы о существовании и единственности.

Решение x лежит в классе Cn, так как его n-я производная выражается через производные мень-
ших порядков и непрерывные функции.
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3.1 Однородное линейное уравнение

Однородное — уравнение с нулевой правой частью q(t).

Теорема 3.1.1. Множество решений — векторное пространство.

Пусть x1(t), . . . , xn(t) — решения. Сопоставим им вронскианW (t) =W (t, x1, . . . , xn) =

∣∣∣∣∣∣∣
x1 · · · xn
...

. . .
...

x
(n−1)
1 . . . x

(n−1)
n

∣∣∣∣∣∣∣.
Рассмотрим линейную систему, соответствующую данному уравнению ẏ = P (t)y. Тогда для компо-
нент вектора-решения y1, . . . , yn, полученных из решений x1, . . . , xn:W (t, y1, . . . , yn) =W (t, x1, . . . , xn)
— матрицы равны.

3.1.1 Линейная независимость решений

Решения x1(t), . . . , xn(t) линейно независимы на (a, b), если из соотношения

c1x1(t) + · · ·+ cnxn(t) = 0

следует, что c1 = · · · = cn = 0.

Иначе они линейно зависимы.

Лемма 3.1.1. Следующие три утверждения равносильны.

1. W (t) ≡ 0

2. ∃t0 :W (t0) = 0

3. Решения x1, . . . , xn линейно зависимы.

Доказательство. Докажем (2) ⇒ (3), остальное очевидно. Рассмотрим линейную алгебраическую

систему

x1(t0) · · · xn(t0)
...

. . .
...

x
(n−1)
1 . . . x

(n−1)
n


c1...
cn

 = 0. Так как вронскиан равен нулю, то имеется ненулевой

вектор-решение c.

Тогда z(t) =
(
x1 · · · xn

)c1...
cn

 — решение, и в точке t0 : z(t0) = 0. Продифференцируем z.

ż =
(
ẋ1 · · · ẋn

)c1...
cn

, и в точке t0 : z(t0) = 0.

Далее получаем, что все производные до n − 1 включительно равны нулю, по теореме единствен-
ности: z(t) ≡ 0.

Лекция X
3 ноября 2023 г.

//todo

Лекция XI
10 ноября 2023 г.
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Уравнению x(n) + p1(t)x
(n−1) + · · ·+ pn(t)x = 0 сопоставляется система порядка n:

ẏ1 = y2
...

ẏn−1 = yn

ẏn = −pny1 − · · · − p1yn

Набору решений уравнения сопоставляется вронскиан W (t, x1, . . . , xn) = W (t, y(1), . . . , y(n)). По
формуле Остроградского — Лиувилля dW

dt = trP (t)W .

Применяя формулу к уравнению x(n)+p1(t)x
(n−1)+ · · ·+pn(t)x = 0, видим, что матрица уравнения

— это 
0 1 . . . 0
...

. . .
0 0 1

−pn · · · · · · −p1


Таким образом, dW

dt = −p1W .
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Глава 4

Зависимость решений от начальных
данных и параметров

Рассмотрим уравнение ẋ = f(t, x, µ), где x ∈ Rn, µ ∈ Rm, µ — какой-то параметр.

Здесь рассматривают задачу Коши с начальными данными (τ, ξ) с фиксированным параметром
µ ∈ Rm. Будем его обозначать x(t, τ, ξ, µ).

Далее считаем, что f ∈ C,Lipx,loc(G × M), где G ⊂ Rn+1
t,x — область, M ⊂ Rm

µ — открытое
множество.

Общая теория говорит, что для любых (t, ξ, µ) ∈ G ×M найдётся единственное непродолжимое
решение, и обозначим за I(τ, ξ, µ) максимальный промежуток, на котором данное решение опреде-
лено.

Лемма 4.0.1 (Об оценке разности решений). Рассмотрим две системы ẋ = f(t, x) и ẏ = g(t, y).
Пусть f, g ∈ C(G), где G ⊂ Rn+1 — область.

Известно, что f ∈ Lipx(G) с константой Липшица L, ∃N,m: |f | ⩽ N и |f(t, x)− g(t, x)| ⩽ m в
G.

Пусть x(t0) = x0, y(τ0) = y0, t0, τ0 ∈ (a, b), и графики данных решений лежат в G: (t, x(t)), (τ, y(τ)) ∈
G при t, τ ∈ (a, b).

Тогда |x(t)− y(t)| ⩽
(
|x0 − y0|+N |t0 − τ0|+m(b− a)

)
eL(b−a).

Доказательство. Для каждого из решений можно написать эквивалентное интегральное уравне-
ние:

x(t) = x0+

t∫
t0

f(s, x(s)) ds = x0+

τ0∫
t0

f(s, x(s)) ds+

t∫
τ0

f(s, x(s)) ds и y(t) = y0+

t∫
τ0

g(s, y(s)) ds

Вычтем одно из другого и оценим.

|x(t)− y(t)| ⩽ |x0 − y0|+N |t0 − τ0|+

∣∣∣∣∣∣
t∫

τ0

(f(s, x(s))− g(s, y(s))) ds

∣∣∣∣∣∣ ⩽
⩽ |x0 − y0|+N |t0 − τ0|+

∣∣∣∣∣∣∣
t∫

τ0

(f(s, x(s))− f(s, y(s)))︸ ︷︷ ︸
⩽L|x(s)−y(s)|

ds

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

t∫
τ0

(f(s, y(s))− g(s, y(s)))︸ ︷︷ ︸
⩽m

ds

∣∣∣∣∣∣∣
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Это условия леммы Гронуолла (лемма 2.2.5):

|x(t)− y(t)| ⩽ |x0 − y0|+N |t0 − τ0|+m(b− a) + L

∣∣∣∣∣∣
t∫

τ0

|x(s)− y(s)|ds

∣∣∣∣∣∣
Отсюда |x(t)−y(t)| ⩽

(
|x0−y0|+N |t0−τ0|+m(b−a)

)
eL|t−τ0|. Далее чтобы получить равномерную

оценку, можно оценить |t− τ0| ⩽ |b− a|.

Интересно заметить, что оценка линейно зависит от x0 − y0 и от t0 − τ0, но экспоненциально — от
константы Липшица L и длины промежутка b− a.

Теорема 4.0.1 (О непрерывной зависимости решений от начальных данных и параметров). Пусть
ẋ = f(t, x, µ), x ∈ Rn, µ ∈ Rm, f ∈ C,Lipx,loc(G×M).

