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Глава 1

Гомологическая алгебра

Лекция I
12 февраля 2024 г.

1.1 Абелевы категории

Напомним некоторые определения из предыдущей лекции.

Определение 1.1.1 (Предаддитивная категория A). ∀A,B ∈ A : MorA(A,B) образует абелеву
группу, и везде, где определена, выполнена дистрибутивность:

α(β + γ) = αβ + αγ (β + γ)α = βα+ γα

Определение 1.1.2 (Бипроизведение A,B ∈ A). Такая диаграмма A C B
i1

π1 π2

i2
, что

1. π1i1 = idA.

2. π2i2 = idB .

3. i2π2 + i1π1 = idC .

4. π2i1 = 0.

5. π1i2 = 0.

Определение 1.1.3 (Аддитивная категория). Предаддитивная категория с финальным объектом и
произведениями (любых двух объектов).

Эквивалентно, существуют инициальный объект и копроизведения, эквивалентно существуют ну-
левой объект и бипроизведения.

Определение 1.1.4 (Предабелева категория). Аддитивная категория, в которой у всех морфизмов
есть ядро и коядро.

Определение 1.1.5 ((Ко)нормальный мономорфизм (эпиморфизм)). Он является (ко)эквалайзером
(какой-то, неважно какой, пары стрелок).

Определение 1.1.6 (Абелева категория). Предабелева категория, в которой все мономорфизмы
нормальны.

Пусть C — категория. Вспомним про категорию стрелок ArrC, в которой объекты — стрелки из
Mor(C), множество морфизмов между ϕ, ψ — это

MorArrC
(ϕ, ψ) = {(α, β) | α : source(ϕ)→ source(ψ), β : target(ϕ)→ target(ψ), βϕ = ψα}
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то есть множество коммутативных диаграмм следующего вида:

• •

• •

ϕ

ψ

α β

Далее будем обозначать за ker f ядро стрелки, как уравнитель стрелки и нуля, а за Ker f :=
source(ker f) — объект (в конкретных категориях типа mod-R это докатегорное понятие ядра —
подмодуль без стрелки-вложения).

Лемма 1.1.1. ker, coker — функторы ArrA → ArrA (то есть лемма утверждает, что можно
определить действие не только на объектах, но и на морфизмах).

Доказательство. Достаточно доказать для ядер, для коядер двойственно.

Определим действие ker на морфизмах. Пусть (α, β) — морфизм между f, f ′ ∈ ArrA:

Ker f A B

Ker f ′ A′ B′

f

f ′

α β

ker f

ker f ′

∃!ϕ

Тогда f ·ker f = 0, откуда β ·f ·ker f = 0, а из коммутативности f ′ ·α ·ker f = 0. По универсальному
свойству ядра ∃!ϕ : ker f ′ · ϕ = α · ker f , положим ker(α, β) = (ϕ, α).

Далее несложно проверить, что данное определение сохраняет композицию и id.

Определение 1.1.7 (Точный функтор). Функтор, сохраняющий ядра и коядра.

Интересный факт (Теорема Фрейда — Митчелла (Freyd — Mitchell)). Для любой малой абелевой
категории A: ∃R ∈ Ring (необязательно коммутативное кольцо с единицей) и строгий, полный,
точный функтор A →mod-R.

Иными словами, всякую абелеву категорию можно себе мыслить, как полную подкатегорию в
категории mod-R (то есть категорию C, в которой ObjC ⊂ Objmod-R, и ∀A,B ∈ ObjC :
MorC(A,B) = Mormod-R(A,B)) для некоторого кольца R. Неформально это означает, что все фак-
ты, которые можно доказать для категории модулей, будут верны и для данной абелевой категории.
Мы часто будем использовать теорему Фрейда — Митчелла, чтобы доказать какой-то факт про
все абелевы категории, используя конкретность категории модулей.

Предложение 1.1.1. Для всякого морфизма f : A → B найдётся пунктирная стрелка, делаю-
щая диаграмму коммутативной.

Ker f A B CoKer f

CoKer ker f Ker coker f

fker f coker f

coker ker f ker coker f

∃!

Более того, в абелевой категории эта стрелка — изоморфизм.

Доказательство. Само построение пунктирной стрелки легко получается из универсальных свойств
ядра и коядра, а доказательство того, что это — изо — непростое.

Из теоремы Фрейда — Митчелла это очевидно: для f : A → B: с одной стороны, CoKer ker f =
A/ Im(ker f) = A/Ker f , а с другой стороны Ker coker f = Ker(coker f) = Im(A), и, конечно,
Im(A) ∼= A/Ker(f).

Также это можно обосновать, исходя из эпи-моно разложения, полученного на прошлой лекции.
Там было построено, что f = ε ·ker coker f (для какого-то эпиморфизма ε) — эпи-моно разложение.
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Двойственно f = µ · coker ker f (для какого-то мономорфизма µ) — тоже эпи-моно разложение, и
дальше можно воспользоваться функториальностью эпи-моно разложения:

• • •

• • •

ε

id

ker coker f

ξ id
coker ker f

ζ

µ

В его силу найдутся такие стрелки ξ и ζ, что все квадраты коммутативны. Значит, ξ подходит в
качестве пунктирной стрелки в утверждении предложения. При этом ξ — изо, так как ξζ = id (из
коммутативности квадратов ξ · coker ker f = ε и ζ · ξ · coker ker f = ζ · ε = coker ker f , но coker ker f
— эпиморфизм, поэтому ζ · ξ = id) и ζξ = id (аналогично)

Лемма 1.1.2. Пусть C — полная подкатегория в абелевой категории A. Следующие условия
равносильны

• C является абелевой.

• – 0A ∈ C, здесь, как обычно, 0A — нулевой объект категории A.

– C содержит бипроизведение любых двух своих объектов.

– Ядра и коядра (взятые в A) любых морфизмов из C лежат в C.

Доказательство.

⇐. Достаточно проверить все свойства определения абелевой категории. Они все сразу следуют,
в частности, любой мономорфизм µ в C нормален, так как он является ядром cokerµ (что
следует либо из леммы, доказанной при построении эпи-моно разложения, либо из теоремы
Фрейда — Митчелла).

⇒. Чуть сложнее, доказывать не будем (и использовать тоже).

1.2 Компле́ксы

Если противное не оговорено, то всё происходит в абелевой категории A, большими буквами
обозначены объекты данной категории, маленькими — морфизмы.

Определение 1.2.1 (Компле́кс). Такая диаграмма, что ∀k ∈ Z : dk · dk+1 = 0.

· · · Cn+1 Cn Cn−1 · · ·
dn+1 dn dn−1 dn−2

Альтернативно, комплекс можно рассматривать, как функтор из категории (Z,⩾) (полученной из
частично упорядоченного множества) в A (при котором образ композиции любых двух нетож-
дественных морфизмов нулевой). Таким образом, комплексы — полная подкатегория в категории
этих функторов.

Ещё один, следующий, взгляд на комплексы работает только для конкретной категории, уже вло-
женной в R-модули: в абстрактной категории объекты не сравнимы на ⊂.

Определение 1.2.2 (Градуированный объект). C• =
⊕
n∈Z

Cn с морфизмом d : C• → C•, таким, что

d(Cn) ⊂ Cn+p для некоторой фиксированной степени объекта p (чаще всего она равна ±1).

Так же, как видно из определения, в данной категории должны быть счётные бипроизведения
(прямые суммы), иначе градуированного объекта может не быть.

Определение 1.2.3 (Дифференциальный модуль). Градуированный объект (C•, d) со свойством
d2 = 0.

Определение 1.2.4 (Комплекс). Дифференциальный модуль степени −1.
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При развороте стрелок получается дифференциальный модуль степени +1, также известный, как
кокомплекс:

· · · Cn+1 Cn Cn−1 · · ·dn+2 dn+1 dn dn−1

Предостережение. У кокомплекса несколько другая нумерация стрелок, но мы их практически не
будем использовать.

Определение 1.2.5 (Сдвиг комплекса (C•, d) на p ∈ Z). Комплекс (C[p]•, d[p]), где C[p]n = Cn+p
и d[p]n = dn+p.

Иногда при сдвиге комплекса определяют d[p]n = (−1)pdn+p, но мы так делать не будем.

Лекция II
19 февраля 2024 г.

1.2.1 Морфизмы комплексов

Определение 1.2.6 (Морфизм дифференциальных модулей
⊕
An →

⊕
Bn). Такое f :

⊕
An →⊕

Bn, что f(An) ⊂ Bn, и диаграммы коммутативны:

An+1 An

Bn+1 Bn

dAn

dBn

f f

На языке абелевых категорий, надо рассматривать не одно отображение f , так как отношение
f(An) ⊂ Bn не выражается, а серию морфизмов {fn : An → Bn}n∈Z.

Для всякого морфизма f коммутативна диаграмма в категории комплексов:

A[1] A

B[1] B

dA

dB

f [1] f

Если рассматривать комплексы, как функторы из категории (Z,⩾), то морфизмы между комплек-
сами — естественные преобразования между функторами.

Теорема 1.2.1. Категория комплексов абелева.

Доказательство.

Лемма 1.2.1. Если C — малая категория, A — абелева, то Func(C,A) — тоже
абелева категория.

Доказательство леммы.

Морфизмы в данной категории — естественные преобразования между функторами, и их
сложение устроено поточечно: ∀η, ζ : F → G,∀A ∈ A : (η + ζ)A = ηA + ζA.

Нулевой объект — функтор 0, сопоставляющий каждому объекту 0A, и каждой стрелке
— нуль-стрелку.

Для двух функторов F,G имеется их бипроизведение: (F ⊕G)(C) = F(C)⊕G(C).

Если η ∈ MorFunc(C,A)(F,G) (то есть η — естественное преобразование F → G), то
(Ker η)(C) = Ker(ηC).

ker определяется аналогично лемме (лемма 1.1.1). Аналогично с коядрами.

Далее по-хорошему надо проверить, что выполняются все универсальные свойства, и что
любой мономорфизм нормален, но мы этого делать не будем.
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Ссылаемся на (лемма 1.1.2), рассматривая категорию комплексов, как полную подкатегорию в
категории функторов. Нулевой объект — комплекс, состоящий из нулей — в категории комплексов
имеется. Бипроизведением комплексов A• и B• является комплекс (A⊕B)•, у которого (A⊕B)n =
An ⊕Bn, и dA⊕B

n = dAn ⊕ dBn :

· · · An+1 An An−1 · · ·

· · · Bn+1 Bn Bn−1 · · ·

· · · An+1 ⊕Bn+1 An ⊕Bn An−1 ⊕Bn−1 · · ·

dAn dAn−1

dBn dBn−1

dA⊕B
n

dA⊕B
n−1

Если dAn−1 ·dAn = 0, и dBn−1 ·dBn = 0, то (из теоремы Митчелла уж точно очевидно) dA⊕B
n−1 ·dA⊕B

n = 0.

Ядра тоже являются комплексами, так как на языке конкретных категорий это просто подмодули.
Двойственно с коядрами.

1.3 Гомологии

Дифференциал d по совместительству является морфизмом комплексов d : C[1]→ C (по-хорошему,
C[1]• → C•, но точку будем опускать):

· · · Cn+1 Cn · · ·

· · · Cn Cn−1 · · ·

dn

dn−1

dn dn−1

Ниже мы по произвольному комплексу C строим новые комплексы.

Определение 1.3.1 (Циклы). Комплекс Z = Z(C)
def
= Ker d[−1].

В конкретной категории в n-й компоненте комплекса циклов лежит подмодуль Cn, при взятии
дифференциала обращающийся в нуль: Z(C)n = Ker d[−1]n = Ker dn−1 ⊂ Cn.

Определение 1.3.2 (Границы). Комплекс B = B(C)
def
= Im d.

В конкретной категории в n-й компоненте комплекса границ лежит подмодуль Cn, являющийся
образом дифференциала: B(C)n = Im dn ⊂ Cn.

Определения циклов и границ имеют смысл и для абстрактных абелевых категорий. В них, образ

— это ядро коядра: Imϕ
def
= Ker(cokerϕ). В абелевой категории канонически Imϕ ∼= CoImϕ

def
=

CoKer(kerϕ), так что образ можно определять и так.

На языке конкретных категорий, так как d2 = 0, то Bn ⊂ Zn, и можно определить фактормодуль
Hn := Zn/Bn — гомологии.

То же самое можно сказать на языке универсальных свойств, хотя в будущем мы, ссылаясь на
теорему Митчелла, будем всё писать исключительно в терминах элементов.

Построение H в терминах универсальных свойств. Пусть C — произвольный комплекс, Z =
Z(C), B = B(C). Изобразим следующую диаграмму в категории комплексов, где z : Z(C) → C
вкладывает ядра, а coker z = b : C[1]→ B — факторизация по этому вложению:

Z[1] C[1] C C[−1]

B Z H 0

d[−1]d

b

z[1]

zα

β coker β
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Так как d[−1] · d = 0, то можно пропуститься через ядро: ∃!α : z · α = d.

Далее, z · α · z[1] = d · z[1] = 0, а так как z — моно, то α · z[1] = 0. Значит, можно пропуститься
через коядро, то есть ∃!β : βb = α. Далее H определяется, как коядро β.

Взятие циклов, границ и гомологий функториально (то есть циклы, границы и даже гомологии
являются функторами, бьющими из категории комплексов в неё же). Например, для морфизма
комплексов образуется соответствующий морфизм комплексов их гомологий. Это сразу следует из
функториальности взятия ядер и коядер.

Следствие 1.3.1. В комплексах Z,B,H нулевые дифференциалы.

Доказательство. Из диаграммы следует, что в комплексе Z нулевые дифференциалы. Это неуди-
вительно — Z, как комплекс ядер, имеет дифференциалы, получаемые ограничением dn, на при
ограничении dn на своё ядро получается нуль:

· · · Ker(dn) Ker(dn−1) · · ·

· · · Cn+1 Cn · · ·dn

B состоит из подмодулей в Z, H — из фактормодулей, понятно, что там дифференциалы тоже
нулевые.

1.3.1 Гомологии окружности

• Рассмотрим окружность, как симплициальное множество, склеенное из двух нульмерных

клеток-точек {a, b}, и двух одномерных клеток-отрезков {x, y}: a b

x

y

Построим C0 = Za+Zb — свободная абелева группа на {a, b}, C1 = Zx+Zy — тоже свободная
абелева группа, но на образующих {x, y}. Вместо Z можно было взять любое другое кольцо.

Получили так называемый симплициальный комплекс для данного разбиения окружности
на клетки (все остальные элементы комплекса объявляются нулями):

0 C1 C0 0
d1

Определим d1, как «конец минус начало»:

{
d1(x) = b− a,
d1(y) = a− b

.

Теперь

{
Z0 = C0

Z1 = Z(x+ y)

{
B0 = Z(b− a)
B1 = 0

и

{
H0 = Z0/B0 = (Za+ Zb)/Z(b− a) ∼= Z
H1 = Z1/B1 = Z(x+ y) ∼= Z

.

• Теперь триангулируем окружность по-другому:
a

c
b

x

y

z


d1(x) = b− a,
d1(y) = c− b,
d1(z) = a− c

.

