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Глава 1

Комплексный анализ

Лекция I
16 февраля 2024 г.

Пусть f : G→ C, где открытое G ⊂ C.

Определение 1.0.1 (f голоморфна в z0 ∈ G). ∃ lim
z→z0

f(z)−f(z0)
z−z0

def
= f ′(z0).

Во втором семестре мы проверяли, что f = u + iv (где u, v : G → R) голоморфна в z0 ⇐⇒ f =
f(x+ iy) дифференцируема в вещественном смысле, и выполняются уравнения Коши — Римана:

∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂x

Определение 1.0.2 (f аналитична в G). ∀z0 ∈ G : ∃cj ∈ C:

f(z) =

∞∑
j=0

cj(z − z0)
j (∗)

где ряд сходится не только при z = z0.

Теорема 1.0.1. f аналитична в G ⇐⇒ f голоморфна во всех точках G.

Доказательство.

⇒. Доказали во втором семестре, несложно.

⇐. Скоро займёмся, время пришло.

Степенные ряды типа (∗) можно дифференцировать почленно: f ′(z) =
∞∑
j=1

jcj(z− z0)
j−1. В частно-

сти, отсюда получается, что f ′(z0) = c1, и вообще f (n)(z0) = j! · cj .

Вскоре мы увидим, что ситуация разительно отличается от вещественной: в вещественном случае
были разные классы — дифференцируемые функции, C1, C∞, аналитичные, и множество проме-
жуточных классов.

В комплексном же случае, если функция хотя бы один раз дифференцируема, то окажется, что
этого достаточно, чтобы она была не просто дифференцируема, а непрерывно дифференцируема,
бесконечно дифференцируема, и даже аналитична.
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1.1 Интеграл от дифференциальной формы вдоль кусочно-гладкого
пути

1.1.1 Про дифференциальные формы

Определение 1.1.1 (Линейная функция l : Rn → C). ∀α, β ∈ R, x, y ∈ Rn : l(αx+ βy) = αl(x) + βl(y).

Определение 1.1.2 (Дифференциальная 1-форма на множестве G ⊂ Rn). Функция двух перемен-
ных ϕ : G× Rn → C, линейная по второму аргументу.

В пространстве Rn имеется базис (ej): h = e1h1 + · · ·+ enhn.

Тем самым, ϕ(x, h) =
n∑
j=1

ϕ(x, ej)︸ ︷︷ ︸
=:gj(x)

hj =
n∑
j=1

gj(x)hj .

Введём базисные линейные формы dxj(u, h) = hj , игнорирующую первую координату, и возвра-

щающая j-ю компоненту второго аргумента. Теперь ϕ(x, h) разложилась в сумму
n∑
j=1

gj dxj .

Пример. Пусть f : G → C — дифференцируемая в G функция. Заметим, что её дифференциал
df (x, _) — в точности дифференциальная 1-форма на G.

При разложении по базису получится df (x, _) =
n∑
j=1

∂f
∂xj

(x) dxj .

Вскоре мы увидим, что далеко не всякая дифференциальная форма является чьим-то дифференци-
алом.

Если ϕ =
n∑
j=1

gj dxj — дифференциал функции f , то непременно gj =
∂f
∂xj

.

Тот факт, что ϕ является дифференциалом f , можно сказать наоборот: f является первообразной
ϕ.

1.1.2 Про интегрирование

Рассмотрим монотонную функцию Φ : ⟨a, b⟩ → R. Как и при определении стилтьесовой длины,
будем считать, что Φ определена на некотором открытом множестве, содержащем ⟨a, b⟩. Обозначим
за lΦ стилтьесову длину, отвечающую функции Φ.

Пускай λΦ — продолжение стилтьесовой длины lΦ по Лебегу — Каратеодори.

Она, как водится, определена на некоторой Σ-алгебре, в которой есть борелевские множества, но
измеримы могут быть и какие-то другие множества, зависящие от конкретной функции Φ.

Примеры.

• Так, функция ϕ(x) =

{
0, x < 0

1, x ⩾ 0
порождает дельта-меру δ0, относительно которой все мно-

жества измеримы.

Кроме того, эта мера сингулярна относительно стандартной меры Лебега.

• Может показаться, что так происходит из-за разрывности ϕ, но это не так.
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Рекурсивно определим канторову лестницу C : [0, 1] → [0, 1]:

x

y

0 1/3 2/3 1

1/2

1

Построив по данной функции стилтьесову длину λC , мы получим меру, сосредоточенную на
канторовом множестве меры нуль.

Её носитель — само канторово множество, так как на всех отрезках вне канторова множества
λC равна нулю. Она сингулярна относительно стандартной меры Лебега на R, и её измеримые
множества разительно отличаются от измеримых множеств меры Лебега.

По мере Стилтьеса можно интегрировать: если v является λΦ измеримой, и обладает интегралом
(скажем, измерима по Борелю и неотрицательна), то определён интеграл

∫
⟨a,b⟩

v dλΦ Иногда пишут

просто
∫

⟨a,b⟩
v dΦ — это интеграл Лебега — Стилтьеса.

Теперь пусть I = [a, b], и Ψ : [a, b] → R — функция ограниченной вариации. В таком случае Ψ =

Φ1 −Φ2, где некие Φ1,Φ2 возрастают. Можно определить знакопеременную меру λΨ
def
= λΦ1

−λΦ2
,

понятно, что определение корректно.

1.1.3 Интеграл от дифференциальной формы вдоль пути

Пускай γ : [a, b] → G ⊂ Rn — спрямляемый путь (путь конечной длины). Пускай U =
n∑
j=1

uj dxj

— дифференциальная форма в области G. Если не сказано противное, будем считать, что uj —
непрерывные функции.

Определение 1.1.3 (Интеграл от U вдоль пути γ).
∫
γ

U
def
=

n∑
j=1

∫
[a,b]

uj(γ(t)) dγj(t).

Здесь γ = (γ1, . . . , γn). Так как путь спрямляем, то все γj — ограниченной вариации, каждая
порождает свою меру Стилтьеса, и определение интегрирует композицию U ◦ γ по данной мере.

1.1.4 Сумма путей

Пускай имеются два отрезка [a, c] и [c, d], и на них заданы пути γ1 : [a, c] → G, γ2 : [c, d] → G.
Предположим, что γ1(c) = γ2(c).

Тогда можно устроить путь γ = γ1 ⊕ γ2 : [a, d] → G, γ(t)
def
=

{
γ1(t), t ∈ [a, c]

γ2(t), t ∈ [c, d]
.

Замечание. Интеграл аддитивен по множеству, поэтому:
∫

γ1⊕γ2
U =

∫
γ1

U +
∫
γ2

U .