Зафиксируем (τ0, ξ0, µ0) ∈ G × M . Утверждается, что ∀ε > 0,∀[a, b] ⊂ I(τ0, ξ0, µ0) : ∃δ > 0 :
∀(τ, ξ, µ) ∈ G×M :

|τ − τ0| < δ

|ξ − ξ0| < δ

|µ− µ0| < δ

⇒ [a, b] ⊂ I(τ, ξ, µ) и ∀t ∈ [a, b] : |x(t, τ, ξ, µ)− x(t, τ0, ξ0, µ0)| < ε

Доказательство. Можно считать, что τ0 ∈ (a, b) — отрезок [a, b] берётся любой, лежащий в
I(τ0, ξ0, µ0), и его в случае надобности можно расширить.

Рассмотрим R0 =
{
(t, x) ∈ [a, b]× Rn

∣∣∣|x− x(t, τ0, ξ0, µ0)| ⩽ ε
}
. При малых ε : R0 ⊂ G.

Также пусть ε настолько мал, что
{
µ
∣∣∣|µ− µ0| ⩽ ε

}
⊂M .

Положим R := R0 ×
{
µ
∣∣∣|µ− µ0| ⩽ ε

}
.

Для некоторого N на нём |f(t, x, µ)| ⩽ N, f ∈ Lipx(R), пусть L — константа Липшица f .

Выберем δ1 > 0 : δ1(1 +N + (b− a))eL(b−a) < ε.

Из равномерной непрерывности f получаем, что ∃δ ∈ (0, δ1) : |µ − µ0| < δ ⇒ ∀(t, x) ∈ R0 :
|f(t, x, µ)− f(t, x, µ0)| < δ1. Если потребуется, уменьшим δ так, что |τ − τ0| < δ ⇒ τ ∈ (a, b). А ещё
потребуем от δ: δ(1 +N) < ε.

Утверждается, что δ — искомое.

• Определим y(t) := |x(t, τ, ξ, µ)︸ ︷︷ ︸
x(t)

−x(t, τ0, ξ0, µ0)︸ ︷︷ ︸
x0(t)

|. Докажем, что |y(t)| < ε для t ∈ [a, b] ∩ I(τ, ξ, µ).

|y(τ)| =

∣∣∣∣∣x(τ)− ξ0 −
τ∫
τ0

f(s, x0(s), µ0) ds

∣∣∣∣∣ ⩽ |ξ − ξ0|+

∣∣∣∣∣ τ∫τ0 f(s, x0(s), µ0) ds

∣∣∣∣∣ < δ +Nδ < ε. Таким

образом (τ, x(τ)) ∈ R0.

От противного: пусть не всегда |y(t)| < ε. Выберем первый момент t′ ∈ [a, b]∩ I(τ, ξ, µ), когда
|y(t)| стал равен ε. Без потери общности τ < t′.

y(t′) = ε, y(t) < ε при t ∈ [τ, t′)

Применим лемму об оценке разности решений для функций f(t, x, µ) и f(t, x, µ0).

|y(t)| <
(
δ +Nδ + δ1(b− a)

)
· eL(b−a) < ε, это противоречие.

• Покажем, что I(τ, ξ, µ) ⊃ [a, b]. Согласно теореме о максимальном решении I(τ, ξ, µ) = (α, β)
— некий интервал.
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Если I(τ, ξ, µ) ̸⊃ [a, b], то, например, β < b. Тогда по теореме о полном решении на ком-
пакте при приближении к t → β решение x(t, τ, ξ, µ) должно покинуть компакт R0, но в
предыдущем пункте доказано, что такого не происходит.

Следствие 4.0.1 (Теорема об интегральной непрерывности). Рассматривается нормальная си-
стема без параметров ẋ = f(t, x), x ∈ R, f ∈ C,Lipx,loc(G).

Зафиксируем (τ0, ξ0) ∈ G. Тогда ∀ε > 0,∀[a, b] ∈ I(τ0, ξ0): ∃δ > 0 : ∀(τ, ξ) ∈ G : |τ−τ0| < δ, |ξ−ξ0| <
δ ⇒ [a, b] ⊂ I(τ, ξ) и при t ∈ [a, b] |x(t, τ, ξ)− x(t, τ0, ξ0)| < ε

Лекция XII
17 ноября 2023 г.

4.1 Дифференцируемость решений по начальным данным и
параметрам.

Рассмотрим нормальную систему ẋ = f(t, x), x ∈ Rn. Предположим, f,
(

∂f
∂x

)
∈ C(G).

(
∂f
∂x

)
—

матрица Якоби f .

Рассмотрим x(t, τ, ξ0) на I(τ, ξ0). Обозначим матрицу Якоби решения за F(t) := ∂f
∂x (t, x(t, τ, ξ0)).

Ещё рассмотрим линейную систему ẏ = F(t)y — систему в вариациях на решении x(t, τ, ξ0).

Теорема 4.1.1 (О дифференцируемости по ξ). Существует частная производная

v(t) :=
∂x(t, τ, ξ)

∂ξ

∣∣
ξ=ξ0

на I(τ, ξ0), и v(t) — фундаментальная матрица системы в вариациях, причём v(τ) = E.

Доказательство.

Лемма 4.1.1. Назовём R ⊂ G выпуклым по x, если для любых (t, x), (t, y) ∈ R: R
содержит отрезок между ними.

Пусть R — выпуклый по x компакт в G. Тогда ∀ε > 0 : ∃δ > 0 : ∀(t, x), (t, y) ∈ R:

(y − x) < δ ⇒
∣∣∣∣f(t, y)− f(t, x)− ∂f

∂x
(t, y) · (y − x)

∣∣∣∣ ⩽ ε|x− y|

Доказательство леммы.

Рассмотрим (t, x), (t, y) ∈ R, введём u(s) = x + s(y − x) — параметризация второй коор-
динаты отрезка. Тогда

f(t, y)− f(t, x) =

1∫
0

∂f(t, u(s))

∂s
ds =

 1∫
0

∂f(t, u(s))

∂x
ds

 (y − x)

и

−∂f
∂x

(t, y)(y − x) =

1∫
0

−∂f
∂x

(t, y)(y − x) ds

Складывая эти оценки, получаем

f(t, y)− f(t, x)− ∂f

∂x
(t, y) · (y − x) = (y − x)

1∫
0

∂f(t, u(s))

∂x
− ∂f

∂x
(t, y) ds
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Далее надо воспользоваться компактностью R: так как ∂f
∂x непрерывна в R, то для дан-

ного ε > 0 : ∃δ > 0 : |x − y| < δ ⇒
∣∣∣∂f∂x (t, y)− ∂f

∂x (t, x)
∣∣∣ < ε. Интегрируя по [0, 1] значение

меньше ε, получим число меньше ε.

v(t) =
∂x

∂ξ
=


∂x1

∂ξ1
· · · ∂x1

∂ξn
...