Теперь

{
Z0 = C0

Z1 = Z(x+ y + z)
,

{
B0 = Z(b− a) + Z(c− b)
B1 = 0

и

{
H0

∼= Z
H1 = Z(x+ y + z)/0 ∼= Z.

Ответ получился тот же самый, и это не случайно — есть теорема, что сингулярные/симплициальные
гомологии (они равны для клеточных пространств) не зависят от триангуляции.

Упражнение 1.3.1. Триангулировать сферу, и вычислить гомологии. Дифференциал от тре-
угольника ABC (ориентация — порядок вершин — важна) определяют, как его обход вдоль
периметра: AB +BC + CA.
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1.3.2 Длинная точная последовательность гомологий

Напомним, что комплекс называется точным, если не просто dn · dn+1 = 0, но и сразу Im(dn+1) =
Ker(dn). Часто встречаются короткие точные последовательности — последовательности вида

0→ A
i→ B

π→ C → 0. Точность в члене A означает, что i — моно, точность в члене C означает, что
π — эпи, а в члене B — что Im(i) = Ker(π), то есть (в элементах) ∀x ∈ B : π(x) = 0 ⇐⇒ x ∈ Im(i).

Теорема 1.3.1 (Длинная точная последовательность гомологий). Пусть имеется точная последо-

вательность комплексов 0→ A′ i→ A
π→ A′′ → 0.

Тогда существует длинная точная последовательность гомологических групп

· · · H ′ H H ′′ H ′[−1] H[−1] · · ·i π δ i[−1]

где связующий морфизм δ будет построен в доказательстве.

Более того, это всё функториально: если есть другая короткая точная последовательность, и мор-
физм между ними, то по отношению к ним найдётся естественный морфизм полученных длинных
точных последовательностей гомологий.

Доказательство. Для z ∈ Z ′′
n , обозначим за [z] класс z в H ′′

n .

0 A′
n An A′′

n 0

0 A′
n−1 An−1 A′′

n−1 0

in

d′n

πn

dn d′′n

in−1 πn−1

Рассуждения ниже обычно называют диаграммный поиск. Кажется, это невозможно ни записы-
вать, ни читать, но для полной картины пусть будет.

• Для начала построим δ : H ′′
n → H ′

n−1.

– Выберем z ∈ Ker(d′′n), пусть y ∈ π−1
n (z) — произвольный прообраз. ȳ := dn(y) лежит

в ядре πn−1 из коммутативности правого квадрата. Из точности нижней строки ∃x̄ ∈
i−1
n−1(ȳ) (и он единственен, так как in−1 — моно), положим δ([z]) := [x̄].

– Убедимся, что определение не зависит от выбора y ∈ π−1
n (z). Для этого рассмотрим

другой y′ ∈ π−1
n (z). Так как πn(y − y′) = 0, то из точности верхней строки ∃x ∈

i−1
n (y−y′). Из коммутативности левого квадрата: d′n(x) = i−1

n−1(dn(y−y′)) = i−1
n−1(dn(y))−

i−1
n−1(dn(y

′)), то есть x̄ определён с точностью до Im(d′n), а его класс эквивалентности в
гомологиях — однозначно.

– Очевидно, что δ линеен: его можно задать формулой i−1
n−1(d(π

−1
n (_))), где берётся любой

прообраз. Для всякого R-линейного f : x1 ∈ f−1(y1), x2 ∈ f−1(y2) ⇒ ∀α, β ∈ R :
αx1 + βy1 ∈ f−1(αx2 + βy2), то есть прообразы можно выбирать линейно.

• Убедимся, что полученная длинная точная последовательность гомологических групп точна.
Здесь используются определённые при построении δ элементы y ∈ An и ȳ ∈ An−1, x̄ ∈ A′

n−1.

– ∀z ∈ Ker(d′′n) : δ ([z]) = 0 ⇐⇒ ȳ = 0 ⇐⇒ y ∈ Ker(dn). Отсюда δ ([z]) = 0 ⇐⇒ z ∈
πn (Ker(dn)), что означает точность в члене H ′′

n .

– С одной стороны, ∀x̄ ∈ Ker(d′n−1) : in−1 (x̄) ∈ Im(dn)⇒ ∃y ∈ An : in−1(x̄) = dn(y)⇒ x̄ =
δ ([πn(y)]) (δ определена, так как πn(y) ∈ Ker(d′′n) — из коммутативности правого квад-
рата: d′′n(πn(y)) = πn−1 (ȳ), а из точности нижней строки это нуль). С другой стороны,
∀z ∈ Ker(d′′n) : in−1(δ([z])) = dn(y) ∈ Im(dn). Это означает точность в члене H ′

n−1.

– С одной стороны, ∀x̄ ∈ Ker(d′n−1) : πn−1(in−1(x̄)) = 0 из точности нижней строки.
С другой стороны, ∀ȳ ∈ Ker (dn−1): если πn−1(ȳ) ∈ Im(d′′n), то из сюръективности π:
∃y ∈ An : d′′n(πn(z)) = πn−1(ȳ). Обозначим ∆ := ȳ − dn(y), так как πn−1(∆) = 0, то
∆ ∈ Im(in−1). Тем самым, [ȳ] = [∆] лежит в образе H ′′

n−1, и последовательность точна в
члене Hn.
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• Функториальность идёт без доказательства.

Лекция III
4 марта 2024 г.

Теперь приведём другое доказательство существования длинной точной последовательности гомо-
логий, опирающееся на лемму о змее.

Лемма 1.3.1 (О змее). Пусть даны два точных комплекса A′ → A → A′′ → 0 и 0 → B′ →
B → B′′, и морфизм между ними. Тогда имеется длинная точная последовательность из
пунктирных стрелок.

Короткие стрелки получены из действия соответственных функторов (ядра и коядра), а
связующий гомоморфизм определён δ определён в доказательстве, и естественен (функтори-
ален).

Kerϕ′ Kerϕ Kerϕ′′

A′ A A′′ 0

0 B′ B B′′

CoKerϕ′ CoKerϕ CoKerϕ′′

ϕ′′ϕϕ

kerϕ′ kerϕ

δ

kerϕ′′

cokerϕ′ cokerϕ cokerϕ′′

Доказательство. Доказательство очень похоже на доказательство существования длинной точной
последовательности гомологий.

Можно опять сказать, что это диаграммный поиск, и повторить доказательство, но проще вы-
вести из доказательства (теорема 1.3.1). Для этого достаточно рассмотреть комплексы C• :=[
. . .→ 0→ A

ϕ→ B → 0→ . . .
]
, и соответствующие C ′

• и C ′′
• (где вместо A и B подставлены A′

и B′ либо A′′ и B′′ соответственно). После этого доказательство (теорема 1.3.1) строит искомую
длинную точную последовательность, так как H(C•) = [. . .→ 0→ Ker(ϕ)→ CoKer(ϕ)→ 0→ . . . ].
При этом априори лемма о змее чуть сильнее, так как она не использует, что A′ → A — моно, а
B → B′ — эпи, но можно проследить, что доказательство (теорема 1.3.1) в нужных членах это
тоже не использует.

Теорема 1.3.2 (Длинная точная последовательность гомологий на бис). Пусть имеется точная

последовательность комплексов 0→ A′ i→ A
π→ A′′ → 0.

Существует длинная точная последовательность гомологических групп

· · · H ′ H H ′′ H ′[−1] H[−1] · · ·i π δ i[−1]

где связующий морфизм δ будет построен в доказательстве.

Более того, это всё функториально.

Доказательство. Длинная точная последовательность комплексов означает наличие следующей

9



коммутативной диаграммы (где строки точны, и столбцы — комплексы)

...
...

...

0 A′
n An A′′

n 0

0 A′
n−1 An−1 A′′

n−1 0

...
...

...

d′n dn d′′n

Пусть циклы, границы и гомологии в комплексе A обозначаются Z•, B•, H• соответственно, в A′

— Z ′
•, B

′
•, H

′
•, , в A

′′ — Z ′′
• , B

′′
• , H

′′
• . Из коммутативности диаграммы B′

n вправо уходит в Bn, а Bn,
в свою очередь — в B′′

n.

Чтобы воспользоваться леммой о змее, построим следующую диаграмму, взяв коядро верхней
строки, ядро — нижней, и дорисовав сверху — ядра вертикальных стрелок, снизу — коядра:

H ′
n Hn H ′′

n

A′
n/B

′
n An/Bn A′′

n/B
′′
n 0

0 Z ′
n−1 Zn−1 Z ′′

n−1

H ′
n−1 Hn−1 H ′′

n−1

d
′
n dn d

′′
n

Обоснуем, каким образом получилась такая диаграмма. По определению dn(Bn) = {0}, поэтому
An

dn−→ An−1 пропускается через фактор, и получается отображение d̃n : An/Bn → An−1. Так
как A — комплекс, то d̃n(An/Bn) ⊂ Zn−1, можно сузить codomain, получая dn. По определению
Hn = Zn/Bn, поэтому действительно Hn = Ker(dn). В свою очередь, Hn−1 = Zn−1/Bn−1, и это
действительно CoKer(dn).

Отображение An → A′′
n было эпиморфизмом, после взятия коядра эпиморфизмом оно и осталось.

Двойственно, A′
n−1 → An−1 было мономорфизмом, мономорфизмом оно и осталось.

Применяя лемму о змее, получаем утверждение теоремы.

1.4 Функторы между абелевыми категориями

Пусть A,B — абелевы категории.

Определение 1.4.1 (Аддитивный функтор F : A → B). Такой функтор, что ∀α, β ∈ Mor(A) :
F(α+ β) = F(α) +F(β) всегда, когда определено.

1.4.1 Точные и полуточные функторы

Рассмотрим произвольную короткую точную последовательность 0 → A′ → A → A′′ → 0 в A.
Подействовав на неё функтором F, мы получим последовательность 0 → F(A′) → F(A) →
F(A′′) → 0. Точность, вообще говоря, пропадёт, но если F сохраняет точность в каком-то члене
для всех таких коротких точных последовательностей, то функтор F имеет соответствующее
название:
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1. Если всегда имеется точность в члене F(A), то F — полуточный функтор.

2. Если всегда имеется точность в членах F(A′) и F(A), то F — точный слева функтор.

3. Если всегда имеется точность в членах F(A) и F(A′′), то F — точный справа функтор.

4. Если всякая короткая точная последовательность переходит в короткую точную последова-
тельность, то F — точный функтор.

Лемма 1.4.1. Пусть F — аддитивный функтор. Следующие условия эквивалентны:

1. F точен справа.

2. F сохраняет нуль и коядра: F(0) = 0,F(coker(ϕ)) = coker(F(ϕ)).

3. F сохраняет конечные копределы.

Доказательство.

(3)⇒ (2) Коядро — конечный копредел, поэтому очевидно.

(2)⇒ (3) В свою очередь, копроизведение в абелевой категории — бипроизведение, а это «внутренний
объект» (его определение не использует никакие универсальные свойства, только наклады-
ваются некоторые условия на стрелки, которые аддитивные функторы сохраняют), поэтому
всякий аддитивный функтор сохраняет его. Предложение из предыдущего семестра о том,
что существование инициального объекта и всех копроизведений влечёт существование всех
копределов завершает доказательство.

(2)⇒ (1) Короткая точная последовательность A′ ϕ→ A
ψ→ A′′ → 0 характеризуется свойствами ψ =

cokerϕ, 0 = cokerψ.

(1)⇒ (2) Проверим, что F сохраняет коядра. Пусть µ : A → A′ — мономорфизм. Тогда имеет место

короткая точная последовательность 0 → A
µ−→ A′ cokerµ−→ CoKer(µ) → 0. Применим к ней

F, получим точную последовательность F(A)
F(µ)−→ F(A′)

F(cokerµ)−→ F(CoKer(µ)) → 0. Это
значит, что coker(F(µ)) = F(coker(µ)), то есть F сохраняет коядра мономорфизмов.

Теперь пусть ϕ : A → A′ — произвольный морфизм, необязательно моно. У него есть эпи-
моно разложение ϕ = µε. Так как ε – эпиморфизм, то CoKer(µ) = CoKer(µε) = CoKer(ϕ).
При этом, F точен справа, в частности, сохраняет эпиморфизмы, откуда F(ε) тоже эпимор-
физм. Далее аналогично CoKer(F(µ)) = CoKer(F(µ)F(ε)) = CoKer(F(ϕ)). В совокупности
с предыдущим абзацем это показывает, что F сохраяняет произвольные коядра.

Также точный справа функтор сохраняет нуль: 0 → A
id→ A → 0 → 0 переходит в F(A)

id→
F(A) → F(0) → 0. По-видимому, любой аддитивный функтор сохраняет нуль: стрелка
0 → 0 под действием F переходит в стрелку F(0) → F(0), которая с одной стороны idF(0)

(функторы сохраняют id), а с другой стороны — нулевой морфизм, так как её сумма с собой
равна самой себе. Но раз idF(0) = 0, то F(0) ∼= 0.

Следствие 1.4.1. Левый сопряжённый функтор (к любому другому функтору) точен справа.

Доказательство. Он сохраняет копределы.

Функтор копредела (который является левым сопряжённым к диагональному ∆) сохраняет копре-
делы, значит, точен справа. Другими словами, копределы коммутируют.

Коядро, как конечный копредел, сохраняет коядра, значит, коядро — точный справа функтор.
Двойственно, ядро — точный слева функтор — сохраняет ядра, значит, точный слева функтор.

Это можно понять и без высокой науки, но проверять точность в категории стрелок непросто,
так как она не является конкретной категорией, и не вложена в mod-R. Видимо, удобнее всего

11



проверять второй пункт из (лемма 1.4.1), и он вырождается в следующую диаграмму:

A B C

D E F

G H I

ϕ

ker f I

ψ

ker g III kerh

kerα

f II

α

g IV h

ker β β

Применяя к морфизму (α, β) функтор ker, свойственный категории стрелок, мы получим морфизм
(ψ, α). Если же рассмотреть морфизм (α, β), как морфизм в произвольной абелевой категории,
то его ядром будет (kerα, kerβ). К ядру также можно применить функтор ker, свойственный
категории стрелок, получая морфизм (ϕ, kerα).

Чтобы проверить, что функтор ядра сохраняет ядра, надо убедиться, что ϕ = kerψ. Используя
коммутативность I, и то, что kerα · ker f — мономорфизм, получаем, что ϕ — тоже мономорфизм.
Проверим точность в члене B, рассмотрев x ∈ B, такой, что ψ(x) = 0.

• Во-первых, kerh(ψ(x)) = 0
III коммутативен⇒ α(ker g(x)) = 0

точность в E⇒ ∃y ∈ D : kerα(y) = ker g(x).

• Во-вторых, из коммутативности II: kerβ(f(y)) = 0,
ker β — моно⇒ f(y) = 0

точность в D⇒ ∃z ∈ A :
ker f(z) = y.

• И наконец, ker g(ϕ(z)) = ker g(x)
ker g — моно⇒ ϕ(z) = x.

К сожалению, в лемме о змее это не помогает в доказательстве того, что последовательность точна
в члене Kerϕ, так как нет точной последовательности 0→ A′ → A→ A′′ → 0.

При доказательстве существования длинной точной последовательности гомологий на бис, мы
использовали, что коядро точно справа, ядро — точно слева.