1.1.5 Альтернативное определение

Далее мы не интересуемся никакими чудесами вроде канторовых лестниц, и считаем, что Φ такова,
что λΦ абсолютно непрерывна относительно стандартной меры Лебега.
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А раз так, то по теореме Радона — Никодима ∃ суммируемая w : [a, b] → R, такая, что

λΦ(e) =

∫
e

w(x) dx (+)

Факт 1.1.1. Формула (+) заведомо верна, если Φ непрерывно дифференцируема на [a, b], тогда
w = Φ′.

Доказательство. Введём меру ν(e) =
∫
e

Φ′(x) dx, заданную на измеримых по Лебегу множествах.

Φ′ непрерывна, и, следовательно, измерима.

Если ⟨c, d⟩ ⊂ [a, b], то ν(⟨c, d⟩) =
∫

⟨c,d⟩
Φ′(x) dx = Φ(d)− Φ(c) = lΦ(⟨c, d⟩).

Таким образом, из теоремы единственности, продолжение lΦ по Лебегу — Каратеодори совпадает
с
∫
e

Φ′(x) dx.

Замечание. Утверждение (факт 1.1.1) сохраняет силу, если Φ непрерывна и кусочно-непрерывно
дифференцируема.

Пускай теперь Φ : [a, b] → R — функция ограниченной вариации, кусочно-непрерывно дифферен-
цируемая: ∃a = a0 < a1 < · · · < ak = b, такие, что Φ непрерывно дифференцируема на [as, as+1]
при 0 ⩽ s < k. Введём ρ(e) =

∫
e

Φ′(x) dx — это знакопеременная вещественная мера.

У данной меры возникают (из разложения Хана) положительная и отрицательная части ρ+(e)
def
=∫

e

(Φ′)+(x) dx и ρ−(e)
def
=
∫
e

(Φ′)−(x) dx

Если обозначить за Φ+(t) =
t∫
0

(Φ′)+(x) dx и Φ−(t) =
t∫
0

(Φ′)−(x) dx, то окажется, что соответствую-

щие меры Стилтьеса совпадают с ρ+ и ρ−.

Более того, Φ = Φ+−Φ− — получили разложение функции ограниченной вариации в положитель-
ную и отрицательную части.

Замечание. Это разложение экономнее, чем то, которое было получено ранее — ранее в качестве
Φ+ выбиралась вариация Φ.

Если всё, что написано выше, собрать вместе, то получится∫
[s,t]

v dΦ =

∫
[s,t]

v(x)Φ′(x) dx

Далее «гладкий» используется, как синоним к непрерывно-дифференцируемому.

Следствие 1.1.1 (Можно считать определением). Если U =
n∑
j=1

uj dxj — дифференциальная фор-

ма в G с непрерывными коэффициентами, а γ = (γ1, . . . , γn) : [a, b] → G — спрямляемый
кусочно-гладкий путь, то ∫

γ

U =

n∑
j=1

b∫
a

uj(γ(t))γ
′
j(t) dt

1.1.6 (Не)зависимость от параметризации

Пускай γ : [a, b] → G — кусочно-гладкий путь, ψ : [c, d] → [a, b] — гладкий гомеоморфизм.

Теперь γ̃ = γ ◦ ψ — перепараметризация γ.
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Лемма 1.1.1. Для всякой формы U : ∫
γ̃

U = ±
∫
γ

U

Знак „+“ выбирается, если ψ возрастает, и „− “ — если убывает.

Доказательство. Предположим, что γ — гладкий путь, иначе применяем к кусочкам гладкости
по отдельности.∫̃
γ

U =
n∑
j=1

d∫
c

uj(γ(ψ(t)))γ
′
j(ψ(t)) · ψ′(t) dt =

∥∥∥∥ τ = ψ(t)
dτ = ψ′(t) dt

∥∥∥∥ =
n∑
j=1

ψ(d)∫
ψ(c)

uj(γ(τ))γ
′
j(τ) dτ = ±

∫
γ

U

Про ψ также можно считать, что он не гладкий, а лишь кусочно-гладкий.

Тем самым, можно определить сумму путей для несоприкасающихся отрезков: для двух путей γ1 :
[a, b] → G, γ2 : [c, d] → G (при условии γ1(b) = γ2(c)) можно один их отрезков-прообразов линейным
возрастающим преобразованием перевести в отрезок, соприкасающийся со вторым (например, t 7→
t+ (b− c)).

Также есть понятие обратного пути γ−(t) = γ(a+ b− t). Для любой формы U :∫
γ⊕γ−

U =

∫
γ

U +

∫
γ−

U =

∫
γ

U −
∫
γ

U = 0

1.2 Условия существования первообразной у дифференциаль-
ной формы

Теорема 1.2.1. Если у дифференциальной формы U в открытом множестве G ⊂ Rn имеется
первообразная F , то для всякого кусочно-гладкого пути γ : [a, b] → G∫

γ

U = F (γ(b))− F (γ(a))

Доказательство. U =
n∑
j=1

gj dxj , где gj(w) = ∂
∂xj

F (w). Считаем, что путь гладкий.

∫
γ

U =

n∑
j=1

b∫
a

∂

∂xj
F (γ(t))γ′j(t) dt =

b∫
a

d

dt
(F ◦ γ)(t) dt = F (γ(b))− F (γ(a))

Если же путь всего лишь кусочно-гладкий, то надо разбить отрезок на подотрезки гладкости, и
сложить.

Следствие 1.2.1. Если у дифференциальной формы U есть первообразная, то её интегралы по
всем путям с данными началом и концом, равны.

Оказывается, верно и обратное.

Лекция II
26 февраля 2024 г.

Лемма 1.2.1. Пусть G — область в Rn, тогда любые две её точки можно соединить ломаной
(кусочно-линейным путём).
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Доказательство. Выберем x0 ∈ G, положим U = {y ∈ G | существует ломаная в G с началом в x0 и концом в y}.

Покажем, что U открыто. Пусть y ∈ U , тогда найдётся шарик Bε(y) ⊂ G, и Bε(y) ⊂ U — можно
добавить одно звено к ломаной x0 ⇝ y.

Покажем, что U замкнуто. Пусть z ∈ G — предельная точка для U . Найдётся Bε(z) ⊂ G, так как
z — предельная, то ∃y ∈ Bε(z) ∩ U . Значит, z ∈ U — можно добавить одно звено y → z.

Замечание. Имея кусочно-линейный путь γ : [a, b] → G, соединяющий A,B ∈ G, несложно полу-
чить бесконечно дифференцируемый путь, соединяющий их:

Пусть γ1 : [a− 1, b+1] → G, γ1(t) =


γ(a), t ∈ [a− 1, a]

γ(t), t ∈ [a, b]

γ(b), t ∈ [b, b+ 1]

. Теперь, сворачивая γ1 с аппроксиматив-

ной единицей с достаточно малым компактным носителем, получим бесконечно дифференцируемый
путь, соединяющий A и B.