. . .
...

∂xn

∂ξ1
· · · ∂xn

∂ξn


Рассмотрим i-й столбец v(t), покажем, что он существует, и является решением системы в вариа-
циях.

Рассмотрим произвольный [a, b] ⊂ I(τ, ξ0). Пусть τ ∈ (a, b), ε0 > 0. Определим

R = {(t, x) | t ∈ [a, b], |x− x(t, τ, ξ0)| ⩽ ε}

Пусть L — константа Липшица f по x в компакте R.

Рассмотрим ξ = ξ0 + hei, здесь ei — i-й орт. По теореме об интегральной непрерывности ∃h0 > 0 :
|h| < h0 ⇒ (t, x(t, τ, ξ0 + hei)) ∈ R при t ∈ [a, b]. Такие h будут рассматриваться дальше.

Введём g(t) := x(t, τ, ξ0 + hei)− x(t, τ, ξ0). В лемме об оценке разности решений (лемма 4.0.1) воз-

никала оценка
(∣∣∣ξ − ξ̃

∣∣∣+N |τ − τ̃ |+m(b− a)
)
eL(b−a). В нашем случае второе и третье слагаемое

равны нулю, получается |g(t)| ⩽ |ξ − ξ0|eL(b−a) = |h|eL(b−a).

ġ = f(t, x(t, τ, ξ0 + hei))− f(t, x(t, τ, ξ0)) =
∂f

∂x
(t, x(t, τ, ξ0))︸ ︷︷ ︸

матрица системы в вариациях

g(t) + Γ(t, h)︸ ︷︷ ︸
мало

.

Утверждается, что |Γ(t,h)|
|h| ⇒

t∈[a,b]
0 при h→ 0. Это следует из леммы (лемма 4.1.1): ∀ε > 0 : ∃δ > 0 :

|g(t)| < δ ⇒ |Γ(t, h)| ⩽ ε|g(t)|. Иными словами, ∀ε > 0 : ∃h1(ε) : |g| < h1(ε) ⇒ |Γ| ⩽ ε|g|.

Но |g| ⩽ |h|eL(b−a), поэтому если |h| < h1(ε), то |Γ| ⩽ ε|h|eL(b−a), или же |Γ|
|h| ⩽ εeL(b−a), и

стремление |Γ|
|h| → 0 действительно равномерно.

Теперь рассмотрим ϕ(t) = g(t)
h . Если окажется, что ∃ lim

h→0
ϕ(t), то это и будет ∂x

∂ξi
.

Для этого вычтем предполагаемый предел следующим образом: рассмотрим решение ψ(t) системы
ẏ = F(t)y с начальным условием ψ(τ) = ei.

Так как ġ = F(t)g + Γ, то ġ
h = F(t) gh + γ, где |γ| ⇒

[a,b]
0 при h → 0. Рассмотрим ещё систему

ϕ̇(τ) = F(t)ϕ+ γ с начальным условием ϕ(τ) = 1
h (ξ0 + hei − ξ0)︸ ︷︷ ︸

g(τ)

= ei.

Итак, у нас есть две системы

ψ(t) = ei +

t∫
τ

F(s)ψ(s) ds

ϕ(t) = ei +

t∫
τ

(F(s)ϕ(s) + γ) ds

Пусть N = max ∥F(τ)∥ по t ∈ [a, b]. Оценим |ϕ(t)− ψ(t)|.

|ϕ(t)− ψ(t)| =

∣∣∣∣∣∣
t∫

τ

F(s)(ϕ− ψ) ds

∣∣∣∣∣∣+
∣∣∣∣∣∣

t∫
τ

γ(s) ds

∣∣∣∣∣∣ ⩽ N

∣∣∣∣∣∣
t∫

τ

|ϕ(s)− ψ(s)|ds

∣∣∣∣∣∣+ max
t∈[a,b]

|γ(t)|(b− a)
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Это условия леммы Гронуолла, откуда |ϕ(t)− ψ(t)| ⩽ max
t∈[a,b]

|γ(t)|(b− a) · eN(b−a).

Действительно, мы доказали, что i-й столбец v(t) стремится к решению системы в вариациях с
начальными данными ei в точке τ (да?).

Теорема 4.1.2 (О дифференцируемости по τ ). Теперь рассматривается решение x(t, τ0, ξ) на его
максимальном промежутке I(τ0, ξ).

Пусть f, ∂f∂x ∈ C(G). Система в вариациях чуть-чуть поменялась: F(t) := ∂f
∂x (t, x(t, τ0, ξ)) а сама

система по-прежнему ẏ = F(t)y. Утверждается, что

∃u(t) := ∂x(t, τ, ξ)

∂τ

∣∣
τ=τ0

и она является решением системы в вариациях с начальными данными u(τ0) = −f(τ0, ξ).

Замечание. В отличие от предыдущей теоремы, u — не матрица, а всего лишь вектор


∂x1

∂τ
...

∂xn

∂τ

.
Доказательство. Существование u(t) идёт без доказательства, так как оно практически дословно
повторяет доказательство существования частной производной по ξ, и ничего нового там нет.

Обоснуем то, что начальное данное именно такое. При t = τ : x(τ, τ, ξ) = ξ. Посчитаем частную
производную обеих частей равенства по τ при τ = τ0. Так как

∂

∂t
x(t, τ, ξ) = f(t, x(t, τ, ξ))

то дифференцируя по обеим τ , мы получаем (при t = τ0)

∂

∂τ
x(τ, τ, ξ) = f(τ0, x(τ0, τ0, ξ))︸ ︷︷ ︸

=f(τ0,ξ)

+
∂x(t, τ, ξ)

∂τ

∣∣
τ=τ0

= 0

Вернёмся к параметризованной системе ẋ = f(t, x, µ), где x ∈ Rn, µ ∈ Rm, f, ∂f∂x ,
∂f
∂µ ∈ C(G ×

M), G ⊂ Rn+1
t,x ,M ⊂ Rm

µ .