Лекция IV
11 марта 2024 г.

Факт 1.4.1. Если точный справа функтор сохраняет мономорфизмы, то функтор точен. Двой-
ственно, точный слева функтор, сохраняющий эпиморфизмы, точен.

Доказательство. Условия как раз означают, что короткая точная последовательность отобража-
ется в короткую точную последовательность.

1.4.2 Гомотопность морфизмов комплексов

Пусть имеются комплексы X• и X ′
•, и между ними морфизмы f, g.

Определение 1.4.2 (Морфизмы f и g гомотопны). Существует семейство морфизмов sk : Xk−1 →
X ′
k, таких, что fn − gn = d′nsn+1 + sndn−1. При этом диаграмма ниже не обязана быть коммута-

тивной.

Xn+1 Xn Xn−1 · · · X0

X ′
n+1 X ′

n X ′
n−1 · · · X ′

0

fn

gn

fn−1

gn−1

f0

g0

dn−1 dn−2 d0

d′0d′n−2d′n−1d′n

fn+1

gn+1

dn

sn+
1

sn sn−
1

s1

Пишут f ≃ g.

А почему вот такие диагональные стрелки — это то же самое, что и гомотопность в топологии?

Теорема 1.4.1. Если два морфизма комплексов f, g : X → X ′ гомотопны, то H(f) = H(g) (здесь
функтор гомологий применён не к объектам-комплексам, а к морфизмам комплексов).
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Доказательство. Гомологии — аддитивный функтор, докажем, что H(f − g) = 0.

Рассмотрим x ∈ Hn(X). У него имеется прообраз x ∈ Zn(X).

Заметим, что H(fn − gn)(x) = (fn − gn)(x) = d′n(sn+1(x)) + sn(dn−1(x)). Первое слагаемое равно
нулю, так как d′n(· · · ) ∈ Bn(X ′), а второе — так как x ∈ Ker dn−1.

Замечание. Если F : A → A — аддитивный функтор, то ему соответствует функтор Comp(F),
действующий на комплексах с элементами из A поэлементным применением к объектам и морфиз-
мам функтора F. Допуская вольность речи, можно обозначать этот функтор тоже F. Используя
эту вольность речи, можно отметить, что если f ≃ g — гомотопные морфизмы комплексов с
объектами из A, то F(f) ≃ F(g).

Факт 1.4.2. Для морфизмов комплексов «быть гомотопными» — отношение эквивалентности.

Доказательство. Рефлексивность: ∀n : sn = 0. Симметричность: sn := −sn. Транзитивность:{
fn − gn = d′nsn+1 + sndn−1

gn − hn = d′nrn+1 + rndn−1

⇒ fn − hn = d′n(sn+1 + rn+1) + (sn + rn)dn−1

Определение 1.4.3 (Два комплекса X и X ′ гомотопически эквивалентны). Существуют морфизмы
комплексов f : X → X ′ и g : X ′ → X, такие, что fg ≃ idX′ и gf ≃ idX . Данные морфизмы f и g
называют гомотопическими эквивалентностями.

Факт 1.4.3. Если X и X ′ гомотопически эквивалентны, то H(X) ∼= H(X ′).

Определение 1.4.4 (Квазиизоморфизм f : X → X ′). Морфизм f , такой, что H(f) — изоморфизм.

Факт 1.4.4. Гомотопическая эквивалентность — квазиизоморфизм.

Определение 1.4.5 (Комплекс X ацикличен). X точен, то есть H(X) = 0.

Определение 1.4.6 (Комплекс X стягиваем). idX ≃ 0X .

Замечание. Из (теорема 1.4.1) следует, что стягиваемый комплекс ацикличен.

Обратное, вообще говоря, неверно. Стягиваемый комплекс сохраняется под действием функторов,
а ацикличный — может и не сохраниться.

1.5 Проективные резольвенты

Пусть A — абелева категория, P ∈ A.

Определение 1.5.1 (Объект P проективен). ∀ϕ : A→ B: ϕ — эпи ⇒ ∀ψ : P → B: ∃θ : P → A, та-
кое, что диаграмма коммутирует. При этом θ должно быть какое-то, не факт, что оно единственно.

P

A B 0

∃θ ∀ψ
∀ϕ

Факт 1.5.1. В Set все множества — проективные объекты.

Теорема 1.5.1. Пусть A = R-mod. Модуль P проективен ⇐⇒ P является прямым слагаемым
свободного модуля.

Доказательство.

1. Свободный модуль проективен: пусть {pα} — базис P . Определим θ(pα) = ϕ−1(ψ(pα)), где
прообраз выбран произвольно, и продолжим по линейности.
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2. Прямое слагаемое проективного модуля проективно. Рассмотрим каноническое вложение
M ↪→M ⊕N , где M ⊕N — проективен.

M M ⊕N

A B 0

ψ

Определим M⊕N → B, (m,n) 7→ ψ(m). Так как M⊕N проективен, то найдётся M⊕N → A,
и композиция M →M ⊕N → A подходит в качестве морфизма, который должен найтись из
определения проективного модуля.

3. Пусть P проективен. Возьмём свободный модуль F , сюръективно накрывающий P (например,
подойдёт свободный модуль на всех элементах P , но на практике, конечно, удобно брать
модуль поменьше).

P

F P
π

id
∃

Так как модуль проективен, то найдётся пунктирная стрелка. Значит, F ∼= P ⊕ Kerπ (∀f ∈
F : π−1(f) = P (f) + Kerπ).

Примеры.

• Пусть R = Z/6Z. Тогда Z/6Z является R-модулем, но Z/6Z ∼= Z/2Z ⊕ Z/3Z, значит, модули
Z/2Z, Z/3Z, Z/6Z все проективны над кольцом Z/6Z.

• Можно предъявить проективный модуль, исходя из топологического факта о том, что шар
нельзя причесать. А как?

Определение 1.5.2 (Проективная резольвента модуля M). Ацикличный (точный) комплекс вида
· · · → Pn → Pn−1 → · · · → P0 →M → 0, где Pi — проективные модули.

В будущем докажем, что любые две проективные резольвенты гомотопически эквивалентны (след-
ствие 1.6.1).

Определение 1.5.3 (В категории A достаточно много проективных объектов). ∀A ∈ A найдётся
проективный объект P ∈ A вместе с эпиморфизмом P ↠ A.

Если в нашей категории A достаточно много проективных объектов, то у всякого модуля M
найдётся резольвента — надо просто подряд накрывать возникающие ядра.

Лекция V
18 марта 2024 г.

1.6 Левый производный функтор

Зафиксируем некоторый аддитивный функтор F : A → B, который обычно будет точен справа.
Пусть у объекта A ∈ A имеется проективная резольвента, которую я выделил стрелками ⇝ .

· · · P1 P0 0

· · · 0 A 0

Иными словами, проективная резольвента — это некоторый морфизм комплексов P и A•. Под
комплексом A• подразумевается такой комплекс, в котором в нулевой градуировке сидит A, а в
остальных — нули (следовательно, все дифференциалы — тоже нули).
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Раз F точен справа, то он сохраняет нуль. Применим F к верхней строчке. Тогда получится
комплекс вида

· · · F(P1) F(P0) 0

Чуть ниже мы определим LnF(A) := HnF(P ) — левый производный функтор, измеряющий
неточность F — но пока, например, неясна корректность (независимость от резольвенты) такого
определения.

Теорема 1.6.1. Пусть Pi проективные, сверху комплекс (ноль в верхней строчке стоит для красо-
ты, он там неважен), снизу — точный комплекс, и дан морфизм f .

· · · P1 P0 A 0

· · · Q1 Q0 B 0

f

Тогда найдутся пунктирные стрелки, и они определены с точностью до гомотопии.

Доказательство.

• – Сначала построим fi : Pi → Qi.

Q0 → B сюръективно, значит, так как P0 проективен, то найдётся f0 : P0 → Q0, такое,
что квадрат коммутативен.

– Далее по индукции: пусть построены f0, . . . , fn.

Pn+1 Pn Pn−1

Qn+1 Qn Qn−1

dPn

fn+1

dPn−1

fn fn−1

dQn dQn−1

Хочется заполучить стрелку Pn+1 → Qn+1, воспользовавшись проективностью Pn+1.
Для этого надо найти сюръективное отображение из Qn+1.

Так как внизу — точная последовательность, то dQn : Qn+1 → Ker(dQn−1) подойдёт: во-
первых, Im(dQn ) = Ker(dQn−1) из точности Q•, а во-вторых, Im(fn ◦ dPn ) ⊂ Ker(dQn ) —
чтобы это увидеть, надо применить dQn и воспользоваться коммутативностью правого
квадрата, и тем, что P — комплекс. Тем самым, по определению проективного модуля
∃fn+1 : Pn+1 → Qn+1.

• – Теперь пусть имеются два морфизма комплексов, продолжающих f , это fi и gi.

· · · P1 P0 A 0

· · · Q1 Q0 B 0

g1f1 g0f0 f

Распишем разность: пусть hi := fi−gi. Построим гомотопию h ≃ 0. Понятно, что A→ Q0

надо взять нулевым.

· · · P1 P0 A 0

· · · Q1 Q0 B 0

0

dQ−1

h1 h0 0s0 0

s0 строится по основному свойству проективного модуля P0: ведь h0(P0) ⊂ Ker(dQ−1) =

Im dQ0
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– Далее индукция. Пусть построены s0, . . . , sn−1, строим sn.

Pn Pn−1 Pn−2

Qn+1 Qn Qn−1

sn

dQn dQn−1

hn

dPn−1

sn−
1

hn−1

dPn−2

sn−
2

Хочется, чтобы выполнялось hn = dQn sn+sn−1d
P
n−1, эквивалентно d

Q
n sn = hn−sn−1d

P
n−1.

Надо проверить, что образ правой части лежит в Im(dQn ), то есть Ker(dQn−1). Применим
dQn−1. Получим

dQn−1hn − d
Q
n−1sn−1d

P
n−1 = hn−1d

P
n−1 − (hn−1 − sn−2d

P
n−2)d

P
n−1 = 0

Тем самым, sn действительно найдётся согласно свойству проективного модуля.

Следствие 1.6.1. Любые две проективные резольвенты одного и того же объекта гомотопи-
чески эквивалентны.

Доказательство. Пусть P,Q — две резольвенты объекта A. В силу (теорема 1.6.1), можно по-
строить морфизмы этих резольвент f : P → Q и g : Q→ P .

P A P A

Q A P A

f id gfid idg

Получается, что gf : P → P — эндоморфизм P , как резольвенты A. С другой стороны, idP — тоже
эндоморфизм P , как резольвенты A, и опять применяя (теорема 1.6.1), получаем, что gf ≃ idP .
Аналогично fg ≃ idQ.

Таким образом, определение левого производного функтора LnF(A)
def
= HnF(P ) корректно.

С некоторой точки зрения «правильно» рассматривать категорию комплексов с точностью до гомо-
топической эквивалентности, назовём её HoComp(A): там объекты — ObjA, а группа морфизмов
MorHoComp(A)(P,Q) = Mor(Comp(A))/Ho(P,Q), где Ho(P,Q) — группа морфизмов, гомотопных
0.

Примеры (Что такое L0 от точного справа функтора).

• Предположим, что F точен справа. Тогда

F(P1) F(P0) F(A) 0

точна. Это видно из эпи-моно разложения: если P1 → P0 раскладывается в произведение

µ · ε, где µ — мономорфизм, а ε — эпиморфизм, то • F(µ)→ F(P0) → F(A) → 0 точна, а при
дописывании эпиморфизма F(ε) слева точность останется.

Тем самым, L0F(A) = H0(F(P )) = CoKer(F(P1) → F(P0)). Получается CoKer(F(P1) →
F(P0)) = F(A), то есть L0F = F.

Следствие 1.6.2. Если PA, PB — проективные резольвенты A,B соответственно, и f : A→ B,
то ∃f̃ : PA → PB, делающий диаграмму коммутативной. Он определён однозначно с точно-
стью до гомотопии.

PA A•

PB B•

f̃ f

Здесь A• — комплекс, где A сосредоточен в нулевом члене.
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Таким образом, морфизму f объектов из A сопоставляется морфизм резольвент f̃ , а он, в свою
очередь, индуцирует морфизм гомологий Hn(PA)→ Hn(PB). Значит, конструкция L функториаль-
на.

1.6.1 Длинная точная последовательность левых производных функторов

Зафиксируем некоторый функтор F. Далее мы исследуем LnF, для упрощения записи будем
писать Ln := LnF.

Пусть имеется короткая точная последовательность 0→ A→ B → C → 0 в A. Построим длинную
точную последовательность производных функторов, выглядящую так:

· · · → L1(A)→ L1(B)→ L1(C)→ L0(A)→ L0(B)→ L0(C)→ · · ·

Для получения такой штуки было бы неплохо заполучить точную последовательность резольвент
PA → PB → PC , причём не абы какую, а сохраняющую свою точность под действием любого
аддитивного функтора. Оказывается, это сделать несложно, и в этом нам поможет лемма о подкове.

Лемма 1.6.1 (О подкове). Пусть P — проективный модуль, все строки и столбцы (состоящие
из чёрных сплошных стрелок) точны.

Q Q⊕ P P

0 A B C 0

0 0 0

i π

Утверждается, что диаграмму можно достроить до коммутативной, добавив зелёные пунк-
тирные стрелки. Новые строки и столбцы также станут точны.

Доказательство. Так как P — проективен, а g — эпи, то найдётся сечение s такое, что gs = hC .

Q Q⊕ P P

0 A B C 0

0 0 0

hA hC

f g

i π

hB s

Определим стрелку hB исходя из того, что квадраты должны в итоге получиться коммутатив-
ными. Из коммутативности левого квадрата hB(u, 0) = f(hA(u)). Из коммутативности правого
треугольника ghB(0, v) = hC(v) = gs(v). Тем самым, подойдёт hB(u, v) := f(hA(u)) + s(v).

При таком определении правый квадрат будет коммутативен: g(s(v)) = hC(π(u, v))
?
= g(hB(u, v)) =

g(s(v)), последнее равенство имеет место, так как gf = 0.

Также несложно убедиться, что построенный морфизм hB — эпи, видимо, это делается в тупую
при помощи диаграммного поиска:

Рассмотрим b ∈ B, пусть c := g(c) и b̄ := π−1
(
h−1
C (c)

)
— произвольный прообраз. Из коммутатив-

ности правого квадрата hB
(
b̄
)
и b под действием g уходят в g(b), откуда g

(
b− hB

(
b̄
))

= 0. Из
точности нижней строки ∃a ∈ A : f(a) = b − hB

(
b̄
)
, а из эпиморфности hA : ∃ā ∈ Q : hA (ā) = a.

Тем самым, hB
(
i(ā) + b̄

)
= b.

Теорема 1.6.2. Для короткой точной последовательности 0 → A → B → C → 0 существует
точная последовательность резольвент 0 → PA → PB → PC → 0, точность которой сохраняется
под действием любого аддитивного функтора.
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Доказательство. Возьмём произвольные резольвенты PA, PC . Резольвенту PB будем строить по-
шагово, по индукции. (PB)0 := (PA)0 ⊕ (PC)0 строится прямым применением леммы о подкове.