Теорема 1.2.2. Пусть Φ =
n∑
j=1

fj(x) dxj — непрерывная дифференциальная форма в G (то есть

коэффициенты непрерывны в G). Следующие условия эквивалентны.

1. У Φ есть первообразная F , то есть функция F ∈ C1(G) : dF = Φ (иными словами, ∀j :
∂
∂xj

F = fj).

2. Для всех кусочно-гладких путей γ с фиксированными началом и концом γ(a) = γa, γ(b) = γb:∫
γ

Φ не зависит от γ (а только от начала и конца).

3. Для любой кусочно-гладкой петли (то есть замкнутого пути) γ в G:
∫
γ

Φ = 0.

Доказательство. Мы уже доказали ранее цепочку импликаций (1) ⇒ (3) ⇒ (2). Далее доказыва-
ем (2) ⇒ (1).

Предъявим кандидат в первообразную. Зафиксируем x0 ∈ G, выберем x ∈ G, пусть γ — произ-

вольный кусочно-гладкий путь с началом в x0 и концом в x. Определим F (x)
def
=
∫
γ

Φ. Согласно

посылке, F корректно определена — не зависит от выбора пути.

Покажем, что частные производные F существуют, и равны fj . Тогда они получатся непрерывными,
то есть F — дифференцируемой, и окажется, что F — первообразная Φ.

Пусть e1, . . . , en — стандартные базисные орты в Rn. Рассмотрим F (x+tej)−F (x)
t .

При малых t: отрезок между x и x+ tej лежит внутри G. Пусть γ1 — путь, соединяющий x0 и x,
l — отрезок от x до x+ tej .

F (x+ tej)− F (x)

t
=

1

t

 ∫
γ1⊕l

Φ−
∫
γ1

Φ

 =
1

t

∫
l

Φ =
1

t

t∫
0

fj(x+ τej) dτ −→
t→0

fj(x)

Определение 1.2.1 (Прямоугольник на плоскости). Множество вида [a, b]× [c, d] ⊂ R2.

Область G на плоскости будем называть удобной, если ∃x0 ∈ G : ∀y ∈ G : ∃ прямоугольник P ⊂ G,
содержащий точки x и y.

Примеры (Удобные области).

• IntQ, если Q — прямоугольник. В качестве центра x0 подойдёт любая точка.
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• Br(x0) =
{
x ∈ R2 | |x− x0| < r

}
. В качестве центра x0 стоит взять центр круга, иначе не

получится:

Определение 1.2.2 (Ориентированная граница прямоугольника P ). Петля γ, обходящая границу
P = [a, b]× [c, d] против часовой стрелки, то есть вот так:

(a, c)

(a, d)

(b, c)

(b, d)

γ1

γ2

γ3

γ4

γ = γ1 ⊕ γ2 ⊕ γ3 ⊕ γ4.

Для прямоугольника P будем обозначать за ∂P в зависимости от контекста либо границу P , как
топологического подмножества R2, либо путь, обходящий границу P против часовой стрелки.

Следствие 1.2.2 (Дополнение к (теорема 1.2.2)). Если G — удобная область на плоскости, то
к трём эквивалентным условиям (теорема 1.2.2) можно добавить

4. ∀P ⊂ G :
∫
∂P

Φ = 0.

Доказательство. (3) ⇒ (4) ясно, докажем (4) ⇒ (1).

Пусть x0 ∈ G — центр удобной области, определим F (x) =
∫
δ

Φ, где δ — это либо δ1 := γ1 ⊕ γ2

либо δ2 := γ−4 ⊕ γ−3 (вне зависимости от выбора δ получится одно и то же).

x0

x

γ1

γ2

γ−3

γ−4

Далее, чтобы проверить ∂
∂x1

F = f1 и ∂
∂x2

F = f2, воспользуемся подходящим представлением:
пусть орты расположены так:

x1

x2

тогда для проверки ∂
∂x1

F = f1 удобно воспользоваться определением F через δ1, для проверки
∂
∂x2

F = f2 — определением через δ2. Далее повторяем рассуждение из (теорема 1.2.2).

Пусть Φ =
n∑
j=1

fj(x) dxj — непрерывная дифференциальная форма в области G ⊂ Rn.

Определение 1.2.3 (Форма Φ точна). Существует первообразная F в G : dF = Φ.

Определение 1.2.4 (Форма Φ замкнута). Форма Φ локально точна (∀x0 ∈ G : ∃U ∋ x0: Φ
∣∣
U
точна).

Понятно, что точная форма замкнута, но точность из замкнутости не следует: чуть позднее мы
определим dz, и покажем, что dz

z — замкнутая, но не точная форма на C \ {0}.

Теорема 1.2.3. Пусть Φ — дифференциальная форма в области G ⊂ Rn. Следующие условия
эквивалентны:
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1. Φ замкнута.

2. ∀x0 ∈ G : ∃V ∋ x0 : ∀ кусочно-гладкого замкнутого пути γ с носителем в V :
∫
γ

Φ = 0.

Если n = 2, то дополнительно появляются ещё два условия:

3. ∀z ∈ G : ∃Vz
∋z

⊂ G : ∀P ⊂ Vz :
∫
∂P

Φ = 0.

4. ∀P ⊂ G :
∫
∂P

Φ = 0.

Доказательство. Докажем, что (3) ⇒ (4), остальное уже доказано выше.

Заметим, что границу прямоугольника P можно представить, как сумму границ четырёх прямо-
угольников вдвое меньшего диаметра:

Таким образом, чтобы доказать, что интеграл по границе большого прямоугольника P нулевой,
разобьём его на достаточно маленькие прямоугольники, по ним-то интеграл нуль. Чтобы это фор-
мализовать, вспомним лемму Лебега о покрытии:

Теорема 1.2.4 (Лемма Лебега). Пусть K — компакт в метрическом пространстве, {Uj}j∈J —
открытое покрытие компакта K. Тогда ∃δ > 0 : ∀A ⊂ K : diamA < δ ⇒ ∃j ∈ J : A ⊂ Uj .

Применяя лемму Лебега для покрытия P окрестностями {Vz}z∈P , получим такое число δ. Теперь
надо разбить границу прямоугольника P в сумму границ прямоугольников диаметра меньше δ, а
посылка теоремы говорит, что интеграл по ним уже нуль.

1.2.1 Операторы ∂
∂z
и ∂

∂z

Как известно, C = {x+ iy | x, y ∈ R}, то есть ∀z ∈ C : z = x+ iy, аналогично z = x− iy.