Фиксируем x(t, τ, ξ, µ0), и задаёмся вопросом о существовании z(t) := ∂x(t,τ,ξ,µ)
∂µ

∣∣
µ=µ0

=


∂x1

∂µ1
· · · ∂x1

∂µm

...
. . .

...
∂xn

∂µ1
· · · ∂xn

∂µm

.
Вводится F(t) = ∂f

∂x (t, x(t, τ, ξ, µ0), µ0).

Теорема 4.1.3. При этих условиях ∃z(t) на I(τ, ξ, µ0), причём ż = F(t)z + ∂f
∂µ (t, x(t, τ, ξ, µ0), µ0) и

z(τ) = 0.

Доказательство. Введём вспомогательную переменную y =

(
x
µ

)
, и введём векторнозначную

функцию f̃(t, y) =

(
f(t, x, µ)

0

)
, бьющую в Rn+m.

Если x(t, τ, ξ, µ) — решение изначальной системы, то пара
(
x
µ

)
— решение системы ẏ = f̃(t, y).

Теперь можно пользоваться теоремой о дифференцируемости по начальным данным. Введём η =(
ξ
µ

)
, пусть ζ =

∂y

∂η
.

ζ̇ =
∂f̃

∂y
ζ, где

∂f̃

∂y
=

(∂f
∂x

∂f
∂µ

0 0

)
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С другой стороны, ζ =

(
∂x
∂ξ

∂x
∂µ

0 E

)
, ζ̇ =

(∂f
∂x

∂f
∂µ

0 0

)(
∂x
∂ξ

∂x
∂µ

0 E

)
. Отсюда можно извлечь

d

dt

∂x

∂µ
=
∂f

∂x
· ∂x
∂µ

+
∂f

∂µ

z(τ) = 0 очевидно из определения.

Лекция XIII
1 декабря 2023 г.

Рассмотрим систему ẋ = f(t, x, µ), где x ∈ Rn, µ ∈ Rm, f, ∂f∂x ,
∂f
∂µ ∈ C(G ×M), где G ⊂ Rn+1

t,x —
область, задания самого уравнения, M ⊂ Rm — область парамеров.

Ранее мы получили v(t) = ∂x(t,τ,ξ,µ)
∂ξ , и доказали v̇(t) = ∂f

∂x (t, x(t, τ, ξ, µ), µ) · v(t).

Кроме того, для z(t) = ∂x(t,τ,ξ,µ)
∂µ было получено ż(t) = ∂f

∂x (t, x(t, τ, ξ, µ), µ)·z(t)+
∂f
∂µ (t, x(t, τ, ξ, µ), µ).

Обобщим эти результаты: пусть f =
(
f1, · · · , fn

)
. Для K =

(
k1, · · · , kn, kn+1, · · · , kn+m

)
(ki ∈ N0)

введём
∂Kfi

∂(x, µ)K
def
=

∂|K|fi

∂xk1
1 · · · ∂xkn

n ∂µ
kn+1

1 · · · ∂µkn+m
m

Здесь, |K| =
∑
i

ki. В частности, fi =
∂0fi

∂(x,µ)0 .

Теорема 4.1.4 (О производных высших порядков). Пусть ∂Kfi
∂(x,µ)K

∈ C(G ×M) для |K| ⩽ p (где

p ⩽ ∞). Тогда существует и непрерывна производная ∂Kx
∂(ξ,µ)K

при |K| ⩽ p.

Доказательство. Индукция по l = |K|.

База: Случай l = 1 доказан на предыдущей лекции — теорема о дифференцируемости по параметру.

Переход: Чтобы посчитать K-ю производную от x, сначала продифференцируем 1 раз по одному

из аргументов, а потом останется продифференцировать |K| − 1 раз ∂f
∂(x,µ) . По условию теоремы

эти производные существуют и непрерывны.

4.2 Теорема о выпрямлении для неавтономных систем

Рассматриваем систему ẋ = f(t, x), x ∈ Rn, f ∈ C,Lipx,loc(G).

Теорема 4.2.1 (О выпрямлении для неавтономных систем). ∀(τ0, ξ0) ∈ G : ∃ окрестность U ∋
(τ0, ξ0), и ∃ гомеоморфизм h : U → Rn+1 (гомеоморфизм на образ), переводящий пересечение
интегральных кривых с U в отрезки параллельных прямых:

(τ0, ξ0) (τ0, ξ0)

Доказательство. Рассмотрим I(τ0, ξ0), и выберем [a, b] ⊂ I(τ0, ξ0) ([a, b] ∋ τ0). Пусть ε > 0,
обозначим R := {(t, x) ∈ [a, b]× Rn | |x− x(t, τ0, ξ0)| ⩽ ε} ⊂ G.

По теореме об интегральной непрерывности ∃δ > 0 : ∀ξ : |ξ − ξ0| ⩽ δ ⇒ (t, x(t, τ0, ξ)) ∈ R при
t ∈ [a, b].
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Положим V = {(t, x) ∈ [a, b]× Rn | |x− x(t, τ0, ξ0)| < ε} — это окрестность (τ0, ξ0). Построим g :
V → Rn+1 следующим образом:

g(t, ξ) = (t, x(t, τ0, ξ))

g непрерывна на V :

|g(t, ξ)− g(t′, ξ′)| ⩽ |t− t′|+ |x(t, τ0, ξ)− x(t′, τ0, ξ)|︸ ︷︷ ︸∣∣∣∣∣t
′∫

t

f(s,x(s,τ0,ξ)) ds

∣∣∣∣∣⩽M |t−t′|

+ |x(t′, τ0, ξ)− x(t′, τ0, ξ
′)|︸ ︷︷ ︸

по теореме об интегральной непрерывности →0

Инъективность g прямо следует из теоремы единственности: g(t, ξ) = g(t′, ξ′) ⇒ t = t′ и x(t, τ0, ξ) =
x(t, τ0, ξ

′) ⇒ ξ = ξ′. Также несложно проверить, что g(τ0, ξ0) = (τ0, ξ0).

Теперь построим обратное отображение h. Пусть W = g
(
V
)
, U := Int

(
W
)
. Инъективное отобра-

жение компакта — гомеоморфизм на образ, поэтому ∃h : U → V — искомый гомеоморфизм.

Пусть мы всё ещё рассматриваем систему ẋ = f(t, x), x ∈ Rn, f ∈ C,Lipx,loc(G).