Далее необходимо провести индукционный переход.

(PA)n+1 (PA)n+1 ⊕ (PC)n+1 (PC)n+1

0 Ker(dAn−1) Ker(dBn−1) Ker(dCn−1) 0

0 (PA)n (PB)n (PC)n 0

0 Ker(dAn−2) Ker(dBn−2) Ker(dCn−2) 0

dAn−1 dCn−1dBn−1

i π

dBn

Вычленим некоторый кусочек диаграммы, и попробуем применить лемму о подкове для получе-
ния dBn . Для этого необходимо потребовать от стрелки Ker(dBn−1) → Ker(dCn−1), чтобы она была
эпиморфизмом.

При n = 1 это верно в силу леммы о змее:

0 Ker(dA−1) Ker(dB−1) Ker(dC−1)

0 PA PB PC 0

0 A B C 0

0 0 0

dA−1 dB−1 dC−1

Если же n > 1, то воспользуемся тем, что (PB)n = (PA)n ⊕ (PC)n. Это, в частности, значит, что
у ретракции πn : (PB)n → (PC)n имеется односторонняя обратная — сечение sn : (PC)n → (PB)n,
такая, что πn · sn = id(PC)n . Ввиду функториальности ядра односторонняя обратная будет иметься
и у отображения ядер Ker(dBn−1)→ Ker(dCn−1), что значит, что это эпиморфизм.

Так как прямая сумма проективных проективна, то (PA)n+1 ⊕ (PC)n+1 ↠ Ker dBn−1, и определение
резольвенты B по индукции корректно.

Точность 0→ PA → PB → PC под действием всякого аддитивного функтора, конечно, сохраняется,
так как (PB)n = (PA)n ⊕ (PC)n, а аддитивные функторы сохраняют бипроизведение.

Следствие 1.6.3 (Длинная точная последовательность производных функторов). Для короткой
точной последовательности 0 → A → B → C → 0 имеет место длинная точная последова-
тельность

· · · → L1(A)→ L1(B)→ L1(C)→ L0(A)→ L0(B)→ L0(C)→ · · ·

Доказательство. Из (теорема 1.6.2) найдётся точная последовательность проективных резольвент
0 → PA → PB → PC → 0. Применяя F, получаем точную последовательность 0 → F(PA) →
F(PB)→ F(PC)→ 0.

Возьмём у F(PA),F(PB),F(PC) гомологии. Составленная из них длинная точная гомологическая
последовательность как раз и сконструирует искомую длинную точную последовательность левых
производных функторов.

Замечание. Если F точен справа, то длинная точная последовательность производных функторов
обрывается эпиморфизмом: F(B)→ F(C)→ 0.
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Лекция VI
25 марта 2024 г.

1.6.2 Связанные последовательности функторов

Рассмотрим формальное обобщение производных функторов.

Пусть имеется семейство {Fi}i∈N функторов Fi : A → A′.

Определение 1.6.1 ((Левая) связанная последовательность функторов). Такая последовательность
функторов {Fi}i∈N0

, что для любой точной последовательности 0 → A → B → C → 0 существует
функториальная длинная точная последовательность

· · · → F1(A)→ F1(B)→ F1(C)→ F0(A)→ F0(B)→ F0(C)

Пример. Последовательность {LiF}i∈N0
— связанная последовательность функторов.

Заметим, что ∀i > 0 : LiF(P ) = 0, если P проективен. Это очевидным образом следует из
существования резольвенты 0 → P → P → 0. Если F точен справа (а мы это предполагаем), то
он сохраняет ноль. Тогда LnF — гомологии [· · · → 0→ 0→ F(P )→ 0], которые в нулевом члене
— F(P ), а в остальных — нулевые.

Оказывается, этого условия достаточно, чтобы определить связанную последовательность по нуле-
вому элементу:

Теорема 1.6.3. Пусть {Fi}, {Gi} — две связанные последовательности функторов, такие, что
имеется естественный изоморфизм F0

∼= G0, и для любого проективного P : ∀i > 0 : Fi(P ) =
Gi(P ) = 0.

Также предположим, что в A достаточно много проективных объектов.

Тогда ∀i : Fi ∼= Gi — естественный изоморфизм.

Доказательство. Пусть A ∈ A. Накроем A проективным, возьмём ядро, получим точную после-
довательность

0→M → P → A→ 0

Так как последовательности функторов — связаны — то имеется длинная точная последователь-
ность, нарисуем её кусок:

0 = F1(P ) F1(A) F0(M) F0(P )

0 = G1(P ) G1(A) G0(M) G0(P )

Значит, имеется естественный изоморфизм ядер, F1(A) ∼= G1(A), тем самым, F1
∼= G1 (естествен-

ность — упражнение).

Теперь займёмся индукционным переходом:

0 = Fi(P ) Fi(A) Fi−1(M) Fi−1(P ) = 0

0 = Gi(P ) Gi(A) Gi−1(M) Gi−1(P ) = 0

Зажав Fi(A) и Fi−1(M) между двумя нулями, мы доказали, что все четыре ненулевых объекта
изоморфны (естестенность, опять же, доказывается несложно).

Следствие 1.6.4. Пусть F точен справа (например F = _ ⊗ M , где M — фиксированный
модуль). Пусть F0

∼= F, где {Fi} — связанная последовательность функторов, такая, что
для любого проективного P : F(P ) = 0.
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По-прежнему предполагаем, что в A достаточно много проективных объектов.

Тогда ∀i ∈ N : Fi ∼= LiF.

1.7 Производные функторы для ⊗
Пусть R — необязательно коммутативное кольцо с единицей, M ∈ mod-R,N ∈ R-mod, напом-
ним, что тогда M ⊗R N ∈ Ab.

Изучим производные функторов тензорного произведения (функтор тензорного произведения точен
справа, так как он — левый сопряжённый к Hom (что верно в силу естественного изоморфизма
Hom(A⊗B,C) ∼= Hom(A,Hom(B,C)))).

Обозначим LTori(M, _)
def
= Li(M ⊗ _), RTori(_, N)

def
= Li(_⊗N).

Примеры.

• Изучим Tor1(M,R/aR), где R — коммутативная область целостности. Для R/aR несложно
написать проективную резольвенту: 0→ R

a−→ R→ R/aR→ 0 (a(m) = am).

Тензорно домножая на M , мы получаем 0 → M
m⊗r 7→m⊗ar−→ M → M ⊗ R/aR → 0. Так как

кольцо коммутативное, то тензорное произведение — mod-R, поэтому m ⊗ r 7→ m ⊗ ar —
тоже просто отображение умножения на a.

Так как естественно M ⊗ R/aR ∼= M/aM ⊗ R ∼= M/aM , то гомологии в среднем члене —
нуль, а в левом члене — a-кручение в M , то есть {x ∈M | ax = 0}.

• Если же хочется изучить всё кручениеM , то оказывается, Tor1(M,F/R) = {x ∈M | ∃a ∈ R \ {0} : ax = 0}
(здесь F/R — фактор R-модулей). Здесь используется, что F/R = lim−→R/aR, значит, Tor1(F/R,M) =
lim−→Tor1(R/aR,M).

Теорема 1.7.1. Имеет место естественный изоморфизм: ∀i : LTori ∼= RTori.

Идея доказательства. Пусть имеются резольвенты [. . .→ P1 → P0 →M ] и [. . .→ Q1 → Q0 → N ],
нарисуем следующую коммутативную диаграмму:

...
...

...

· · · P1 ⊗Q1 P0 ⊗Q1 M ⊗Q1 0

· · · P1 ⊗Q0 P0 ⊗Q0 M ⊗Q0 0

· · · P1 ⊗N P0 ⊗N M ⊗N

0 0

Тензорное домножение на свободный объект — точный справа функтор — из дистрибутивности
тензорного произведения. Тензорное домножение на проективный объект (прямое слагаемое сво-
бодного) — точный справа функтор — опять же из дистрибутивности.

Все строки точны, кроме нижней, и все столбцы точны, кроме правого, в которых мы и хотим
посчитать гомологии, и доказать, что они равны.

Заведём тотальный комплекс Tot(M,N)n :=
⊕n

i=0 Pi ⊗Qn−i, и теперь надо определить дифферен-
циал D. Необходимо, чтобы выполнялось требование D2 = 0, поэтому абы какой не подойдёт.
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Пусть dp : Pp → Pp−1, dq : Qq → Qq−1 — дифференциалы резольвент, определим

Dp,q : Pp ⊗Qq → Tot(M,N)p+q−1

(x⊗ y) 7→ dp(x)⊗ y + (−1)px⊗ dq(y)

Теперь определим полный дифференциал Dn :=
⊕

p+q=n
Dp,q : Tot(M,N)n → Tot(M,N)n−1.

Упражнение 1.7.1. Dn−1 ·Dn = 0.

Осталось показать, что гомологии нижней строки, как и гомологии правого столбца, совпадают с
гомологиями тотального комплекса.

1.8 Производные функторы для Hom

Теперь разберёмся с функторами Hom — эти функторы являются правыми сопряжёнными к ⊗,
поэтому точны слева.

Таких функторов два: имеются ковариантный Hom(M, _), и контравариантный Hom(_, N).

Для изучения точных слева функторов будем строить последовательность правых сопряжённых
функторов.

1.8.1 Инъективные резольвенты

Определение 1.8.1 (Инъективный модуль Q). Такой модуль Q, что для любой инъекции A↣ B,
и для любого морфизма A→ Q, существует морфизм B → Q такой, что диаграмма коммутативна:

A B

Q
∃

Интересный факт. Инъективный модуль — то же самое, что и делимый модуль, то есть ∀r ∈
R \ {0}, q ∈M : ∃x ∈M : rx = q. Скорее всего, это верно только над PID.

В одну сторону доказательство очевидно — чтобы убедиться, что инъективный модуль является
делимым, надо в качестве A взять кольцо R, а в качестве B — поле частных R.

В категории C, где достаточно много инъективных объектов (то есть ∀C ∈ C : ∃ проективный
Q вместе с вложением C ↪→ Q), двойственно проективной, строится инъективная резольвента, в
которой коядро предыдущего морфизма вкладывается в следующий инъективный модуль:

0→ N → Q0 → Q1 → Q2 → · · ·

Далее аналогично определяются правые производные функторы, в частности, имеется комплекс

0→ Hom(M,Q0)→ Hom(M,Q1)→ · · ·

Гомологии такого комплекса обозначают Exti(M,N).

Построим теперь проективную резольвенту для M : · · · → P2 → P1 → P0 → M → 0. Применяя
к этой последовательности контравариантный Hom, получаем 0 → Hom(P0, N) → Hom(P1, N) →
· · · Гомологии этого комплекса обозначают Exti(M,N) (это уже другой Ext, но они, как и Tor,
естественно изоморфны, доказательство абсолютно аналогично)
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1.8.2 О расширениях модулей и Ext1

Название Ext происходит от extensions, элементы Ext1 находятся в биекции с классами коротких
точных последовательностей 0 → M → ? → N → 0 (теорема 1.8.1). В качестве среднего члена
всегда подойдёт M ⊕N , но, может быть, и ещё что-то, и за это отвечает Ext1.

Для функторов Ext более высокой степени надо брать более длинные последовательности.

Лекция VII
1 апреля 2024 г.

Пусть M,N ∈mod-R.

Определение 1.8.2 (Расширение N при помощи M). Точная последовательность 0 → M → X →
N → 0.

Морфизм расширений 0→M → X → N → 0 и 0→M → X ′ → N → 0 — такая стрелка X → X ′,
что два получившихся треугольника коммутативны.

Теорема 1.8.1. Ext1(N,M) естественно изоморфен множеству классов изоморфизмов расширений
N при помощи M .

Доказательство. Рассмотрим расширение 0 → M → X → N → 0. Запишем кусок длинной
точной последовательности правых производных функторов для Hom(_,M) и данной короткой
точной последовательности, заменяя Ext0 на Hom:

Ext1(N,M) Hom(M,M) Hom(X,M) Hom(N,M) 0

Построим x ∈ Ext1(N,M), как образ id ∈ Hom(M,M).

Построим стрелку обратно, накрыв N проективным объектом, и взяв ядро: 0→ A→ P → N → 0.
Для Hom(_,M) и этой короткой точной последовательности можно тоже записать кусок длинной
точной последовательности правых производных функторов:

0 = Ext1(P,M) Ext1(N,M) Hom(A,M) Hom(P,M) Hom(N,M)

Так как P — проективен, то (у него есть резольвента 0 → P → P → 0) Ext1(P,M) = 0. Значит,
Ext1(N,M) ↞ Hom(A,M) — эпиморфизм. Сопоставим элементу x ∈ Ext1(N,M) его какой-то

прообраз β ∈ Hom(A,M). Теперь пусть X — пушаут диаграммы M
β← A→ P .

Построим следующую диаграмму, получая отображение X → N из универсального свойства пу-
шаута, применённого к P → N и нулевому M → N .

0 A P N 0

0 M X N 0

β

Можно показать, что нижняя последовательность — короткая точная, и мы определим её, как
образ элемента x ∈ Ext1(N,M).

Далее можно проверить, что в одну сторону эти отображения взаимно обратны — построим по
диаграмме выше, как по паре коротких точных последовательностей, последовательность правых
производных функторов, и в силу функториальности между ними будут следующие морфизмы:

0 = Ext1(P,M) Ext1(N,M) Hom(A,M) Hom(P,M) Hom(N,M)

Ext1(N,M) Hom(M,M) Hom(X,M) Hom(N,M)

? _·β
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Если я правильно понимаю, то стрелка, помеченная ? — тождественное отображение просто-
напросто из функториальности длинной точной последовательности, и того, что функторы со-
храняют id.

Элементу x ∈ Ext1(N,M) сопоставляется β ∈ Hom(A,M), полученная проходом против стрелки
влево. Можно заметить, что образ id под действием _ ·β тоже равен β, так что из коммутативности
левого квадрата, если сопоставить x короткую точную последовательность, а потом обратно, то
получится снова x.

Надо ещё проверить, что обратное отображение не зависит от выбора β, и что композиция в
другую сторону тоже тождественна, но это вряд ли будет когда-нибудь написано.

1.9 Гомологии и когомологии групп

Пусть G — группа, A — абелева группа, на которой действует G. Иными словами, A — Z[G]-
модуль.

Рассматриваем Z, либо как кольцо, либо как Z[G]-модуль с тривиальным действием G.

Определим гомологии Hn(G,A)
def
= TorZ[G]

n (Z, A) (верхний индекс Z[G] указывает, что мы работаем

в категории Z[G]-модулей). Также определим когомологии Hn(G,A)
def
= ExtnZ[G](Z, A).

Запишем проективную резольвенту по первому аргументу.

• Пусть Pn — свободный Z-модуль с базисом {(g0, . . . , gn) | gi ∈ G}. По совместительству Pn
— свободный Z[G]-модуль с базисом {(1, g1, . . . , gn) | gi ∈ G} и действием g · (g0, . . . , gn) =
(gg0, . . . , ggn).

• Теперь определим гомоморфизмы.

· · · P0 = Z[G] Z

Граничные гомоморфизмы определены так: dn(g0, . . . , gn) =
n∑
i=0

(−1)i(g0, . . . , ĝi, . . . , gn). Неслож-

но проверить, что dn−1 · dn = 0.