Рассмотрим z и z, как функции R2 → C, (x, y) 7→ x ± iy. Теперь dz = dx + idy и dz = dx −
i dy образуют базис в пространстве дифференциальных форм (тех, которые не зависят от точки),
обратное преобразование выглядит так: {

dx = dz+dz
2

dy = dz−dz
2i

Рассмотрим форму Φ : R2 → C,Φ(x, y) = α(x, y) dx+ β(x, y) dy. Перепишем её в новом базисе:

Φ(x, y) =
α(x, y)

2
(dz + dz) +

β(x, y)

2i
(dz − dz) =

α(x, y)− iβ(x, y)

2
dz +

α(x, y) + iβ(x, y)

2
dz

Теперь пусть Φ — точная форма, то есть Φ = dF , и тогда α(x, y) = ∂
∂xF (x, y) и β(x, y) =

∂
∂yF (x, y).

Теперь

dF =
1

2

(
∂F

∂x
− i

∂F

∂y

)
dz +

1

2

(
∂F

∂x
+ i

∂F

∂y

)
dz

Определение 1.2.5 (∂F∂z ). Коэффициент, стоящий перед dz, то есть 1
2

(
∂F
∂x − i∂F∂y

)
.

Определение 1.2.6 (∂F∂z ). Коэффициент, стоящий перед dz, то есть 1
2

(
∂F
∂x + i∂F∂y

)
.
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Иначе говоря, мы ввели операторы ∂
∂z

def
= 1

2

(
∂
∂x − i ∂∂y

)
и ∂
∂z

def
= 1

2

(
∂
∂x + i ∂∂y

)
так, что

dF =
∂

∂z
F dz +

∂

∂z
F dz

1.2.2 Связь с голоморфными функциями

Пусть F = u+ iv, где u, v : R2 → R. Запишем

∂F

∂z
=

1

2

(
∂u

∂x
+ i

∂v

∂x
+ i

(
∂u

∂y
+ i

∂v

∂y

))
=

1

2

((
∂u

∂x
− ∂v

∂y

)
+ i

(
∂v

∂x
+
∂u

∂y

))
В правой части равенства получились выражения из уравнений Коши — Римана.

Факт 1.2.1. Вещественные функции u, v удовлетворяют уравнениям Коши — Римана ⇐⇒
∂(u+iv)
∂z ≡ 0.

Факт 1.2.2. F голоморфна ⇐⇒ dF = ∂F
∂z dz. При этом ∂F

∂z есть производная F по комплекс-
ному аргументу.

Доказательство. Функция дифференцируема по комплексному аргументу ⇐⇒ её дифференциал
— умножение на комплексное число.

В основном нас будут интересовать дифференциальные формы вида ϕ(z) dz, где ϕ — произвольная
функция.

Выясним, когда у формы ϕ(z) dz = ϕ(z) dx + iϕ(z) dy имеется первообразная, то есть функция
g : ∂g∂x = ϕ, ∂g∂y = iϕ. Заметим, что ∂g

∂z = 1
2 (ϕ− i(iϕ)) = ϕ и ∂g

∂z = 1
2 (ϕ+ i(iϕ)) = 0.

Утверждение 1.2.1. Форма ϕdz имеет первообразную g ⇐⇒ g голоморфна, и g′ = ϕ.

Теорема 1.2.5 (Коши). Если g : G → C — голоморфная функция (область G ⊂ C), то форма
g(z) dz замкнута (но не факт, что точна).

Доказательство. Потом (теорема 1.2.8).

Контрпример (Глобально первообразной может не быть). Пусть G = C \ {0}, g : G→ C, g : z 7→ 1
z .

По теореме Коши у g имеется локальная первообразная — комплексный логарифм — но глобально
определить не получится. Пусть Γ = ∂T — комплексная окружность, ориентируем её против
часовой стрелки, а именно, рассмотрим стандартный обход окружности α : [0, 2π] → C, α : ϕ 7→ eiϕ.
Теперь убедимся, что форма не точна:

∫
α

ϕ =

∫
α

dz

z
=

2π∫
0

(
eit
)′

eit
dt =

2π∫
0

idt = 2πi ̸= 0

Для будущих применений также определим ориентированную против часовой стрелки границу
Br(z0), это путь β(t) = z0 + reit для t ∈ [0, 2π].

Пример. Пусть z0, w ∈ C, r ∈ R>0, |w − z0| ̸= r, пусть путь γ обходит границу Br(z0) против
часовой стрелки:

z0 w

γ
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Тогда, оказывается, (посчитаем чуть позже):∫
γ

dz

z − w
=

{
0, |z − w| > r

2πi, |z − w| < r
(◦)

Грубой силой этот интеграл посчитать непросто, так как w находится где угодно — внутри или
снаружи круга — а интеграл, оказывается, зависит только от этих двух альтернатив.

Теорема 1.2.6 (Основная оценка интеграла вдоль пути). Пускай Φ =
n∑
j=1

fj dxj — непрерывная

дифференциальная форма в области G ⊂ Rn, а γ : [a, b] → G — кусочно-гладкий путь, K :=
Im(γ) ⊂ G.

Тогда

∣∣∣∣∣∫γ Φ

∣∣∣∣∣ ⩽ sup
x∈K

 n∑
j=1

|fj(x)|2
1/2

︸ ︷︷ ︸
=:A

·l(γ).

Доказательство. Считаем, что γ — гладкий путь, иначе нужно разбить на кусочки гладкости.∣∣∣∣∣∣
∫
γ

Φ

∣∣∣∣∣∣ =
∣∣∣∣∣∣
b∫
a

n∑
j=1

fj (γ(t)) γ
′
j(t) dt

∣∣∣∣∣∣ ⩽КБШ
b∫
a

 n∑
j=1

|fj(γ(t))|2
1/2

·

 n∑
j=1

|γ′j(t)|2
1/2

dt ⩽

⩽ A ·
b∫
a

 n∑
j=1

|γ′j(t)|2
1/2

dt

︸ ︷︷ ︸
l(γ)

Лекция III
1 марта 2024 г.

Рассмотрим дифференциальную форму Φ = F (z) dz, где F — непрерывная функция в G ⊂ C.
Пусть γ : [a, b] → G — плоский путь.

Расписав Φ(z) = F (z) dx+ iF (z) dy и применив основную оценку интеграла вдоль пути, получаем∣∣∣∣∣∣
∫
γ

Φ

∣∣∣∣∣∣ ⩽ max
z∈K

√
|F (z)|2 + |F (z)|2 · l(γ) =

√
2max
z∈K

|F (z)| · l(γ)

Эта оценка вызывает некоторую неудовлетворённость: кажется, что
√
2 здесь лишний. И это дей-

ствительно правда: можно расписать интеграл аккуратнее.

Пусть γ = γ1 + iγ2, тогда по определению∫
γ

Φ =

b∫
a

F (γ(t)) · γ′1(t) + iF (γ(t)) · γ′2(t) dt =
b∫
a

F (γ(t)) · γ′(t) dt

Таким образом, интеграл от комплексной формы вдоль пути имеет более простое представление, и
оно легко поддаётся более плотной оценке:∣∣∣∣∣∣

∫
γ

Φ

∣∣∣∣∣∣ ⩽
b∫
a

|F (γ(t))| · |γ′(t)|dt ⩽ max
z∈K

|F (z)|
b∫
a

|γ′(t)|dt

︸ ︷︷ ︸
l(γ)
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Посчитаем анонсированный на предыдущей лекции интеграл (◦). Пусть z0, w ∈ C, r > 0.