Теорема 4.2.2 (О дифференциальном выпрямлении). ∀(τ0, ξ0) ∈ G : ∃ окрестность U ∋ (τ0, ξ0), и
∃ диффеоморфизм h : U → Rn+1 (гомеоморфизм на образ h, такой, что h, h−1 дифференцируемы),
переводящий пересечение интегральных кривых с U в отрезки параллельных прямых.

Доказательство. Параллельно доказательству предыдущей теоремы построим g. То, что g ∈ C1

следует из того, что решение дифференцируемо по t и по начальным данным.

Дальше мы хотим применить теорему об обратной функции, для этого надо показать невырожден-
ность det ∂g

∂(t,ξ)

∣∣
(τ0,ξ0)

. Расписав покомпонентно g(t, ξ) = (t, x), получаем

∂g

∂(t, ξ)
=

(
1 0
∂x
∂t

∂x
∂ξ

)
Достаточно показать, что ∂x

∂ξ невырождена, но это фундаментальная матрица системы в вариациях.

Значит, по теореме об обратной функции g — диффеоморфизм окрестности (τ0, ξ0) на окрестность
(τ0, ξ0).

4.3 Теорема Коши

4.3.1 Кратные степенные ряды

Многомерное суммирование

В случае обычных рядов
∞∑
k=0

ak мы работаем с частичными суммами
m∑

k=0

ak, которые куда-то стре-

мятся.

Случай многомерного индекса выглядит так: имеется набор чисел ak1,...,kn
, где ki ∈ N0.

Назовём суммой ряда
∞∑

k1=···=kn=0

ak1,··· ,kn сумму семейства {ak1,··· ,kn | k1, · · · , kn ∈ N0}.

Ещё это можно записать так: если A — сумма семейства, то по определению ∀ε > 0 : ∃N :

∀m1, · · · ,mn ⩾ N :

∣∣∣∣∣ ∑
m1,··· ,mn

a∗ −A

∣∣∣∣∣ < ε, где
∑

m1,··· ,mn

a∗ :=
m1∑

k1=0

· · ·
mn∑

kn=0

ak1,··· ,kn — краткое обозна-

чение для частичной суммы.

Работая с абсолютно сходящимися многомерными рядами, мы сможем выполнять все действия над
ними, какие захотим (например, потому что можно всё перевести на язык суммируемых семейств).
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Многомерные степенные ряды

Кратные степенные ряды определяются исходя из обычных кратных рядов: пусть x =
(
x1, · · · , xn

)
,

зафиксируем x0 =
(
x01, · · · , x0n

)
, и рассмотрим ряд

∞∑
k1,··· ,kn=0

ak1,··· ,kn
(x1 − x01)

k1 · . . . · (xn − x0n)
kn

Утверждение 4.3.1 (Радиус сходимости). Если ряд сходится для (x∗1, · · · , x∗n), то он сходится
для любого (x1, · · · , xn) : |xi − x0i | < |x∗i − x0i |.

Утверждение 4.3.2 (Мажоратные ряды). Пусть есть ряд
∞∑

k1,··· ,kn=0

bk1,··· ,kn(x1 − x01)
k1 · . . . · (xn −

x0n)
kn . Если все |ak1,··· ,kn | ⩽ bk1,··· ,kn , и ряд степенной ряд b сходится, то и степенной ряд a

сходится.

Утверждение 4.3.3 (Специальный ряд). При |xi| < 1 следующий ряд (многомерная геометриче-
ская прогрессия) сходится:

∞∑
k1,··· ,kn=0

xk1
1 · . . . · xkn

n =
1

(1− x1) · . . . · (1− xn)

Лекция XIV
2 декабря 2023 г.

Теорема 4.3.1 (Коши). Рассматриваем нормальную систему ẋ = f(t, x), где x ∈ Rn, и при ней —
задача Коши с начальными данными (t0, x0).

Пусть x0 =

x
0
1
...
x0n

, и пусть компоненты векторнозначной функции f =

f1...
fn

 представляются

рядами:

fi(t, x) =

∞∑
k1,...,kn=0

L
(i)
k,k1,...,kn

(t− t0)
k(x1 − x01)

k1 · . . . · (xn − x0n)
kn

Предполагается, что ∃r0, ρ0 > 0, такие, что ряды сходятся при |t− t0| < r0, |xi − x0i | < ρ0.

Утверждается, что ∃r1 > 0, такое, что решение задачи Коши имеет координаты xi(t) =
∞∑
k=0

a
(i)
k (t− t0)

k,

и ряды сходятся при |t− t0| < r1.

Доказательство. Для упрощения записи предположим, что t0 = 0, x0 = 0. Теперь формулы упро-
щаются до xi(t) =

∑
k=1

a
(i)
k tk.

• Покажем существование формальных разложений, пока не заботясь о сходимости.

ẋi =

∞∑
k=1

ka
(i)
k tk−1 =

∞∑
k1,...,kn=0

L
(i)
k,k1,...,kn

tk

( ∞∑
l1=1

a
(1)
l1
tl1

)k1

· . . . ·

( ∞∑
ln=1

a
(n)
ln
tln

)kn

Как обычно, рассматриваем степени t, начиная с наименьшей.

– При t = 0 получается равенство a(i)1 = L
(i)
0,0,...,0 (иными словами, сравнили коэффициенты

при t0).

– Сравнивая коэффициенты при t1: 2a(i)2 = L
(i)
1,0,...,0 + L0,1,0,...,0a

(1)
1 + · · · + L0,0,...,0,1a

(n)
1 .

Заметим, что правая часть уже определена, откуда находится a2.
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– При tm−1 получится ma(i)m = Pm

(
L
(i)
k,k1,...,kn

, a
(j)
l

)
, где k + k1 + · · · + kn ⩽ m − 1, j =

1, . . . , n, l ⩽ m− 1, и Pm — многочлен от аргументов с неотрицательными коэффициен-
тами (сумма каких-то произведений). Отсюда однозначно находятся am для всех m.

• Теперь надо показать, что ряды с данными коэффициентами имеют положительный радиус
сходимости.

Изначальные ряды сходились при |t| < r0, |xi| < ρ0. В частности, при r ∈ (0, r0), ρ ∈ (0, ρ0)
ряды сходятся абсолютно при |t| = r, |xi| = ρ.