• Посчитаем нулевые гомологии и когомологии группы G. H0(G,A) = Z⊗Z[G] A.

Z = Z[G]/IG, где IG = Ker(ϕ), здесь ϕ : Z[G]→ Z — Z-линейный гомоморфизм аугментации,

определённый на базисе g 7→ 1. Иными словами, IG = ⟨g − 1|g ∈ G⟩ =

{ ∑
g∈G

αh · g |
∑
g∈G

αg = 0

}
,

все суммы финитные.

Тем самым, H0(G,A) = Z⊗Z[G]A ∼= A/(IGA) — коинварианты. IGA = ⟨ga− a|g ∈ G, a ∈ A⟩.

• Теперь посчитаем когомологии. H0(G,A) = HomZ[G](Z, A). Всякому гомоморфизму φ ∈
HomZ[G](Z, A) можно ϕ(1). Из G-линейности ∀g ∈ G : ϕ(1) = ϕ(g · 1) = g · ϕ(1), значит,
ϕ(1) ∈ AG

def
= {a ∈ A | ∀g ∈ G : ga = a} — инварианты. Значит, нулевые когомологии —

инварианты.

• H1(G,Z) = Gab def
= G/[G,G].

• H1(G,A) = Der(G,A) — множество скрещённых гомоморфизмов.

Скрещенный гомоморфизм — это такое отображение ϕ : G→ A, которое обладает свойством
ϕ(gh) = g · ϕ(h) + ϕ(g).

• H2(G,Z) =? Предположим, что имеется точная последовательность групп 0 → R → F →
G→ 1, то есть G ∼= F/R.

Тогда H2(G,Z) = R∩[F,F ]
[R,F ] .
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Если [G,G] = G (G совершенна), то существует универсальное центральное расширение
π : S ↠ G, то есть Ker(π) ∈ C(S), и

S G

H
∃!

∀ центрального расширения

В этом случае H2(G,Z) = Kerπ. Например, в случае G = SLn(F ) : S = Stn(F ) — группа
Стейнберга. Ядро Stn(F ) ↠ SLn(F ) — это K2,n(F ) = H2(G,Z). Для n ⩾ 5 от поля ничего
не зависит.
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Глава 2

Теория Галуа

Лекция VIII
15 апреля 2024 г.

2.1 Базовые понятия про расширения полей

Мы будем изучать расширения полей, и базовое поле будем обозначать F (от английского Field),
а расширенное — K (от немецкого Körper). Имеется теоретико-множественное включение F ⊂ K,
и включение полей обозначается K/F (это не надо путать с факторкольцом, никаких факторов
здесь не берётся, просто общепринятое обозначение).

K является векторным пространством над F , и dimF K
def
= [K : F ] — степень расширения.

Для элемента α ∈ K поле F (α) — наименьшее подполе в K, содержащее F и α.

2.1.1 Лемма о простых расширениях. Алгебраические и трансцендентные
элементы

Лемма 2.1.1 (О простых расширениях). Либо F (α) ∼= F (t) — поле дробно-рациональных функ-
ций, оно же поле частных F [t], его общий элемент имеет вид p

q (p ∈ F [t], q ∈ F [t]
∗).

Либо F (α) ∼= F [t]/(p), где p ∈ F [t] — неприводимый. В этом случае deg p — степень расширения.

Доказательство. Рассмотрим гомоморфизм F -алгебр ϕ : F [t]→ F (α), t 7→ α.

• Если Kerϕ = {0}, то Imϕ ∼= F [t]. Тем самым, F (α) ⊃ Imϕ, а раз F (α) — поле, то оно
содержит и поле частных Q(Imϕ) ∼= Q(F [t]).

Так как F (α) — наименьшее подполе, содержащее α, то F (α) ∼= F (t).

• Иначе, так как многочлены — PID — то Kerϕ = p · F [t], и Imϕ ∼= F [t]/(p). То, что p
неприводим, легко видеть от противного: если p = rs, то один из r, s ассоциирован с p, иначе
в кольце появляются делители нуля.

Тем самым, раз p неприводим, то (p) — максимальный идеал, откуда Imϕ ∼= F [t]/(p) — уже

поле. Базисом F [t]/(p) над F является, например,
(
1, t, . . . , t

deg(p)−1
)
.

В первом случае F (α) ∼= F (t) элемент α ∈ K называется трансцендентным.

Во втором случае F (α) ∼= F [t]/(p) элемент α ∈ K называется алгебраическим. В таком случае
p ∈ F [t] — минимальный многочлен α. Таким образом, F (α) = F [α], где F [α] — наименьшее
кольцо в K, содержащее F и α.

25



В случае расширений колец вместо слова алгебраический используют целый при дополнительном
условии унитальности минимального многочлена.

Определение 2.1.1 (Алгебраическое расширение K/F ). Такое расширение, что ∀α ∈ K: α — ал-
гебраический. В противном случае (∃α ∈ K: α — трансцендентный) расширение называют транс-
цендентным.

Определение 2.1.2 (Конечное расширение K/F ). Расширение конечной степени: [K : F ] <∞.

Лемма 2.1.2. Пусть имеется композиция (ещё говорят башня) расширений L/K/F . Тогда
[L : F ] = [L : K] · [K : F ].

Доказательство. Пусть (aα)α∈A — базис K над F , и (bβ)β∈B — базис L над K.

Тогда несложно видеть, что (aα · bβ)α∈A,β∈B — базис L над F .

2.1.2 Конечные и алгебраические расширения

Конечные и алгебраические расширения тесно связаны между собой, но, конечно, существует
бесконечное алгебраическое расширение. Например, Q

(√
p
∣∣p ∈ P

)
— имеет бесконечную степень

над Q, так как корни из простых чисел линейно независимы над Q (что вообще говоря тоже надо
обосновать, но это верный факт).

Теорема 2.1.1. Пусть K/F — расширение полей. Следующие условия равносильны:

1. Расширение K/F конечно.

2. Расширение K/F — алгебраическое и конечнопорождённое.

3. K = F [α1, . . . , αn], где все αi алгебраичны над F .

Доказательство.

(3)⇒ (1) Индукция по n.

База: n = 0⇒ K = F .

Переход: F [α1, . . . , αn] = F [α1, . . . , αn−1][αn]. Так как αn алгебраично над F , то оно алгеб-
раично и над F [α1, . . . , αn−1] (впрочем, степень минимального многочлена при увеличении
поля может стать меньше).

(1)⇒ (2) Лемма 2.1.3. Любой элемент конечного расширения K/F алгебраический.

Доказательство леммы.

Рассмотрим α ∈ K. Так как расширение конечно, то 1, α, α2, . . . линейно зависимы.
Выбрав линейную зависимость β0 + β1α+ · · ·+ βdα

d = 0. Тогда β0 + β1t+ · · ·+ βdt
d

аннулирует α, то есть ядро ϕ из доказательства (лемма 2.1.1) ненулевое.

Пусть [K : F ] = d, значит, K имеет базис (α1, . . . , αd) над F . Тогда K порождено элементами
α1, . . . , αd даже просто как векторное пространство, а не как F -алгебра.

(2)⇒ (3) Тавтологично.

2.1.3 Алгебраическое замыкание одного поля в другом

Пусть имеется расширение полей K/F , тогда IntK F
def
= {α ∈ K | α алгебраичен над F} — целое

(алгебраическое) замыкание F в K.

IntK F является полем: ∀α, β ∈ IntK F : α−β, α+β, α ·β, αβ (последнее при β ̸= 0) лежат в F [α, β],
а это — конечное расширение согласно (теорема 2.1.1).
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2.1.4 Базис трансцендентности

Пусть X ⊂ K — произвольное подмножество, где по-прежнему K/F — расширение полей.

Определение 2.1.3 (X алгебраически независим над F ). ∀f ∈ F [t1, . . . , tm],∀x1, . . . , xm ∈ X (где
xi попарно различны): f(x1, . . . , xm) ̸= 0.

Иными словами, отображение из универсальной F -алгебры, порождённой элементами X в F [X]
(определённое на образующих x 7→ x) имеет нулевое ядро.

Определение 2.1.4 (Линейная оболочка X над F ). ⟨X⟩ def= IntK F (X) (где, как обычно, F (X) —
наименьшее подполе в K, содержащее F и X).

Определение 2.1.5 (X — (алгебраический) базис расширения K/F ). Алгебраически независимое
X такое, что ⟨X⟩ = K. При этом |X| называется степенью трансцендентности K/F

Пример. В кольце F (t): одноэлементное множество {t} — базис трансцендентности.

Для алгебраического базиса X верны те же аксиомы, что и для базиса векторных полей:

1. todo

2. todo

3. todo

Я не смог найти эти аксиомы, а интересно, может кто-то другой подскажем, как они выглядят?

Теорема 2.1.2. Степень трансцендентности не зависит от выбора базиса.

Доказательство. Аналогично подобному факту из линейной алгебры.

2.2 Построение полей

2.2.1 Поле разложения

Пусть F — поле, f ∈ F [t].

Определение 2.2.1 (Поле разложения f над F ). Расширение Ff/F , в котором f раскладывается
на линейные множители, и вкладывающееся (не факт, что единственным образом) в любое другое
поле, обладающее тем же свойством.

Примеры.

• F = R, f(t) = t2 + 1. В этом случае Ff ∼= C.

• F = Q, f(t) = t3 − 2. В этом случае Q
(

3
√
2
)
— не поле разложения, оно вкладывается в R, а

f в R на линейные множители не раскладывается.

Надо присоединить ещё какой-то корень f , достаточно присоединить какой-то 3
√
1, отличный

от 1; это то же самое, что присоединить
√
−3, так как

(
−1±

√
−3

2

)3

= 1. Тем самым, поле

разложения Qf ∼= Q
[

3
√
2,
√
−3

]
.

Теорема 2.2.1. Для любого f ∈ F [t] существует его поле разложения.

Доказательство. Индукция по deg f .

База: deg f = 1⇒ Ff = F .

Переход: Пусть f = pg, где p — неприводим.

Пусть E := F [t]/(p). В E: α := t = t+ (p) — корень p.

Также в E: f(t) = (t − α) · h(t) для некоторого h : deg h = deg f − 1. Положим Ff := Eh, Eh
существует по индукционному предположению.
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Теперь пусть K/F — другое поле, в котором f раскладывается на линейные множители. Сначала
устроим вложение E ↪→ K, отправив α в любой корень p. Такой корень найдётся в K, так как F [t]
— UFD, и раз уж f раскладывается на линейные множители в K, то p и подавно.

При этом h раскладывается в K на линейные множители, по индукции Eh вкладывается в K.

Пусть K/F и L/F — расширения полей. Тогда гомоморфизм ϕ : K → L называется гомомор-
физмом полей над F , если он оставляет F на месте. Все гомоморфизмы полей по определению
сохраняют 1, в частности, любой гомоморфизм полей инъективен (ϕ(x) = ϕ(y) ⇐⇒ ϕ(xy−1) =
ϕ(1) ⇐⇒ xy−1 = 1).

Теорема 2.2.2. Пусть K — поле, в котором f ∈ F [t] раскладывается на линейные множители.
Тогда K — поле разложения f ⇐⇒ K ∼= F [α1, . . . , αn], где αi — все корни f (deg f = n).

Доказательство.

⇐. Построенное в (теорема 2.2.1) поле разложения действительно порождено корнями f .

⇒. В поле разложения f по определению лежат все корни f . Более того, раз в F [α1, . . . , αn]
многочлен f разложим на линейные множители, то имеется гомоморфизм K → F [α1, . . . , αn].
Он сюръективен (в образе лежит F , так как гомоморфизм — над F , и в образе лежат корни
αi, так как в них отправятся корни многочлена f) и инъективен (любой гомоморфизм полей
инъективен).

Лекция IX
16 апреля 2024 г.

Лемма 2.2.1. Пусть K/F и L/F — конечные расширения, и K → L,L → K — гомоморфизмы
над F . Тогда K ∼= L (и оба отображения — изоморфизмы).

Доказательство. Достаточно убедиться, что оба гомоморфизма биективны, а это удобно прове-
рять, рассматривая K и L, как векторные пространства над F . Так как гомоморфизмы полей —
мономорфизмы, то dimF K = dimF L.

2.2.2 Конечные поля

Пусть F — конечное поле (|F | < ∞). В поле есть единница, и так как поле конечное, то его
характеристика ненулевая: в конечной аддитивной группе поля любой элемент, в том числе 1,
имеет конечный порядок. Пусть p — эта характеристика. Так как поле — область целостности, то
p ∈ P.

Тем самым, в F вкладывается поле из p элементов, изоморфное факторкольцу Z/pZ. Обозначим
поле из p элементов за Fp.

Лемма 2.2.2. Любое конечное поле характеристики p содержит pn элементов, где n ∈ N.

Доказательство. Так как F — векторное пространство над Fp, то F
Fp-Vect∼= Fnp для некоторого

n ∈ N.

Теорема 2.2.3. Для любого простого p и любого n ∈ N существует поле из pn элементов. При
этом все такие поля изоморфны (но изоморфизмов может быть несколько).

Доказательство.

• Обозначим q := pn ∈ N. Рассмотрим f ∈ Fp[t], f(t) = tq − t, и посмотрим на его поле
разложения (Fp)f . Так как в Fp: q = 0, то f ′(t) = qtq−1− 1 = −1, что показывает, что у f нет
кратных корней. Тем самым, F := (Fp)f содержит по меньшей мере q элементов — корни f .
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• Рассмотрим корни f в его поле разложения X := {x ∈ F | xq − x = 0} ⊂ F . Заметим, что X
замкнуто относительно сложения, умножения и взятия обратного:

{
xq = x

yq = y
⇒


(xy)

q
= xy

(x+ y)q = xq + yq = x+ y(
1
x

)q
= 1

xq = 1
x

Первое следует из коммутативности, второе — из того, что p делит все биномиальные ко-
эффициенты

(
q
k

)
, кроме

(
q
0

)
и
(
q
q

)
; иными словами, x 7→ xp — эндоморфизм Фробениуса из

первого семестра, а xq =
(
(xp)·

·)p.
Тем самым, X ⩽ F — подполе в F . Из замкнутости X относительно сложения Fp ⊂ X, так
как всякий элемент в Fp — сумма единиц.

С другой стороны, X содержит все корни tq−t, а F — поле разложения tq−t, значит, имеется
и гомоморфизм F → X. X/Fp и F/Fp конечны, откуда (лемма 2.2.1) X = F .

• Пусть E — произвольное поле порядка pn. Его характеристика равна p, значит, в него вкла-
дывается Fp. |E∗| = q − 1, значит по теореме Лагранжа (о порядке элемента в группе)
∀x ∈ E : xq−1 = 1. Тем самым, f раскладывается на линейные множители и в E, откуда
опять же имеется вложение F ↪→ E. Но |F | = |E| = q, значит, F ∼= E.

2.2.3 Алгебраическая замкнутость поля и алгебраическое замыкание

Лемма 2.2.3. Пусть F — поле. Следующие условия эквивалентны:

1. ∀f ∈ F [t] \ F : f раскладывается на линейные множители в F .

2. ∀f ∈ F [t] \ F : f имеет корень в F .