• Сначала рассмотрим случай |w− z0| < r. Заметим, что, согласно основной оценке интеграла,
если коэффициенты равномерно стремятся к какому-то значению и интегралы ограничены,
то предельный интеграл тоже сходится.

Запись ниже
∫

|z−z0|=r
, и вообще все аналогичные записи, которые встретятся в дальнейшем,

по умолчанию означают, что граница соответствующего множества (в данном случае — кру-
га) обходится стандартным образом, то есть против часовой стрелки.∫

|z−z0|=r

dz

z − z0 − (w − z0)
=

∫
|z−z0|=r

1

z − z0

1

1− w−z0
z−z0

dz =

=

∫
|z−z0|=r

1

z − z0

(
1 +

w − z0
z − z0

+

(
w − z0
z − z0

)2

+ . . .

)
dz =

На слагаемые из ряда имеется равномерная по z оценка:
∣∣∣w−z0
z−z0

∣∣∣ ⩽ |w−z0|
r < 1, и по теореме

Вейерштрасса функциональный ряд сходится. Значит, сумму можно вынести из-под интегра-
ла

=

∫
|z−z0|=r

1

z − z0
dz +

∞∑
j=1

∫
|z−z0|=r

(w − z0)
j

(z − z0)j+1
dz =

Первое слагаемое мы умеем брать, а у каждого слагаемого из остальной суммы имеется

первообразная: 1
(z−z0)j+1 = − 1

j

(
1

(z−z0)j

)′

=

∫
|z−z0|=r

1

z − z0
dz =

2π∫
0

rieit

reit
dt = 2πi

• Теперь разберёмся со случаем |w − z0| > r.∫
|z−z0|=r

dz

z − z0 − (w − z0)
= − 1

w − z0

∫
|z−z0|=r

dz

1− z−z0
w−z0

= − 1

w − z0

∞∑
j=0

∫
|z−z0|=r

(z − z0)
j

(w − z0)j
dz

Аналогично предыдущему случаю, ряд сходится абсолютно, поэтому сумму опять можно
вынести из под интеграла, и в данном случае всё ещё проще: каждое слагаемое имеет пер-
вообразную, там нет отрицательных степеней z, поэтому вся сумма обращается в нуль.

Пусть Φ = f1 dx1 + · · · + fn dxn — непрерывная дифференциальная форма в некоторой области
G ⊂ Rn.

Теорема 1.2.7. Если все функции fj ∈ C1, то следующие условия эквивалентны:

• Φ замкнута.

• ∀1 ⩽ i, j ⩽ n : ∂fi∂xj
=

∂fj
∂xi

— «накрест взятые частные производные равны».

Доказательство.

⇒ Выберем x ∈ G, так как форма замкнута, то ∃U ∋ x : Φ имеет первообразную F : U → R.
Тем самым, fi = ∂F

∂xi
, и так как fi ∈ C1, то действительно ∂fj

∂xi
= ∂2F

∂xi∂xj
= ∂2F

∂xj∂xi
= ∂fi

∂xj
.

⇐ Сначала приведём доказательство случая n = 2. В таком случае Φ = f dx+ g dy.

Согласно посылке, h := ∂f
∂y = ∂g

∂x . Кстати, равенство слева равносильно одному из уравнений
Коши — Римана.
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Рассмотрим произвольный P = [a, b]× [c, d] ⊂ G, и докажем, что
∫
∂P

Φ = 0.

(a, c)

(a, d)

(b, c)

(b, d)

γ1

γ2

γ3

γ4

То, что мы увидим сейчас, является первым заходом на формулу Остроградского — Гаусса.
Функция h непрерывна, и можно записать от неё интеграл Лебега:

∫
P

h(x, y) dxdy. Теперь,

применяя теорему Фубини, раскладываем двумя способами интеграл в сумму повторных:

∫
P

h(x, y) dxdy =


=

b∫
a

(
d∫
c

∂f
∂y dy

)
dx =

b∫
a

[f(x, d)− f(x, c)] dx =
∫
γ−
3

f(_, d) dx+
∫
γ−
1

f(_, c) dx

=
d∫
c

(
b∫
a

∂g
∂x dx

)
dy =

d∫
c

[g(b, y)− g(a, y)] dy =
∫
γ2

g(b, _) dy +
∫
γ4

g(a, _) dy

Итого,
∫
γ−
3

f(_, d) dx+
∫
γ−
1

f(_, c) dx =
∫
γ2

g(b, _) dy +
∫
γ4

g(a, _) dy, откуда действительно
∫
γ

Φ = 0.

⇐ Теперь приведём альтернативное доказательство индукцией по n.

База: Случай n = 1 тривиален: теорема Ньютона — Лейбница говорит, что у непрерывной
функции есть первообразная.

Переход: Пусть n > 1, и для n − 1 теорема доказана. Рассмотрим a = (a1, . . . , an) ∈ G,
и возьмём прямоугольный параллелепипед P со сторонами, параллельными осям координат
такой, что a ∈ IntP . Докажем, что на P у Φ есть первообразная.

Построим g(x1, . . . , xn) :=
x1∫
a1

f1(t, x2, . . . , xn) dt. Обозначим ϕj := ∂g
∂xj

. Заметим, что ϕ1 =

∂g
∂x1

= f1.

Теперь рассмотрим форму Ψ(x1, . . . , xn) = ϕ1 dx1 + · · · + ϕn dxn. Эта форма имеет первооб-
разную g на параллелепипеде P .

Теперь посмотрим на Φ − Ψ =: h1 dx1 + · · · + hn dxn. По построению h1 = 0. По условию
накрест взятые частные производные равны у Φ, и они равны у Ψ, так как у неё есть
первообразная. Значит, это же верно и для разности, в частности, ∂hi

∂x1
= ∂h1

∂xi
= 0. Иными

словами, ∀i : hi не зависит от x1.

А раз так, то на Φ − Ψ можно смотреть, как на форму (n − 1)-й переменной, и применить
индукционное предположение.

Замечание. Тут есть некоторый обман: производные ∂ϕi

∂xj
могут просто не существовать.

Попробуем обойти его так: пусть β ∈ C∞, с компактным носителем. Выберем аппроксима-
тивную единицу βt(x) = 1

tn β
(
x
t

)
.

Назначим f
(t)
k = fk ∗ βt, f (t)k ⇒

t→0
fk.