∞∑
k,k1,...,kn=0

|Lk,k1,...,kn
| rkρk1 · . . . · ρkn

Раз ряд сходится абсолютно, то ∃M > 0 : ∀k, k1, . . . , kn : |Lk,k1,...,kn
| rkρk1 · . . . · ρkn ⩽M , или

же Lk,k1,...,kn ⩽ M
rkρk1+···+km

— оценка Коши.

Теперь, чтобы показать, что ряд для xi сходится, мы построим мажорирующий его ряд, а для
этого сконструируем мажорантную систему.

– Мажорирующая система — это система с неизвестными z1, . . . , zn, и уравнениями

żi =

∞∑
k,k1,...,kn=0

M

rkρk1+···+kn
tkzk1

1 · . . . · zkn
n =

=M

∞∑
k,k1,...,kn=0

(
t

r

)k (
z1
ρ

)k1

· . . . ·
(
zn
ρ

)kn

=
M(

1− t
r

) (
1− z1

ρ

)
. . .
(
1− zn

ρ

)
– Рассмотрим решение задачи Коши при zi(0) = 0. Обозначим Nk,k1,...,kn

:= M
rkρk1+···+kn

.
Будем искать решение в виде

zi(t) =

∞∑
k=1

A
(i)
k tk

Как и при поиске рядов для xi, приравняем коэффициенты при степенях t:

∗ При t0: A(i)
1 = N0,0...,0 ⩾

∣∣∣L(i)
0,...,0

∣∣∣ = |a(i)1 |.

∗ При t1: 2A(i)
2 = N1,0,...,0 +N0,1,0...,0A

(1)
1 + · · ·+N0,0,...,0,1A

(n)
1 ⩾

∣∣∣a(i)2

∣∣∣
∗ При tm−1: mA(i)

m = Pm

(
Nk,k1,...,kn

, A
(j)
l

)
(многочлен Pm прежний). При этом, так

как все Nk,k1,...,kn
⩾ Lk,k1,...,kn

, и все A(i)
m ⩾ a

(i)
m до данного места, то и по индукции

вообще все A(i)
m ⩾ a

(i)
m .

Таким образом, в формальных рядах, представляющих решение первоначальной систе-
мы, и решение мажорирующей системы: все коэффициенты первоначальной системы
мажорируются коэффициентами мажорирующей системы.

Теперь достаточно доказать, что ряды решений мажорирующей системы имеют положитель-
ный радиус сходимости. Оказывается, решение мажорирующей системы можно просто найти.

– Рассмотрим скалярное уравнение du
dt = M

(1− t
r )(1−

u
ρ )

n . Утверждается, что если u(t) —

решение с начальным данным u(0) = 0, то zi(t) = u(t) — решения мажорирующей
системы.

Предостережение. Конечно, не все решения мажорирующей системы имеют такой вид.

– Осталось только решить это уравнение.(
1− u

ρ

)n
du

dt
=

M

1− t
r
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Обозначим v := 1 − u
ρ , тогда dv = −du

ρ , теперь −ρvn dv
dt = M

1− t
r

. Интегрируя, получаем
ρ

n+1v
n+1 = rM log

(
1− t

r

)
+ C.

При t = 0 логарифм обнуляется, C = ρ
n+1 . Извлечём теперь u следующим образом.

Домножим на n+1
ρ , и извлечём корень степени n+ 1:

1− u

ρ
=

[
1 +

rM(n+ 1)

ρ
log

(
1− t

r

)] 1
n+1

Осталось выразить u = ρ

{
1−

[
1 + rM(n+1)

ρ log
(
1− t

r

)] 1
n+1

}
.

– Убедимся, что решение аналитично в круге некоторого радиуса.

На лекции явно проводилась цепочка размышлений для каждого из членов композиции,
что не способствует пониманию. Напишу немного по-другому, введя следующую лемму.

Лемма 4.3.1. Пусть f : (x0 − ε, x0 + ε) → R, g : (f(x0) − δ, f(x0) + δ) → R — ана-
лиитичные функции. Тогда композиция g ◦ f определена и аналитична в некоторой
окрестности x0.

Доказательство. f непрерывна, поэтому ε можно уменьшить настолько, что f((x0 −
ε, x0 + ε)) ⊂ (f(x0) − δ, f(x0) + δ). Теперь g ◦ f определена везде на (x0 − ε, x0 + ε), а
композиция аналитичных функций аналитична.

Решение является композицией нескольких аналитичных функций (чтобы увидеть ана-
литичность корня (n+1)-й степени, можно выразить [. . . ]

1
n+1 = e

1
n+1 log[... ]). Достаточно

заметить, что линейные преобразования аналитичны везде, log и корень (n+1)-й степе-
ни аналитичны в окрестности 1 (последнее — так как log аналитичен в окрестности 1,
а exp — в окрестности 0 (разумеется, на самом деле exp аналитична везде на R)).

Итак, u аналитична при |t| < r1. Уменьшим r1 ещё сильнее, чтобы выполнялись нера-

венство r1 ⩽ r0 и |u(t)| < ρ0 при |t| < r1. Теперь

u...
u

 при |t| < r1 — аналитическое

решение мажорирующей системы, так как ряд сходится, и при подстановке сходятся
также и ряды для коэффиицентов.

Лекция XV
8 декабря 2023 г.

В прошлый раз была доказана теорема Коши: если f — аналитическая функция, то решение
уравнения ẋ = f(t, x) тоже аналитическое.

Теорема 4.3.2 (Коши, для линейных систем). Рассмотрим задачу Коши с нулевыми начальными
данными (t0, x0) = (0, 0) в рамках системы ẋ = p(t)x + q(t), где x ∈ Rn, p ∈ Mn×n(R), q ∈ Rn,

причём коэффициенты аналитические: p(t) =
∞∑
k=0

p(k)tk, q(t) =
∞∑
k=0

q(k)tk, и они сходятся при |t| <

r0, здесь r0 > 0.

Тогда утверждается, что у решения x имеется тот же радиус сходимости r0.

Доказательство. Пусть решение представимо в виде x = (x1, . . . , xn), xi =
∞∑
k=1

a
(i)
k tk.
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Эти коэффициенты получены так: формально дифференцируя, получаем ẋi =
∞∑
l=1

la
(i)
l tl−1, значит

ẋi =

∞∑
k=1

ka
(i)
k tk−1 =

n∑
j=1

∞∑
k=0

p
(k)
i,j t

k

( ∞∑
l=1

a
(j)
l tl

)
︸ ︷︷ ︸

xj

+

∞∑
k=0

q
(i)
k tk

Приравнивая коэффициенты при равных степенях t, получаем
t0 : a

(i)
1 = q

(i)
0

t1 : 2a
(i)
2 =

n∑
j=1

p
(0)
i,j a

(i)
1 + q

(i)
1

. . .