3. ∀f ∈ F [t] \ F : (f неприводим ⇐⇒ deg f = 1).

4. Любое алгебраическое расширение F совпадает с F .

5. Любое конечное расширение F совпадает с F .

Доказательство. Тривиально.

(1)⇒ (2) Тавтологично.

(2)⇒ (3) ⇒ следует из теоремы Безу (α корень ⇐⇒ t − α — делитель), ⇐ следует из того, что все
многочлены степени 1 неприводимы.

(3)⇒ (4) Пусть E/F — алгебраическое расширение, выберем θ ∈ E, и найдём его минимальный
многочлен. Он неприводим ⇒ deg f = 1, то есть θ ∈ F .

(4)⇒ (5) Тавтологично.

(5)⇒ (1) Рассмотрим f ∈ F [t]. Ff = F ⇒ все корни f лежат в F . Так как f неприводим, то deg f = 1.

Определение 2.2.2 (Алгебраически замкнутое поле). Поле F , удовлетворяющее условиям из
предыдущей леммы (лемма 2.2.3).

Лемма 2.2.4. Пусть K/F — алгебраическое расширение, и любой многочлен из F [t] расклады-
вается на линейные множители в K[t]. Тогда K алгебраически замкнуто.

Доказательство. Пусть f – неприводимый в K[t]. Без потери общности f — унитальный: f(t) =
tn + αn1

tn−1 + · · ·+ α0. Построим поле E := F [α0, . . . , αn], расширение E/F конечно.
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f тем более неприводим в E, значит, можно рассмотреть поле L := E[t]/(f), расширение L/E, а

стало быть и L/F тоже конечны.

K L

E

F

алгебраично
конечно

конечно

f имеет корень в L, назовём его β. В силу конечности β алгебраично над F , то есть ∃g ∈ F [t] :
g(β) = 0. Согласно посылке леммы, g разложим на множители в K[t], значит, имеется вложение
ϕ : Fg ↪→ K над E. Но f(β) = 0⇒ f(ϕ(β)) = ϕ(f(β)) = ϕ(0) = 0, то есть f имеет корень в K.

Интересный факт. Можно ослабить посылку: если K/F — алгебраическое расширение, и любой
многочлен из F [t] имеет корень в K, то K алгебраически замкнуто.

Лемма 2.2.5. Пусть L/F — расширение полей, причём L алгебраически замкнуто. Тогда IntL F
тоже алгебраически замкнуто.

Доказательство. Рассмотрим f ∈ F [t]. В L он раскладывается на линейные множители f(t) =
(t− α1) · . . . · (t− αn), где αi ∈ L. По определению алгебраического замыкания F в L, αi ∈ IntL F .
Применяя (лемма 2.2.4), получаем, что IntL F алгебраически замкнуто.

Пример. Рассмотрим расширение C/Q. Целые алгебраические числа A def
= IntC Q — алгебраически

замкнутое подполе в C. Оно не совпадает с C, так как C континуально, а IntC Q счётно.

Определение 2.2.3 (Алгебраическое замыкание поля F ). Алгебраическое расширение F , являю-
щееся алгебраически замкнутым полем. Обозначается F alg.

Теорема 2.2.4. У любого поля F существует алгебраическое замыкание.

Доказательство. Рассмотрим множество многочленов F [t], как множество индексов, и введём
множество переменных X := {xf | f ∈ F [t]}. Далее рассмотрим кольцо многочленов от этих пере-
менных F [X], и профакторизуем его по идеалу J := (f(xf )|f ∈ F [t]).

Лемма 2.2.6. Этот идеал не совпадает со всем кольцом: J ̸= F [X].

Доказательство леммы.

Пойдём от противного: J = F [X] ⇒ 1 ∈ J , то есть существует конечная линейная
комбинация

g1f1(xf1) + · · ·+ fmfm(xfm) = 1, где fi, gi ∈ F [t] (△)

Корни конечного множества многочленов мы умеем присоединять: введём f := f1 · . . . ·fm,
в Ff у каждого из fi есть корень, назовём его βi. Теперь устроим гомоморфизм F -алгебр

ϕ : F [X] → Ff ,

{
xfi 7→ βi

xg 7→ 0
, он определён согласно универсальному свойству кольца

многочленов.

В образe (△) обращается в равенство 0 = 1, но в Ff это, конечно, неверно.

Раз J .QF [X] не совпадает со всем кольцом, то можно взять максимальный идеал m, содержащий
J , и не совпадающий со всем кольцом (лемма Цорна). Факторкольцо E1 := F [X]/m является
полем, в котором образ переменной xf — корень многочлена f .

К сожалению, не факт, что E1 алгебраически замкнуто, (лемма 2.2.4) неприменима, так как неиз-
вестно, что всякий многочлен из F [t] раскладывается в E1[t] на линейные множители.

Обозначим E0 := F , и устроим итерации, по Ei получая Ei+1 согласно вышеописанной процедуре.
Для цепочки вложений полей E0 ↪→ E1 ↪→ E2 ↪→ . . . можно рассмотреть объединение с понятно
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определёнными операциями. Поле F :=
∞⋃
i=0

Ei уже является алгебраически замкнутым полем (лю-

бой многочлен из F [t] имеет конечное количество коэффициентов, которые все лежат в каком-то
EN , а корень можно найти в EN+1).

Теперь осталось положить F alg := IntF F , оно алгебраически замкнуто, согласно (лемма 2.2.5).

Лекция X
22 апреля 2024 г.

Предложение 2.2.1. Пусть E/F — алгебраическое расширение, и L/F — такое расширение,
что ∀f ∈ F [t]: f раскладывается на линейные множители в L[t]. Обозначим K := IntL F . Тогда

1. Существует вложение ϕ : E ↪→ L над F .

2. Для всякого вложения ϕ: ϕ(E) ⊂ K.

3. Если E алгебраически замкнуто, то ϕ(E) = K.

Доказательство.

1. Образуем множество X :=
{
(F̃ , ϕ) | F ⊂ F̃ ⊂ E, ϕ : F̃ ↪→ L

}
. На X введём частичный поря-

док: (F ′, ϕ′) ⪯ (F ′′, ϕ′′) ⇐⇒ F ′ ⊂ F ′′ и ϕ′′
∣∣
F ′ = ϕ′.

X непусто, так как (F, F ↪→ L) ∈ X.

Убедимся, что здесь применима лемма Цорна: если (Fα, ϕα)α∈A — цепь, то F̃ :=
⋃
α∈A

Fα

вместе с ϕ̃ — верхняя грань (где ϕ̃ определено так: и ∀x ∈ F̃ : ϕ̃(x) := ϕα(x) для произвольного
α, такого, что x ∈ Fα).

Тем самым, имеется максимальный элемент (F̃ , ϕ̃) ∈ X. Предположим, что F̃ ̸= E, то есть
∃θ ∈ E \ F̃ . Пусть f ∈ F [t] — минимальный многочлен θ в F , и g ∈ F̃ [t] — минимальный
многочлен θ над F̃ .

Отождествим F̃ с его образом ϕ̃(F̃ ) ⊂ L (ϕ инъективно, как гомоморфизм полей).

В L многочлен f раскладывается на линейные множители. Так как g | f , то g ∈ L[t] тоже
раскладывается на линейные множители, то есть ∃α ∈ L : g(α) = 0. Согласно универсальному
свойству простого расширения: F̃ [θ] ∼= F̃ [t]/(g), то есть ∃!ψ : F̃ [θ] → F̃ [α] — гомоморфизм
полей над F̃ , такой, что ψ(θ) = α. Пара (F̃ [θ], ψ) строго больше пары (F̃ , ϕ̃), противоречие.
Тем самым, F̃ = E, и имеется полностью определённое E → L.

2. Корень f ∈ F [t] переходит в корень, поэтому ϕ сохраняет множество алгебраических элемен-
тов, откуда ϕ(E) ⊂ K.

3. Рассмотрим β ∈ K, это корень некоторого унитального многочлена f ∈ F [t]. В E многочлен
f раскладывается на линейные множители f(t) = (t−α1) · . . . · (t−αn), где αi ∈ E. Применяя
индуцированный ϕ : E[t]→ L[t] к данному разложению, получаем f(t) = (t−ϕ(α1)) · . . . · (t−
ϕ(αn)). Подставляя β, получаем, нуль. Значит, β = ϕ(αi) для некоторого i.

Следствие 2.2.1. Любое алгебраическое расширение F вкладывается в алгебраическое замы-
кание F .

Следствие 2.2.2. Алгебраическое замыкание F вкладывается в любое алгебраически замкну-
тое поле, содержащее F .

Следствие 2.2.3. Алгебраическое замыкание единственно с точностью до не единственного
изоморфизма.
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2.3 Сепарабельность

Пусть F — поле, f ∈ F [t].

Определение 2.3.1 (Сепарабельный многочлен f). f не имеет кратных корней в F alg.

Так как кратные корни — это корни gcd(f, f ′), то условие сепарабельности эквивалентно условию
gcd(f, f ′) = 1.

Если f =
n∏
i=1

fi, где fi неприводимы, то f сепарабелен ⇐⇒ все fi различны и сепарабельны.

Неприводимый же многочлен на сепарабельность проверять легко: deg f ′ < deg f , поэтому при
deg f > 0: gcd(f, f ′) ̸= 1 ⇐⇒ f ′ = 0 (что бывает только в конечной характеристике).

Теперь пусть E/F — алгебраическое расширение полей.

Определение 2.3.2 (α ∈ E сепарабелен над F ). Минимальный многочлен α сепарабелен.

Определение 2.3.3 (Расширение E/F сепарабельно). ∀α ∈ E: α ∈ E сепарабелен над F .

Интересный факт. F = EAut(E/F ) ⇐⇒ E/F — сепарабельное расширение. Здесь Aut(E/F ) —

автоморфизмы E, тождественные над F , и для G ⊂ Aut(E/F ): EG
def
= {x ∈ E | ∀g ∈ G : gx = x} —

множество точек, оставляемых под действием G на месте.

Примеры (Сепарабельные и несепарабельные расширения).

• Любое расширение поля характеристики нуль сепарабельно.

• Пусть E := Fp(t), F := Fp(tp) (подполе в E, содержащее только степени t, кратные p).
Рассмотрим многочлен xp− tp ∈ F [x]. Над E : xp− tp = (x− t)p, то есть он раскладывается на
кратные линейные множители. Но над F многочлен неприводим, так как легко перечислить
все его делители в E[t], и убедиться, что в F они не лежат.

Получается, xp−tp ∈ F [x] неприводим и несепарабелен. И действительно, (xp−tp)′ = pxp−1 =
0.

Определение 2.3.4 (Совершенное поле F ). Любое алгебраическое расширение F сепарабельно.

Упражнение 2.3.1. Верно ли, что F совершенно ⇐⇒ эндоморфизм Фробениуса Frob : F →
F, x 7→ xp сюръективен?

Примеры.

• Если charF = 0, то F совершенно.

• Если |F | <∞, то F совершенно.

Доказательство. Рассмотрим θ ∈ F alg. |F [θ]| = qn, где q := |F |. Тогда θqn−1 = 1 (теорема
Лагранжа для мультипликативной группы F [θ]∗), то есть θ — корень tq

n−1 − 1.

Этот многочлен взаимно прост со своей производной:
(
tq

n−1 − 1
)′

= (qn − 1)tq
n−2 = −tqn−2,

и gcd(−tqn−2, tq
n−1 − 1) = 1.

Минимальный многочлен θ делит tq
n−1 − 1, значит, он тоже не имеет кратных корней.

Лекция XI
29 апреля 2024 г.

Предложение 2.3.1. Пусть E/F — алгебраическое расширение полей. Следующие условия эк-
вивалентны:

1. E/F несепарабельно.

2. Минимальный многочлен некоторого θ ∈ E несепарабелен над F .

3. ∃f ∈ F [t] — неприводимый в F [t], такой, что f ′ = 0, причём f имеет корень в E.
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4. ∃f ∈ F [t] — неприводимый в F [t], такой, что f имеет кратный корень в E.

5. ∃f ∈ F [t] — неприводимый в F [t], такой, что ∃g ∈ F [t] : f(t) = g(tp), причём f имеет
корень E.

Доказательство. (1) ⇐⇒ (2)⇒ (3) ⇐⇒ (4) и (3)⇒ (5) очевидно (эквивалентность (3) ⇐⇒ (4)
соблюдена, так как для неприводимого многочлена f : gcd(f, f ′) ̸= 1 ⇐⇒ f ′ = 0).

Докажем (5)⇒ (2). Пусть θ ∈ E — корень f . Подставим: f(θ) = g(θp) = 0. Получили (t−θp) | g ⇒
(t− θ)p = tp − θp | f .

На самом деле, данное предложение говорит, что кратность любого корня неприводимого несепара-
бельного многочлена делится на p. Используя его, несложно доказать эквивалентность из (упраж-
нение 2.3.1):

Доказательство. Если E/F несепарабельно, то найдётся неприводимый многочлен f = (αnt
pn +

αn−1t
p(n−1) + · · · + α0) ∈ F [t]. Но так как автоморфизм Фробениуса сюръективен, то ∀αj ∈ F :

∃βj ∈ F : βpj = αj . Получаем

αnt
pn + αn−1t

p(n−1) + · · ·+ α0 = (βnt
pn + βn−1t

p(n−1) + · · ·+ β0)
p

что противоречит неприводимости f .

Упражнение 2.3.2. Сепарабельное расширение сепарабельного расширения сепарабельно.

2.4 Расширения Галуа

Определение 2.4.1 (Расширение E/F нормально). Любой неприводимый многочлен из F [t], име-
ющий корень в E, раскладывается на линейные множители в E

Пример. Q
[

3
√
2
]
/Q не нормально, так как t3− 2 не раскладывается на линейные множители даже

в R.

Любое расширение несложно сделать нормальным, присоединив все корни всех неприводимых
многочленов из F [t], имеющих корни в E.

Определение 2.4.2 (Расширение Галуа). Конечное сепарабельное нормальное расширение.

Условие конечности в определении иногда отсутствует, но мы другими заниматься не будем.

Определение 2.4.3 (Группа Галуа расширения Галуа E/F ). Группа автоморфизмов E, тождествен-

ных на F : Gal(E/F )
def
= Aut(E/F ).

Группа автоморфизмов расширения E/F имеет смысл и не для расширения Галуа, но там не
используется запись Gal.

2.4.1 Теорема о количестве вложений

Теорема 2.4.1. Пусть имеются расширения K/F и E/F , и f ∈ F [t]. При этом K порождено
некоторыми корнями многочлена f , а в E: f раскладывается на линейные множители. Пусть n —
количество вложений K ↪→ E над F .

1. 0 < n ⩽ [K : F ]

2. Если f сепарабелен, то n = [K : F ].

3. Если f несепарабелен, свободен от квадратов в F [t], и любой неприводимый в F [t] сомножи-
тель f имеет корень в K, то n < [K : F ].
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Доказательство. Индукция по степени расширения [K : F ].

База: [K : F ] = 1 ⇐⇒ K = F . Все три пункта очевидны.