Далее, согласно рассуждению выше, у формы Φ(t) коэффициенты h
(t)
k не зависят от x1. А раз

коэффициенты Φ равномерно стремятся к hk, то и они не зависят от x1.

Чтобы это увидеть, заключим окрестность точки a в большой параллелепипед Q, а внутри
него выберем параллелепипед поменьше P . На Q коэффициенты Φ ограничены. При доста-
точно малых t, таких, что при вычислении коэффициентов Φ(t) не происходит выхода за Q,
коэффициенты формы Φ(t) равномерно по P стремятся к Φ.

14



1.2.3 Эквивалентность голоморфности и аналитичности

Теорема 1.2.8 (Коши). Пусть F — голоморфная функция в открытом множестве G ⊂ C. Тогда
дифференциальная форма F (z) dz замкнута, то есть локально ∃S : S′(z) = F (z).

Замечание. Теорема совсем проста, если заранее предположить, что F ′(z) непрерывна (а так в
итоге и должно получиться, так как F — аналитична). В таком случае имеется следующее более
простое доказательство.

Доказательство. Поскольку F (z) dz = F (z) dx + iF (z) dy, утверждение эквивалентно (согласно
(теорема 1.2.7)) тому, что ∀z ∈ C : ∂F

∂y (z) = i∂F∂x (z). Пусть F (x + iy) = u(x, y) + iv(x, y) для
вещественных x, y и вещественнозначных u, v. И правда,

∂u

∂y
+ i

∂v

∂y

?
= i

(
∂u

∂x
+ i

∂v

∂x

)
то есть ∂u

∂y = − ∂v
∂x и ∂v

∂y = ∂u
∂x — это в точности уравнения Коши — Римана.

Теперь докажем теорему Коши вне предположения непрерывности производной.

Доказательство. Докажем от противного: пусть форма F (z) dz не замкнута, ∃P0 ⊂ G : α :=∫
∂P0

F (z) dz ̸= 0.

Будем потихонечку делить этот прямоугольник на четыре равные части: пусть P0 = Q1∪Q2∪Q3∪
Q4.

Q1 Q2

Q3 Q4

Модуль интеграла по границе по крайней мере одного из Qi хотя бы
|α|
4 . Назовём этот прямоуголь-

ник P1, и продолжим процесс. Получим систему вложенных замкнутых прямоугольников P0 ⊃

P1 ⊃ . . . , таких, что

∣∣∣∣∣ ∫∂Pk

F (z) dz

∣∣∣∣∣ ⩾ |α|
4k
. При этом l(∂Pk) = 2−kl(∂P0), и diam(Pk) = 2−k diam(P0).

Имеется ровно одна точка z0 в пересечении
⋂
k⩾0

Pk. Воспользуемся условием того, что F голоморф-

на в точке z0: F (z) = F (z0) + F ′(z0)(z − z0) + ψ(z)︸︷︷︸
o(|z−z0|)

Зафиксируем ε > 0. ∃δ > 0 : |z − z0| < δ ⇒ |ψ(z)| ⩽ ε|z − z0|. Пусть k настолько велико, что
diamPk < δ. ∫

∂Pk

F (z) dz =

∫
∂Pk

[F (z0) + F ′(z0)(z − z0)] dz +

∫
∂Pk

ψ(z) dz

Первый интеграл обнуляется, так как это линейная функция по z, у неё есть первообразная.
Оценивая второй интеграл, получаем

|α|
4k
⩽

∣∣∣∣∣∣
∫
∂Pk

ψ(z) dz

∣∣∣∣∣∣ ⩽ εdiamPk · l(∂P0) = ε · 2−k diamP0 · 2−kl(∂P0) = 4−kε · diamP0 · l(∂P0)

Выбирая довольно маленький ε, получаем, что |α| меньше любого положительного числа.

Теорема 1.2.9 (Об устранимой особенности замкнутой дифференциальной формы). Пускай Φ =
f dx+ g dy — непрерывная дифференциальная форма в области G ⊂ C.

Если z0 ∈ G, и Φ замкнута в G \ {z0}, то Φ замкнута в G.
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Доказательство. Докажем, что ∀P ⊂ G :
∫
∂P

Φ = 0. Рассмотрим случаи.

• Если z0 /∈ P , то интеграл нуль по условию.

• Если z0 ∈ IntP , то данный случай сводится к следующему: разобьём прямоугольник на два
так, чтобы z0 оказалось на границе:

z0

• Если z0 ∈ ∂P , то отступим на ε, интеграл по границе Pε будет нулём:
∫
∂Pε

Φ = 0.

Pε z0

ε

Заметим, что
∫
∂Pε

Φ −→
ε→0

∫
∂P

Φ, так как коэффициенты дифференциальной формы равномерно

непрерывны в некоторой окрестности P (интегралы по сторонам Pε стремятся к интегралам
по соответствующим сторонам P ). Значит,

∫
∂P

Φ = 0.

Теорема 1.2.10 (Малая интегральная формула Коши). Пусть f — голоморфна в области G, B =
B(z0, r) — круг, B ⊂ G. Тогда ∀z ∈ B:

f(z) =
1

2πi

∫
∂B

f(ζ)

ζ − z
dζ

Доказательство. Докажем для некоего фиксированного z ∈ B.

Рассмотрим функцию g(ζ) = f(z)−f(ζ)
z−ζ . g голоморфна в области G \ {z}. Тем самым, g(ζ) dζ —

замкнутая форма в G \ {z}, а по теореме об устранимой особенности g(ζ) dζ замкнута в G (до-
определим по непрерывности g(z) := f ′(z)).

Но так как круг — удобная область, то у g имеется первообразная в некотором круге B(z0, r(1+ε))

(где ε > 0 настолько мал, что B(z0, r(1 + ε)) ⊂ G). Тем самым,
∫

|ζ−z0|=r

f(z)−f(ζ)
z−ζ dζ = 0, откуда

∫
|ζ−z0|=r

f(ζ)

ζ − z
dζ =

∫
|ζ−z0|=r

f(z)

ζ − z
dζ = f(z) ·

∫
|ζ−z0|=r

1

ζ − z
dζ = 2πi · f(z)

Следствие 1.2.3 (Теорема Коши). Если f голоморфна в области G ⊂ C, то ∀z0 ∈ G функция f

(в некоторой окрестности) раскладывается в некоторый степенной ряд f(z) =
∞∑
n=0

cn(z−z0)n,

причём радиус сходимости хотя бы dist(z0, ∂G).

Доказательство. Пусть r ∈ (0,dist(z0, ∂G)). Рассмотрим B = Br(z0). Так как B ⊂ G, то для
точки z ∈ B получаем

f(z) =
1

2πi

∫
|ζ−z0|=r

f(ζ)

ζ − z
dζ =

1

2πi

∫
|ζ−z0|=r

f(ζ)

(ζ − z0)− (z − z0)
dζ =

=
1

2πi

∫
|ζ−z0|=r

1

ζ − z0
· 1

1− z−z0
ζ−z0

f(ζ) dζ =
1

2πi

∞∑
j=0

(z − z0)
j

∫
|ζ−z0|=r

f(ζ)

(ζ − z0)j+1
dζ
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Абсолютная равномерная сходимость в круге радиус r при r < dist(z0, ∂G) имеется по тем же
причинам, что и при доказательстве (◦).