В общем виде, это записывается так: tm−1 : ma
(i)
m = Pm

(
p
(k)
i,j , a

(j)
l , q

(m−1)
i

)
k⩽m−1,l⩽m−1

, здесь Pm

— некий многочлен с неотрицательными коэффициентами (они получены произведением и суммой
членов).

Теперь надо построить мажорирующую систему. Берём r ∈ (0, r0). Трюк Коши говорит, что если

подставить такое r, то члены будут ограничены, то есть ∃M ∈ R :
∣∣∣p(k)i,j r

k
∣∣∣ ⩽M , или же

∣∣∣p(k)i,j

∣∣∣ ⩽ M
rk
.

Аналогично
∣∣∣q(k)i

∣∣∣ ⩽ M
rk
.

В качестве мажорантной системы возьмём систему с искомыми функциями z1, . . . , zn, определён-

ными так: żi =
n∑

j=1

∞∑
k=0

M
rk
tkzj +

∞∑
k=0

M
rk
tk. Эти геометрические прогрессии можно просуммировать:

żi =

n∑
j=0

M

1− t
r

zj +
M

1− t
r

Мажорирующая система линейна, её решение можно получить так: пусть z1 = · · · = zn = u,
тогда u̇ = M

1− t
r

(nu+ 1). Это линейное уравнение первого порядка, коэффициенты аналитичны при

|t| < r. В прошлой лекции была получена формула, в которой коэффициенты — тоже аналитические
функции при |t| < r.

Получив оценку на сходимость мажорирующей системы, мы уже всё доказали.
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Глава 5

Автономные системы

Автономные системы — системы, у которых правая часть не зависит от t.

А именно, рассматривается система ẋ = f(x), где предполагается, что f ∈ Lipx,loc(H), H ⊂ Rn
x

— область. Так как f локально липшицева по аргументу, то она непрерывна. Пространство, где
ищутся решения — Rn

x — фазовое пространство.

Можно применить общую теорию к области G = R × H ⊂ Rn+1
t,x , получается, H — область

существования и единственности.

Теорема 5.0.1. Если x(t) — решение на (a, b), то ∀c ∈ R: сдвиг решения x(t + c) — решение на
(a− c, b− c).

Определение 5.0.1 (Траектория). Проекция интегральной кривой на фазовое пространство.

Траектория не зависит от сдвига, и, вообще говоря (кроме вырожденных случаев), это — гладкая
кривая, по которой можно понять и направление движения решения.

Пусть x0 ∈ H, выберем главным решением ϕ(t, x0) := x(t, 0, x0) — решение задачи Коши с на-
чальным данным x(0) = x0. По определению ϕ(0, x0) = x0. Максимальный промежуток решения
ϕ(t, x0) будет обозначаться за I(x0).

Теорема 5.0.2 (Групповое свойство автономных систем). Если s, t + s ∈ I(x0), то ϕ(t + s, x0) =
ϕ(t, ϕ(s, x0)).

Доказательство. Рассмотрим обе части, как функции от t. Левая часть — сдвиг какого-то реше-
ния, правая часть — какое-то решение, и при t = 0 части равны друг другу.

5.1 Виды траекторий

5.1.1 Точка покоя

Определение 5.1.1 (Точка покоя). Такая точка x0, что ϕ(t, x0) ≡ x0 — решение.

Несложно видеть, что точки покоя автономной системы — это {x0 ∈ H | f(x0) = 0}.

5.1.2 Замкнутая траектория

Пусть x0 — не точка покоя, причём нашлись t1 < t2 : ϕ(t1, x0) = ϕ(t2, x0). Можно считать, что при
t ∈ (t1, t2) : ϕ(t, x0) ̸= ϕ(t1, x0). Это в частности следует из того, что если x0 — не точка покоя, то
любая точка траектории — не точка покоя.

Обозначим ω := t2 − t1.

Факт 5.1.1. ϕ(t, x0) — ω-периодическая функция (по t).
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Доказательство. Рассмотрим ψ(t) = ϕ(t + ω, x0). Это решение, как сдвиг. Оно определено хотя
бы на отрезке [t1 − ω, t2 − ω].

ψ(t1) = ϕ(t1 + ω, x0) = ϕ(t2, x0) = ϕ(t1, x0)

Значит, по единственности ψ(t) ≡ ϕ(t, x0).

Определение 5.1.2 (Замкнутая траектория). Траектория периодического решения.

Понятно, что замкнутая траектория — замкнутая несамопересекающаяся регулярная (касательный
вектор не нулевой) кривая в фазовом пространстве.

5.1.3 Обыкновенная траектория

Пусть ∀t1, t2 ∈ I(x0) : ϕ(t1, x0) ̸= ϕ(t2, x0) при t1 ̸= t2.

В таком случае траектория — просто непрерывный образ I(x0).

Пример. Рассмотрим систему ẋ = 1+x2. Тогда ϕ(t, 0) = tg t, I(0) =
(
−π

2 ,
π
2

)
, траектория — вся ось

R. Однако эта траектория — образ ограниченного интервала, что может быть неудобно. Поборемся
несколько искусственным способом с этим ниже.

Пусть f определена на всём пространстве Rn
x .

Рассмотрим вместе с системой ẋ = f(x) другую систему ẏ = g(y), где g(y) = f(y)
1+∥f(y)∥2

euclid
. У новой

системы |g(y)| < 1, и из теоремы об уравнениях, сравнимых с линейными (теорема 2.3.4), любое
решение y продолжимо на всю ось R.

Пусть y(t) — решение системы ẏ = g(y) c начальным условием y(0) = x0. Рассмотрим h : R →

R, h(τ) =
τ∫
0

ds
1+∥f(y(s))∥2

euclid
. h — непрерывная функция, ḣ > 0. Пусть Imh = I.