Переход: разложим f = f1 · . . . ·fn, где неприводимые fi ∈ F [t]. K ̸= F ⇒ не все fi не имеют корней
в K \ F . Без потери общности f1 имеет корень в K \ F . Дополнительно, если такой существует,
то выберем f1, как несепарабельный множитель, имеющий корень в K \ F .

Зафиксируем какое-то вложение F [t]/(f1) ↪→ K, отождествим F [t]/(f1) со своим образом F̃ ⩽
K. Используя универсальное свойство простого расширения, получаем, что количество вложений
F̃ ↪→ E (назовём это количество k) равно количеству корней f1 в E.

Если f1 сепарабелен, то в E он имеет deg f1 корней, иначе — строго меньше.

Пусть ϕ : F̃ ↪→ E — фиксированное вложение. Отождествим F̃ и ϕ(F̃ ). Расширение K/F̃ порож-
дено корнями f , он по-прежнему раскладывается на линейные множители в E.

[K : F̃ ] · [F̃ : F ] = [K : F ] ⇒ [K : F̃ ] < [K : F ]. По индукционному предположению существует m
вложений K ↪→ E над F̃ , где m ⩽ [K : F̃ ].

Так как столько вложений имеется для каждого ϕ, то n = km ⩽ [F̃ : F ] · [K : F̃ ] = [K : F ]. При
этом, если f сепарабелен и свободен от квадратов, то несепарабельный f1, имеющий корень в K,
найдётся, тогда k < [F̃ : F ] и n < [K : F ].

Следствие 2.4.1. Пусть K/F и E/F — конечные расширения.

1. Количество вложений K ↪→ E над F не превосходит [K : F ].

2. Существует расширение L/E: имеется вложение K ↪→ L над F .

3. Если E/F — расширение Галуа, то количество вложений K ↪→ E над F равно либо
[K : F ], либо 0.

Доказательство. Пусть K = F [α1, . . . , αn], пусть f1, . . . , fn — минимальные многочлены α1, . . . , αn
соответственно.

Избавимся от ассоциированных, оставив только уникальные, и положим f равному их произведе-
нию.

Положим L := Ef . Теперь выполнена посылка (теорема 2.4.1), откуда количество вложений K ↪→ L
над F не 0, но и не более [K : F ].

Если существует вложение K ↪→ E над F , то все fi имеют корни в E. Если дополнительно E/F —
расширение Галуа, то и подрасширение E/F — сепарабельно. Тогда α1, . . . , αn сепарабельны над
F , то есть f сепарабелен над F . А из нормальности расширения E/F все fi раскладываются на
линейные множители в E. Тем самым, L = E, и (теорема 2.4.1) завершает доказательство.

Следствие 2.4.2. Для расширения Галуа: |Gal(E/F )| = [E : F ].

2.4.2 Лемма Артина

Теорема 2.4.2 (Лемма Артина). Пусть E — поле, и G ⩽ Aut(E), |G| <∞. Обозначим F := EG
def
=

{α ∈ E | ∀g ∈ G : gα = α}.

Тогда [E : F ] = |G|.

Доказательство. Достаточно доказать, что [E : F ] ⩽ |G|, обратное неравенство следует из (след-
ствие 2.4.1).

Пусть G = {ϕ1, ϕ2, . . . , ϕn}, где ϕ1 = 1G = idE . Пусть m > n,α1, . . . , αm ∈ E, докажем, что

α1, . . . , αm линейно зависимы над F , то есть что имеет место линейная зависимость
m∑
i=1

αixi = 0.
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Заведём систему линейных уравнений
{
m∑
i=1

ϕj(αi)xi = 0

}n
j=1

относительно переменных x1, . . . , xm.

В ней уравнений меньше, чем неизвестных, поэтому по теореме о размерности пересечения имеется
ненулевое решение β1, . . . , βm ∈ E. Дальше надо доказать, что найдётся решение, где все βi ∈ F .

Выберем набор β1, . . . , βm с наименьшим количеством ненулевых элементов. Пусть βi ̸= 0 для
некоторого i, отнормируем решение, поделив на βi. Теперь βi = 1. Утверждается, что все βi ∈ F .

От противного: если ∃k : βk /∈ F , то ∃l : ϕl(βk) ̸= βk. Тогда не только β1, . . . , βm — решение, но и
ϕl(β1), . . . , ϕl(βm) — тоже решение, причём их поэлементная разность имеет меньшее количество
ненулевых элементов. Получаем противоречие.

Лекция XII
6 мая 2024 г.

Следствие 2.4.3. Для любой группы G ⩽ Aut(E): Aut(E/EG) = G.

Доказательство. Очевидно, G ⩽ Aut(E/EG). По лемме Артина |G| = [E : EG] ⩾ |Aut(E/EG)| ⩾
|G|, и равенство достигается только при G = Aut(E/EG)

2.4.3 Теорема о характеризации расширений Галуа

Теорема 2.4.3 (Характеризация расширений Галуа). Пусть E/F — расширение полей. Следующие
условия эквивалентны:

1. E/F — расширение Галуа.

2. E — поле разложения некоторого сепарабельного f ∈ F [t].

3. F = EAut(E/F ) и [E : F ] <∞.

4. Для некоторой конечной G ⩽ Aut(E): F = EG.

Доказательство.

(1)⇒ (2) Аналогично доказательству (следствие 2.4.1). Так как E/F — расширение Галуа, то оно
порождено конечным множеством элементов: E = F [α1, . . . , αn]. Пусть fi ∈ F [t] — мини-
мальные многочлены αi, и пусть f := fi1 · . . . · fik , где перемножаются уникальные среди
fi.

f сепарабелен, как произведение взаимно простых сепарабельных многочленов, E порож-
дено корнями f , и так как E/F нормально, то f разложим на линейные множители в E.
Согласно (теорема 2.2.2), E = Ff .

(2)⇒ (3) Согласно (следствие 2.4.1), |Aut(E/F )| = [E : F ]. Ясно, что F ⊂ F̃ := EAut(E/F ). С другой
стороны, по лемме Артина, [E : F̃ ] = |Aut(E/F )|, откуда [F̃ : F ] = 1.

(3)⇒ (4) Согласно (теорема 2.4.1), [E : F ] < ∞ ⇒ |Aut(E/F )| < ∞, тем самым, G := Aut(E/F )
подойдёт.

(4)⇒ (1) По лемме Артина, [E : F ] = |G|, тем самым, расширение конечно. Пусть f ∈ F [t] — неприво-
димый, имеющий корень α ∈ E. Рассмотрим орбиту α под действием G: Gα = {α1, . . . , αm}.
Пусть h(t) := (t− α1) · . . . · (t− αm) ∈ E[t]. Раскрыв скобки (по теореме Виета)

h(t) = tm − s1(α1, . . . , αm)tm−1 + s2(α1, . . . , αm)tm−2 + · · ·+ (−1)msm(α1, . . . , αm)

где sk(α1, . . . , αm) — k-й основной симметрический многочлен, то есть сумма всевозможных
произведений вида αi1 · . . . · αik по всем кортежам 1 ⩽ i1 < · · · < ik ⩽ m. Эти коэффициенты
инвариантны под действием G, значит, они лежат в F . Под действием G коэффициенты h
остаются на месте, а корни h переходят в корни.

35



Таким образом, ∀g ∈ G : ∃σ ∈ Sm : g(αi) = ασ(i). Но раз h раскладывается на различные
линейные множители в E[t], то минимальный многочлен α (который делит h) тоже раскла-
дывается на различные линейные множители в E[t]. Так как α ∈ E был произвольным, то
E/F по определению сепарабельно и нормально.

2.4.4 Характеризация сепарабельных расширений

Следствие 2.4.4. Расширение E/F , порождённое конечным числом сепарабельных элементов,
вкладывается в расширение Галуа (и, следовательно, сепарабельно).

Доказательство. Аналогично доказательству (следствие 2.4.1). Пусть E = F [α1, . . . , αn], где αi
сепарабельны. Пусть fi ∈ F [t] — минимальный многочлены αi, и пусть f := fi1 · . . . · fik , где
перемножаются уникальные среди fi.

f сепарабелен, можно устроить вложение E ↪→ Ff (оно есть, например, согласно (следствие 2.4.1)),
а Ff — расширение Галуа согласно (теорема 2.4.3).

Следствие 2.4.5. Пусть K/F — расширение полей. Множество элементов K, сепарабельных
над F , образует поле.

Доказательство. ∀α, β ∈ K : F [α, β] сепарабельно (следствие 2.4.4), значит, α + β, αβ и даже α
β

(при β ̸= 0) тоже сепарабельны.

Это поле называется сепарабельным замыканием F в K. Если опускают K, то подразумевается
сепарабельное замыкание в F sep ⊂ F alg.

Определение 2.4.4 (Чисто несепарабельное расширение K/E). ∀α ∈ K \E: α не сепарабелен над
E.

Следствие 2.4.6. Любое алгебраическое расширение K/F раскладывается в башню сепарабель-
ного расширения E/F и чисто несепарабельного K/E.

Доказательство. Выберем за E сепарабельное замыкание F в K. Дальше надо проверить, что
элементы в K, несепарабельные над F , остались несепарабельными над E, упражнение читателю.

2.5 Соответствие Галуа

Следствие 2.5.1. Пусть имеется башня расширений E/K/F , и E/F — расширение Галуа.
Тогда E/K — расширение Галуа.

Доказательство. Раз E/F — расширение Галуа, то ∃f ∈ F [t] : E = Ff , где f сепарабелен. Тогда
E = Kf , значит, E/K — действительно расширение Галуа.

Теперь у нас всё готово, чтобы установить соответствие Галуа.

E/F — расширение Галуа, G := Gal(E/F ) = Aut(E/F ). Пусть F := {K ⩽ E | F ⩽ K ⩽ E}, и
G := {H ⩽ G}. Тогда имеется биекция F ↔ G: подполю K ∈ F сопоставляется Gal(E/K) ⩽ G.
Обратно, подгруппе H ∈ G сопоставляется подполе EH .

Теорема 2.5.1 (Соответствие Галуа). Указанные выше отображения F ↔ G — взаимно обратные
биекции, удовлетворяющие следующим свойствам:

• Монотонность по включению: H ⩽ H ′ ⩽ G⇒ EH
′
⩽ EH .

• При H ⩽ H ′ ⩽ G : |H : H ′| = [EH : EH
′
].

• ∀σ ∈ G : σ
(
EH

)
= EσHσ

−1

.

• EH/F — расширение Галуа ⇐⇒ H P G. В этом случае Gal(EH/F ) ∼= G/H.
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Доказательство.

• Gal(E/EH) = H — следствие из леммы Артина (следствие 2.4.3).

• EGal(E/K) = K согласно теореме о характеризации расширений Галуа (теорема 2.4.3). E/K
— расширение Галуа согласно ей же (точнее, (следствие 2.5.1)).

• Монотонность по включению очевидна.

• По лемме Артина ∀H ′ ⩽ H ⩽ G : |H : H ′| = |H|
|H′| =

[E:EH ]
[E:EH′ ]

=
[
EH

′
: EH

]
.

• Запишем цепочку равносильностей α ∈ EH ⇐⇒ ∀h ∈ H : h(α) = α ⇐⇒ ∀h ∈ H :

σhσ−1(σα) = σα ⇐⇒ σα ∈ EσHσ−1

.

• H P G ⇐⇒ ∀σ ∈ G : σHσ−1 = H ⇐⇒ ∀σ ∈ G : σ(EH) = EH . Рассмотрим гомоморфизм
θ : G→ Aut(EH/F ), σ 7→ σ

∣∣
EH . Очевидно, Ker(θ) = H. Покажем, что θ сюръективно. Пусть

η ∈ Aut(EH/F ), покажем, что η ∈ Im(θ).

Расширение E/F нормально, значит, ∃f ∈ F [t] : E = Ff . Тогда и подавно (EH)f = E. Так
как E = (EH)f ∼= η(EH)f , то по теореме о количестве вложений ∃ хотя бы одно вложение
E → E над η (то есть продолжение η, как отображения полей). Итого θ сюръективно.

Тем самым, Aut(EH/F ) ∼= G/H. Теперь заметим, что F = EG = (EH)G/H ⇒ EH/F —
расширение Галуа, и Gal(EH/F ) ∼= G/H.

Обратно: пусть EH/F нормально, α ∈ EH — корень некоторого многочлена f ∈ F [t]. Тогда
∀σ ∈ G : σ(α) — корень f , то есть σ(EH) = EH . С другой стороны, σ(EH) = EσHσ

−1

, и так
как соответствие Галуа биективно, то ∀σ ∈ G : σHσ−1 = H, то есть H P G.

Теперь можно нарисовать некоторые картинки:

Q
[√

2,
√
3
]

Q
[√

2
]

Q
[√

3
]

Q

C2 C2

C2⊕C2

C2 C2

Qx3−2

Q
[√
−3

]
Q
[

3
√
2
]

Q

C3 C2

S3

C2 не Галуа

Здесь одно поле находится над другим, если верхнее — расширение нижнего. Их обычно соединяют
просто чертой, а не стрелкой, и на черте написана группа Галуа расширения.

Лекция XIII
20 мая 2024 г.

Определение 2.5.1 (Решётка). Частично упорядоченное множество, в котором есть все конечные
инфимумы (наибольший элемент, меньший данных) и супремумы (наименьший элемент, больший
данных).

Соответствие Галуа устанавливает антиизоморфизм решёток подгрупп и подполей, где порядок
индуцирован с включения.

Пусть K и L — подполя большого поля E. Наименьшее подполе в E, содержащее и K, и L,
обозначают K · L.

Предложение 2.5.1. Пусть E/F — расширение Галуа, G := Gal(E/F ). Выберем подгруппы
P,Q ⩽ G, и соответствующие им поля K := EP , L := EQ, и рассмотрим следующую башню
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полей:
E

K · L = EP∩Q

K = EP L = EQ

K ∩ L = E⟨P∪Q⟩

F

Если K/(K ∩ L) нормально, то и (K · L)/L нормально, причём Gal(K · L/L) ∼= Gal(K/K ∩ L).

Доказательство. Так как K/K ∩ L нормально, то P P ⟨P ∪Q⟩. Тем самым, ⟨P ∪Q⟩ = PQ
def
=

{pq | p ∈ P, q ∈ Q}, и P ∩Q P Q, откуда из соответствия Галуа K · L/L нормально.

Согласно теореме Нётер об изоморфизме

Gal(K · L/L) ∼=
Q

Q ∩ P
∼=
PQ

P
∼= Gal(K/K ∩ L)

Пусть f ∈ F [t] — сепарабельный.

Определение 2.5.2 (Группа Галуа многочлена f). Gal(f/F )
def
= Gal(Ff/F ). Если поле F не ука-

зано, то логично в качестве него брать наименьшее поле, содержащее коэффициенты многочлена.
В частности характеристике нуль выбирается F := Q (коэффициенты многочлена f).

Пусть имеется расширение E/F , и f ∈ F [t] ⊂ E[t]. Из определения видно, что Ef = E · Ff , так
как Ff содержит все корни f , а Ef порождено ими над E.

Таким образом, имеет место башня полей

Ef

Ff E

E ∩ Ff

F

Согласно (предложение 2.5.1), Gal(Ef/E) ∼= Gal(Ff/E ∩ Ff ) ⩽ Gal(Ff/F ).