Таким образом, мы получили степенной ряд, и так как коэффициенты степенного ряда, раз опре-

делены, не зависят от радиуса круга (cj = f(j)(z0)
j! ), то радиус сходимости данного ряда хотя бы

dist(z0, ∂G).

Лекция IV
12 марта 2024 г.

Замечание. Интегральную форму Коши можно спокойно дифференцировать: так,

d

dz
f(z) =

d

dz

 1

2πi

∫
|ζ−z0|=r

f(ζ)

ζ − z
dζ

 =
1

2πi

∫
|ζ−z0|=r

f(ζ)

(ζ − z)2
dζ

В общем случае

dk

dzk
f(z) =

dk

dzk

 1

2πi

∫
|ζ−z0|=r

f(ζ)

ζ − z
dζ

 =
k!

2πi

∫
|ζ−z0|=r

f(ζ)

(ζ − z)k+1
dζ

Определение 1.2.7 (Целая (entire) функция). Голоморфная функция, заданная в C.

Выберем z0 = 0. Согласно (следствие 1.2.3), получаем f(z) =
∞∑
j=0

cjz
j (ряд Маклорена), где cj =

1
2πi

∫
|ζ|=r

f(ζ)
ζj+1 dζ, причём имеется абсолютная сходимость везде в C.

Теорема 1.2.11. Если f целая, и |f(z)| = O(zN ) при |z| −→
z→∞

∞, то f — многочлен степени не

более N .

Доказательство. Из определения O : ∃C, a ∈ R : |f(z)| ⩽ C|z|N при |z| > a.

Выберем r > a, и оценим: |cj | =
∣∣∣∣ 1
2πi

2π∫
0

f(reiθ)
(reiθ)j+1 ire

iθ dθ

∣∣∣∣ ⩽ 1
2π

2π∫
0

CrN

rj dθ = CrN

rj . Получается, при

j > N : |cj | меньше любого наперёд заданного положительного числа.

Следствие 1.2.4 (Теорема Лиувилля). Ограниченная целая функция постоянна.

Следствие 1.2.5 (Основная теорема алгебры). ∀p ∈ C[z] : deg p > 0 ⇒ ∃z0 ∈ C : p(z0) = 0.

Доказательство. Пусть p(z) =
N∑
j=0

cjz
j , где N > 0 и cN ̸= 0.

Пойдём от противного: пусть ∀z ∈ C : p(z) ̸= 0.

Рассмотрим f(z) := 1
p(z) .

• С одной стороны, это целая функция: d
dz f(z) = − p′(z)

p(z)2 .

• С другой стороны, f ограничена: оценим |p(z)| ⩾ |zN |

(
|cN | −

N−1∑
j=0

|cj |
|z|N−j

)
, откуда для доста-

точно больших |z| : |p(z)| ⩾ |cN |
2 |z|N .

Тем самым, p(z) −→
|z|→∞

∞, то есть f(z) −→
|z|→∞

0. А при малых |z| : f ограничена, как непре-

рывная функция на компакте.
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• Тем самым, по теореме Лиувилля, f ≡ const, то есть p ≡ const. Противоречие, мы предпола-
гали deg p > 0.

Теорема 1.2.12 (Теорема о среднем). Пусть z0 ∈ G, f : G → C голоморфна в G. Выберем r <
dist(z0, ∂G). Тогда

f(z0) =
1

2π

2π∫
0

f(z0 + reit) dt

Доказательство. Посчитаем f(z0) по интегральной формуле:

f(z0) =
1

2πi

∫
|ζ−z0|=r

f(ζ)

ζ − z0
dζ =

1

2πi

2π∫
0

f(z0 + reit)ireit

reit
dt =

1

2π

2π∫
0

f(z0 + reit) dt

Это действительно среднее в обычном смысле: f проинтегрирована по окружности по мере Лебега,
и интеграл поделили на меру окружности.

Теорема 1.2.13 (Принцип максимума модуля). Пусть f : G → C — непостоянная голоморфная
функция. Тогда |f | : z 7→ |f(z)| не может достигать наибольшего значения при z ∈ G.

Доказательство. Пойдём от противного: пусть ∃z0 ∈ G : ∀z ∈ G : |f(z)| ⩽ |f(z0)|. Выберем
r > 0 : B(z0, r) ⊂ G, и докажем, что |f | постоянна в B(z0, r). Пусть ρ < r, по теореме о среднем

|f(z0)| = 1
2π

∣∣∣∣2π∫
0

f(z0 + ρeit) dt

∣∣∣∣ ⩽ 1
2π

2π∫
0

|f(z0 + ρeit)|︸ ︷︷ ︸
⩽|f(z0)|

dt, причём равенство достигается только если

∀t ∈ [0, 2π] : |f(z0+ρeit)| = |f(z0)| (если ∃t0 ∈ (0, 2π) : |f(z0+ρeit0 | < |f(z0)|), то по непрерывности
∃ε > 0 : ∀t ∈ (t0−ε, t0+ε) : |f(z0+ρeit| < |f(z0)|−ε, то есть на промежутке (t0−ε, t0+ε) интеграл
строго меньше требуемого значения).

Лемма 1.2.2. Пусть f : G → C голоморфна, и ∃z0 ∈ G : f ′(z0) ̸= 0. Тогда ∃U ∋ z0 :
f(z0) ∈ Int f(U).

Доказательство леммы.

Теорема об обратной функции.

Тем самым, ∀z ∈ B(z0, r) : f
′(z) = 0 (так как |f(z)| — максимум).

Далее применяем теорему единственности, доказанную во II семестре: f и константа, равная |f(z0)|
совпадают на множестве с предельной точкой, значит, они совпадают везде в G.

Следствие 1.2.6. Пусть G — ограниченная область, f : G→ C голоморфна в G. Тогда ∀z ∈ G :
|f(z)| ⩽ max

ζ∈∂G
|f(ζ)|.

Доказательство. f достигает своё наибольшее значение на компакте G, но согласно принципу
максимума, это значение достигается не внутри G.
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1.2.4 Гармонические функции

Запишем теорему о среднем для f : G→ C:

f(z0) =
1

2π

2π∫
0

f(z0 + reit) dt

Пусть f = u+ iv, где u, v — вещественные функции в G. Теорема о среднем говорит, что

u(z0) =
1

2π

2π∫
0

u(z0 + reit) dt v(z0) =
1

2π

2π∫
0

v(z0 + reit) dt

Так как f аналитична, то в вещественном смысле u, v ∈ C∞(G).