Значит, имеется обратная функция θ = h−1 : I → R. Тогда θ(h(τ)) = τ , и, дифференцируя это
равенство, получаем dθ

dt (h(τ)) ·
dh
dτ = 1. То есть

dθ

dt
(t) =

dθ

dt
(h(τ)) = 1 + ∥f(y(τ))∥2euclid = 1 + ∥f(y(θ(t)))∥2euclid

Утверждается, что z(t) = y(θ(t)) — решение первой системы ż = f(z). В самом деле,

dz

dt
=

dy

dθ
(θ(t)) · dθ

dt
=

f(y(θ(t)))

1 + ∥f(y(θ(t)))∥2euclid
(1 + ∥f(y(θ(t)))∥2euclid) = f(z(t))

Таким образом получается, что решению y : R → Rn системы ẏ = f(y) с начальным данным
y(0) = x0 соответствует некоторое решение z : I → Rn системы ż = f(z) с тем же начальным
данным z(0) = x0, причём их траектории одинаковы.

Значит, если мы хотим исследовать возможные траектории автономных уравнений, нам достаточно
исследовать траектории решений, определённых на всей оси.

5.2 Классификация Пуанкаре

Пуанкаре задавался вопросом о траекториях: все ли траектории примыкают к началу координат, и
есть ли предельное положение касательных.

В случае положительного ответа на оба вопроса траектории называются узел, и в зависимости от
количества предельных положений касательных, он называется обыкновенный (2), дикритический
(∞), вырожденный (1).

Если же часть касательных примыкает к нулю, а часть нет, то это — седло.
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Далее ниже приводится классификация всевозможных траекторий уравнения ż = Bz, где z ∈ R2,
B ∈ GL(2,R).

Введём новую переменную u, связанную со старой равенством z = Su, где S ∈ GL(2,R) — неособая
замена координат плоскости. Уравнение преобразуется к виду u̇ = S−1BSu, и, конечно, хочется,
чтобы A := S−1BS было жордановой формой матрицы B.

Перейдём к привычным координатам u =

(
x
y

)
, и рассмотрим разные возможные виды A.

• λ, µ ∈ R — собственные числа A, причём λ ̸= µ. Тогда уравнение сводится к{
ẋ = λx

ẏ = µy

У системы есть симметрии: решению (x(t), y(t)) соответствуют другие решения (−x, y), (x,−y), (−x,−y).

Имеется точка покоя (0, 0). Далее, открытые полуоси тоже являются траекториями решений
(x0e

λt, 0) и (0, y0e
µt).

Теперь изобразим траекторию, лежащую внутри первой четверти. x(t) = x0e
λt, y(t) = y0e

µt,

и несложные преобразования дают t = 1
λ log

(
x
x0

)
и y = Cx

µ
λ .

– Если µ, λ одного знака, то будут выпуклые или вогнутые возрастающие из нуля коор-
динат функции. Такое расположение траекторий называется обыкновенный узел.

x

y

x

y

– Если µ, λ разных знаков, то будут своеобразные гиперболы. В сечении гиперболического
параболоида получатся такие кривые, поэтому семейство траекторий называется седло.

x

y
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Лекция XVI
15 декабря 2023 г.

• Теперь пусть λ, µ ∈ R — собственные числа A, причём λ = µ. Здесь жорданова форма может
иметь два разных вида.

– Пусть A =

(
λ 0
0 λ

)
. Тогда все траектории — всевозможные лучи, исходящие из нуля

координат. Такое расположение Пуанкаре назвал дикритический узел.

x

y

– Пусть A =

(
λ 0
1 λ

)
. Тогда решение системы

{
ẋ = λx

ẏ = x+ λy
. Здесь симметрий меньше

— есть только центральная (x, y) ↭ (−x,−y), но нет осевых.

∗ Имеется траектория

{
x = 0

y = y0e
λt

, делящая плоскость на две половинки, и картинку

можно рисовать только в правой полуплоскости, а потом отражать.

∗ Пусть x = x0e
λt. Тогда на y получается линейное уравнение ẏ = λy + x0e

λt. Решая
его, получаем y = (x0t+ C)eλt

∗ Выражая t = 1
λ log

(
x
x0

+ C
)
, получаем уравнение кривых y = x

(
1
λ log(x) + C̃

)
.

y(x) −→
x→0

0, зато y′(x) −→
x→0

∞, и знак бесконечности противоположен знаку λ.

Эта траектория называется вырожденный узел.

x

y
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• Теперь пусть собственные числа B комплексные: λ1,2 = a ± bi. Тогда можно сопряжением

привести B к виду A := S−1BS =

(
a −b
b a

)
.

Тогда система имеет вид

{
ẋ = ax− by

ẏ = bx+ ay
. Переходя к полярным координатам, получаем{

ṙ cosϕ− r sinϕ · ϕ̇ = ar cosϕ− br sinϕ

ṙ sinϕ+ r cosϕ · ϕ̇ = br cosϕ+ ar sinϕ
. Выражая отдельно ṙ и ϕ̇, получаем

{
ṙ = ar

rϕ̇ = br
.

Теперь данную систему несложно решить

{
r(t) = r0e

at

ϕ(t) = bt+ ϕ0
, и выразить, например, как

функцию r(ϕ) = r0e
a
b (ϕ−ϕ0), или r = r̃0e

a
b ϕ.

– При a = 0 показатели экспоненты чисто мнимые, и траектории — концентрические
окружности с центром в нуле. Здесь кроме точки покоя никакая траектория к нулю не
примыкает, Пуанкаре дал название центр этому виду траекторий.

– Наконец, если a ̸= 0, то получаются логарифмические спирали, образующие фокус
— все траектории примыкают к нулю, но ни одна не имеет предельного положения
касательной.

x

y

x

y

В дополнение к данной классификации мы приведём упрощённую формулировку теоремы, которая
рассматривает нелинейные системы.

Интересный факт (Теорема Пуанкаре). Рассматривается уравнение ż = Bz + F (z), где B ∈
GL(2,R), F (0) = 0, ∂F∂z (0) = 0, причём в некоторой окрестности нуля U : F ∈ C2(U).

Если собственные числа B не чисто мнимые, то существует диффеоморфизм h, переводящий
окрестность нуля в окрестность нуля, такой, что h ∈ C1, h(0) = 0, ∂h∂z (0) = E, и h отображает
траектории ż = Bz на траектории ż = Bz + F (z).

Иными словами, если траектории ż = Bz образуют не центр, то локально в нуле расположение
решений линейных и нелинейных систем схожи.

Замечание (Проблема центра и фокуса). Даже для полиномиальных систем и на сей день не
найдены необходимые и достаточные условия, при которых малое возмущение центр оставляет
центром.
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