2.6 Применения теории Галуа

2.6.1 Разрешимые группы и субнормальные ряды

Определение 2.6.1 (Разрешимая группа G). Такая группа G, что существует субнормальный ряд
с абелевыми факторами 1 = G0 P G1 . . . P Gn = G (факторы ряда — факторгруппы Gi+1/Gi).

Лемма 2.6.1. Группа разрешима ⇐⇒ существует нормальный ряд с абелевыми факторами,
то есть ряд 1 = G0 P G1 . . . P Gn, где все Gi P G.

Доказательство.

⇐. Очевидно.

⇒. Согласно посылке, у группы G есть субнормальный ряд с абелевыми факторами 1 = G0 P
G1 P . . . P Gn = G. Построим ряд по алгоритму G̃i−1 :=

[
G̃i, G̃i

]
.
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Лемма 2.6.2. Если H P G, то [H,H] P G.

Доказательство леммы.

На образующих: ∀h1, h2 ∈ H : [h1, h2]
g = [ hg 1, h

g
2] ∈ [H,H].

Согласно лемме, это будет нормальный ряд с абелевыми факторами.

Теперь убедимся, что [Gi+1, Gi+1] ⩽ Gi. Профакторизуем обе части предполагаемого выклю-
чения по Gi. Слева будет [Gi+1, Gi+1]/Gi = [Gi+1/Gi, Gi+1/Gi] = {1}, так как фактор абелев.
Тем самым, включение выполнено.

По индукции легко видеть, что G̃i ⩽ Gi, откуда нормальный ряд G̃n Q G̃n−1 Q . . . обрывается
на шаге с номером не больше n.

Определение 2.6.2 (Композиционный ряд). Неуплотняемый субнормальный ряд без повторений.
Неуплотняемость означает, что любой фактор — простая (без нормальных подгрупп) группа.

В самом деле, если H P Gi+1/Gi, то π
−1
Gi

(H) можно вставить в ряд между Gi и Gi+1.

Лемма 2.6.3. Любые два композиционных ряда эквивалентны. Любые два субнормальных ряда
обладают эквивалентными уплотнениями. Факторы композиционного ряда изоморфны цик-
лическим группам простого порядка.

Доказательство. Аналогично теореме Жордана — Гёльдера.

2.6.2 Основная теорема алгебры

Лемма 2.6.4. Пусть |G| = pn. Тогда ∃H ⩽ G : |G : H| = p.

Доказательство. Пусть n ⩾ 1. Центр C ⩽ G p-группы нетривиален, значит, πC(G) = G/C имеет
порядок строго меньше pn. По индукции в ней есть подгруппа H̃ ⩽ G/C индекса p, тогда |G :
π−1
C (H)| = p.

Теорема 2.6.1 (FTHA, основная теорема алгебры). C = R
[√
−1

]
алгебраически замкнуто.

Доказательство. Рассмотрим конечное расширение E/C, тогда расширение E/R тоже конечно.
Вложим его в нормальное расширение E′/R (в расширение Галуа).

G := Gal(E′/R), пусть |G| = 2k · m, где m нечётно. Пусть P — силовская 2-подгруппа в G:
|G : P | = m. Так как [E′ : R] = 2k ·m и

[
E′ : E′P ] = |P | = 2k, то

[
E′P : R

]
= m.

Рассмотрим α ∈ E′P , пусть f ∈ R[t] — минимальный многочлен α. Тогда [R[α] : R] = deg f | m,
откуда deg f нечётна. Но f неприводим над R, а он нечётной степени. Используя соображения
полноты R и непрерывности ( lim

x→−∞
f(x) = −∞ и lim

x→+∞
f(x) = +∞), получаем, что у f есть

корень. Значит, deg f = 1, то есть α ∈ R. Тем самым, E′P = R, соответствие Галуа говорит, что
P = G.

Gal(E′/C) ⩽ Gal(E′/R), откуда Gal(E′/C) — тоже 2-группа. Согласно (лемма 2.6.4), найдётся
H ⩽ Gal(E′/C) индекса 2.

Тогда [E′H : C] = 2, но у C нет расширений степени 2 — любой квадратный многочлен над C
разложим в C на линейные множители. Тем самым, Gal(E′/C) тривиальна, откуда E′ = C, и
получается, что у C нет никаких конечных расширений.

Лекция XIV
21 мая 2024 г.
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2.6.3 Теорема Абеля — Руффини о разрешимости в радикалах

Теорема Дирихле о независимости характеров. Группа Галуа, как базис End(E/F )

Теорема 2.6.2 (Дирихле, о линейной независимости характеров). Пусть H — группа, E — поле, и
σ1, . . . , σn : H → E∗ — различные групповые гомоморфизмы. Утверждается, что σ1, . . . , σn линейно
независимы над E в пространстве всех функций H → E.

Доказательство. Предположим наличие линейной зависимости:

∀h ∈ H :

n∑
i=1

αiσi(h) = 0, где αi ∈ E (7)

Выберем самую короткую такую (с наименьшим n), в ней в частности все αi ̸= 0.

Пусть g ∈ H таков, что σn(g) ̸= σn−1(g). Запишем
n∑
i=1

αiσi(g)σi(h) = 0

n∑
i=1

αiσn(g)σi(h) = 0

где первое получено подстановкой h← gh в (7), а второе — домножением (7) на σn(g). Вычитая,
получаем линейную зависимость меньшей длины:

n∑
i=1

αi(σi(g)− σn(g))σi(h) = 0

При этом зависимость нетривиальна, так как αn−1(σn−1(g)− σn(g)) ̸= 0.

Часто эту теорему применяют для H = E∗, σi ∈ Gal(E/F ): пусть E/F — расширение Галуа, пусть

n := [E : F ], {σ1, . . . , σn} = Gal(E/F ) ⩽ End(E/F )
def
= EndF (E).

Тогда dimE(⟨GalF (E)⟩) = n — по теореме Дирихле (теорема 2.6.2) все эндоморфизмы вида
n∑
i=1

αiσi

различны. С другой стороны, dimF (EndF (E)) = n2, так как dimF (E) = n, откуда ⟨GalF (E)⟩ =
EndF (E), то есть σ1, . . . , σn — E-базис пространства EndF (E).

Первообразный корень и круговой многочлен

Расширение называется тем же словом, что и его группа — так, бывают, абелевы, циклические,
разрешимые расширения, и тому подобное.

Определение 2.6.3 (ε ∈ F — первообразный корень n-й степени из 1).

{
εn = 1

εk ̸= 1, 0 < k < n
.

Если в поле есть первообразный корень степени n, то p := charF ̸ | n: если n = pm, то 0 =
εpm − 1 = (εm − 1)p, откуда ε — не первообразный.

Несложно видеть, что εk = εm ⇐⇒ k ≡ m (mod n), откуда ε0, ε, . . . , εn−1 — корни n-й степени
из единицы, и многочлен tn − 1 раскладывается на линейные множители. Обозначим множество
корней этого многочлена µn(F ).

Лемма 2.6.5. Пусть E/F — расширение полей, и в базовом поле F есть первообразный корень
степени n из 1. Следующие условия эквивалентны.

1. E = F [α], где αn ∈ F , и αk /∈ F при 0 < k < n.

2. E/F — циклическое расширение Галуа (то есть Gal(E/F ) ∼= Cn).

Доказательство.
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(1)⇒ (2) Многочлен f(t) = tn−αn ∈ F [t] имеет n различных корней
{
αεk | 0 ⩽ k < n

}
, откуда E = Ff

для сепарабельного f , то есть E/F — расширение Галуа.

– Устроим отображение θ : Gal(E/F )→ E∗, σ 7→ σ(α)
α . Так как

(
σ(α)
α

)n
= σ(α)n

αn = σ(αn)
αn =

αn

αn = 1, то Im θ ⊂ µn(F ).

– Проверим, что это гомоморфизм групп.

θ(τσ) =
τσ(α)

α
=
σ(τ(α))

τ(α)
· τ(α)
α

=

Так как τ(α) — корень f , то τ(α) = εmα для некоторого m ∈ N. Сокращая на εm ∈ F ,
получаем

=
σ(α)

α
· τ(α)
α

= θ(σ)θ(τ) = θ(τ)θ(σ)

– Проверим сюръективность. Любая собственная подгруппа µn имеет вид µk, где k | n,
и если ∃k ∈ N : ∀σ ∈ Gal(E/F ) : σ(α)k

αk = 1, то ∀σ ∈ Gal(E/F ) : σ(αk) = αk, то есть
αk ∈ F . Получаем, что k ⩾ n.

– С одной стороны, |Gal(E/F )| ⩾ n из сюръективности, с другой стороны, [E : F ] ⩽ n,
откуда |Gal(E/F )| = [E : F ] = n, и из количественных соображений θ — изоморфизм.

(2)⇒ (1) Пусть σ — образующая группы Галуа (Gal(E/F ) = {1, σ, . . . , σn−1}). По теореме Дирих-

ле (теорема 2.6.2),
n−1∑
k=0

εkσk ̸= 0, тем самым, ∃β ∈ E : α :=
n−1∑
k=0

εkσ(β)k ̸= 0.

– Посчитаем

σ(α) =

n−1∑
k=0

εkσ(β)k+1 =

n∑
i=1

εi−1σ(β)i = ε−1α

Тем самым, σ(αk) = σ(α)k = (ε−1α)k = ε−kαk. В частности, αn неподвижен под дей-
ствием Gal(E/F ), и αn ∈ F .

– Покажем линейную независимость 1, α, . . . , αn−1 над F , из количественных соображе-

ний будет следовать, что это базис E над F . Пусть
n−1∑
k=0

αkxk = 0 для неких xk ∈ F .

Применяя σj к данному равенству, получаем
n−1∑
k=0

ε−kjαkxk = 0. При j = 0, . . . , n−1 полу-

чаются n линейных уравнений с переменными αkxk. Матрица коэффициентов системы
(ε−kj)k=0..n−1

j=0..n−1 невырождена, так как её определитель — определитель Вандермонда —
не нуль.

Лемма 2.6.6. Пусть E := F [ε], где ε — первообразный корень степени n. Тогда E/F — расши-
рение Галуа, и Gal(E/F ) ↪→ (Z/nZ)∗ (в частности, расширение E/F абелево).

Доказательство. Так как µn = ⟨ε⟩, то tn − 1, раскладывается на линейные множители в F [ε],
то есть F [ε] = Ftn−1. Всякий элемент σ ∈ Gal(E/F ) однозначно определён значением σ(ε) (так
как E = F [ε]), при этом так как σ оставляет F на месте, то σ(ε) — тоже первообразный корень
степени n из 1.

Устроим π : Gal(E/F ) ↪→ Z/nZ, сопоставляя элементу σ ∈ Gal(E/F ) такой показатель k ∈ Z/nZ,
что σ(ε) = εk. Инъективность σ очевидна: σ(ε) = τ(ε)⇒ σ = τ . Очевидно, это гомоморфизм моно-
идов, и так как образ обратимых элементов обратим, то π : Gal(E/F )→ (Z/nZ)∗ — гомоморфизм
групп.

Определение 2.6.4 (Круговой многочлен степени n). Φn(t)
def
=

∏
ε
(t − ε), где ε пробегает все

первообразные корни степени n из 1 по одному разу.
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Так как любой корень степени n из 1 — первообразный степени k | n, то
∏
k | n

Φk(t) =
∏
εn=1

(t− ε) =

tn − 1.

Интересный факт. Для любого поля с первообразным корнем степени n из единицы Φn ∈ Z[t] ⩽
Q[t], и там он неприводим, степени ϕ(n) (где ϕ — euler totient function).

Теорема Абеля — Руффини

Пусть f ∈ F [t] — ненулевой многочлен.

Определение 2.6.5 (Уравнение f = 0 разрешимо в радикалах). Все корни f (лежащие в алгеб-
раическом замыкании F ) выражаются через элементы F при помощи арифметических операций и
извлечений корня. Иными словами, существуют цепочка полей F = F0 ↪→ F1 ↪→ · · · ↪→ Fm, где в
Fm многочлен f раскладывается на линейные множители, и Fi = Fi−1[αi], где β := αki ∈ Fi−1. В
таком случае ещё пишут Fi = Fi−1

[
m
√
βi
]
.

Теорема 2.6.3 (Абель — Руффини). Пусть F поле, charF = 0; ненулевой f ∈ F [t]. Следующие
условия эквивалентны:

1. Уравнение f = 0 разрешимо в радикалах.

2. Gal(Ff/F ) разрешима.

Доказательство.

⇐. Сначала присоединим к F первообразный корень из 1 достаточно большой степени — по-
дойдёт первообразный корень ε степени (deg f)!. Положим F1 := F [ε]. Иными словами,
F1 := Ft(deg f)!−1. Это расширение Галуа, так как charF = 0.

В силу рассуждения после (определение 2.5.2), Gal(f/F1) ⩽ Gal(f/F ), поэтому G := Gal(f/F1)
тоже разрешима. По определению у неё существует субнормальный ряд, и так как G конеч-
на, то его можно уплотнить до композиционного {1} = Gm P Gm−1 P . . . P G1 = G.
Факторгруппы Gi/Gi+1 — простые абелевы группы, то есть циклические, простого порядка.
Положим Fi := ((F1)f )

Gi .

Согласно (лемма 2.6.5), Fi имеет вид Fi−1[αi], что по определению означает разрешимость в
радикалах.

⇒. По условию существует башня полей F ↪→ F1 ↪→ · · · ↪→ Fm, где f раскладывается на ли-
нейные множители в Fm, и Fi = Fi−1[αi], где α

ki
i ∈ Fi−1. Для применения (лемма 2.6.5)

недостаёт первообразного корня.

Добавим его: Fm+1 := (Fm)tk−1, где k := k1 · . . . · km. Далее хотим получить, что Gal(f/F )
разрешима. Понятно, что Ff ⊂ Fm, поэтому достаточно доказать, что Aut(Fm/F ) разреши-
ма, или даже Aut(Fm+1/F ) разрешима — факторгруппа разрешимой группы разрешима. В
доказательстве будет использоваться соответствие Галуа, для этого дополним Fm+1/F до
нормального: пусть E/F нормально, и Fm+1 ⊂ E (например, E — поле разложения мини-
мального многочлена, аннулирующего все элементы ε, α1, . . . , αm).

Пусть Gal(E/F ) = {σ1, . . . , σn}. Поле Ẽ = F [ε, σi(αj)] ⊂ E тоже нормально над F , так как
оно устойчиво под действием Gal(E/F ). А для этого поля есть хорошая цепочка (порождаю-
щие присоединяются по одному, все образы αj+1 добавляются после всех образов αj):

F ⊂ F [ε] ⊂ F [σ1(α1)] ⊂ F [σ1(α1), σ2(α1)] ⊂ · · · ⊂ Ẽ

Все промежуточные расширения абелевы (первое вкладывается в (Z/nZ)∗ согласно (лем-
ма 2.6.6), остальные циклические согласно (лемма 2.6.5)). Соответствие Галуа говорит, что
этой башне полей соответствует субнормальный ряд группы Gal(Ẽ/F ) с абелевыми факто-
рами, то есть Gal(Ẽ/F ) разрешима. Её факторгруппа Gal(Ff/F ) тоже разрешима.
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