Запишем уравнения Коши — Римана:

∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂x

Дифференцируя второй раз, получаем {
∂2u
∂x2 = ∂2v

∂x∂y
∂2u
∂y2 = − ∂2v

∂x∂y

Это так называемое уравнение Лапласа: ∂
2u
∂x2 + ∂2u

∂y2 = 0.

Обобщим. Пусть G ⊂ Rn — область, пусть f : G→ R, f ∈ C2(G).

Определение 1.2.8 (f — гармоническая функция в G). ∂2u
∂x2

1
+ · · ·+ ∂2u

∂x2
n
= 0.

Оператор ∆ = ∂2

∂x2
1
+ · · · + ∂2

∂x2
n
называется оператором Лапласа, и понятно, что гармонические

функции — в точности такие u, что ∆u = 0.

Утверждение 1.2.2. Если гармоническая функция u : G → R, u ∈ C2(G), где область G ⊂ R2,
то локально существует голоморфная f : u = ℜf . Иными словами, ∀z0 ∈ G : ∃U ∋ z0,∃
аналитическая f : U → C : u = ℜf .

Доказательство. Положим ϕ := ∂u
∂x , ψ := −∂u

∂y . Тогда
∂ϕ
∂x − ∂ψ

∂y = 0, то есть ∂ϕ
∂x = ∂ψ

∂y везде в G.

Раз накрест взятые частные производные совпадают, то дифференциальная форма ϕ dy + ψ dx
замкнута, значит, локально имеется первообразная.

Зафиксируем точку z0 ∈ G, имеется некоторый шарик B ∋ z0, в котором есть первообразная v:

∂v

∂x
= ψ = −∂u

∂y

∂v

∂y
= ϕ =

∂u

∂x

Это уравнения Коши — Римана, значит, f := u+ iv голоморфна в B.

Теорема 1.2.14 (Морера). Пусть f : (G ⊂ C) → C непрерывна. Следующие условия эквивалентны.

1. f голоморфна в G.

2. f аналитична в G.

3. Дифференциальная форма f(z) dz замкнута.

Доказательство. (1) ⇐⇒ (2) уже доказано: (теорема 1.0.1) и (следствие 1.2.3).

(1) ⇒ (3) доказано тоже: (теорема 1.2.5).
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Докажем (3) ⇒ (2). Пусть F — первообразная формы f(z) dz в круге D := B(z0, r) ⊂ G. F
голоморфна в B(z0, r), и ∀z ∈ D : F ′(z) = f(z).

Значит, F раскладывается в степенной ряд F (z) =
∞∑
j=0

aj(z−z0)j . Отсюда f(z) =
∞∑
j=1

jaj(z − z0)
j−1.

1.3 Первообразная от замкнутой формы вдоль непрерывного
пути

1.3.1 Наводящие предположения

Пусть f dx + g dy — непрерывная дифференциальная форма в G, предположим, что она точная:
имеется первообразная F .

Пусть γ : [a, b] → G — кусочно-гладкий путь. Ранее было получено, что
∫
γ

f dx+ g dy = F (γ(b))−

F (γ(a)).

Давайте обобщим интеграл вдоль пути: пусть γ : [a, b] → G — произвольный непрерывный путь.

Положим по определению
∫
γ

f dx+ g dy
def
= F (γ(b))− F (γ(a)).

Теперь пусть f dx + g dy всего лишь замкнута. Выберем a = t0 < t1 < · · · < tk = b так, что
∀j : γ([tj , tj+1]) лежит в области Gj , в которой у формы f dx + g dy есть первообразная Fj .
Попробуем определить ∫

γ
∣∣
[tj ,tj+1]

f dx+ g dy
def
= Fj(γ(tj+1))− Fj(γ(tj))

и ∫
γ

f dx+ g dy
def
=

k−1∑
j=0

Fj(γ(tj+1))− Fj(γ(tj))

Проблема в том, чтобы доказать, что определение корректно — не зависит от выбора разбиения
a = t0 < · · · < tk = b.

1.3.2 Требуемые свойства

Пусть Φ = f dx+ g dy — замкнутая форма в области G ⊂ C, и γ : [a, b] → G — путь.

Определение 1.3.1 (Первообразная формы Φ вдоль пути γ). Такая функция v : [a, b] → G:

• ∀t ∈ [a, b] : ∃U ∋ γ(t), ε > 0 и найдётся первообразная F для Φ на U , такая, что

∀τ ∈ (t− ε, t+ ε) : v(τ) = F (γ(τ))

Факт 1.3.1. Функция v, если существует, непрерывна на [a, b].

Доказательство. Непрерывность в какой-то конкретной точке следует из непрерывности компо-
зиции F ◦ γ.

Теорема 1.3.1. Первообразная замкнутой дифференциальной формы вдоль пути γ всегда суще-
ствует, и любые две отличаются на константу.

Доказательство. Сначала докажем существование. Для всех t ∈ [a, b] выберем окрестность Ut :=
B(γ(t), rt), где rt настолько мал, что в Ut есть первообразная.
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Семейство {Ut}t∈[a,b] образуют открытое покрытие γ([a, b]). По лемме Лебега ∃ε > 0 : ∀t ∈ [a, b] :
B(γ(t), ε) содержится в каком-то Ut′ . Применяя теорему Кантора о равномерной непрерывности,
получаем существование разбиения a = t0 < · · · < tk = b, такое, что γ([tj , tj+1]) лежит в одном из
Ut.

Произвольно выберем v(a). Построим v
∣∣
[tj ,tj+1]

индукцией по j.

База: Пусть γ([t0, t1]) ⊂ U0, и имеется первообразная F0 на U0. Определим v(τ) = F0(γ(τ)) при
τ ∈ [t0, t1].

Переход: Пусть γ([tj , tj+1]) ⊂ Uj , Fj — первообразная Φ на Uj . Найдётся такое δ > 0 : γ([tj −
δ, tj+1]) ⊂ Uj , значит, Uj ∩Uj−1 ̸= ∅. Это пересечение связно, на нём имеются две первообразные,
Fj−1 и Fj .

Добавим константу к Fj так, чтобы Fj ≡ Fj−1 при t ∈ [tj − δ, tj ], и определим v(τ) = Fj(γ(τ)) при
τ ∈ [tj , tj+1]. Окрестность Uj захватывает отрезок [tj − δ, tj+1], значит, для точек во внутренности
выполнено условие из определения первообразной.

Докажем единственность: рассмотрим точку t ∈ [a, b]. Найдутся два круга U, V ∋ γ(t), и перво-
образные F,H формы Φ в этих окрестностях, такие, что u(τ) = F (γ(τ)) и v(τ) = H(γ(τ)) при τ ,
достаточно близких к t.

Тем самым, u− v локально постоянна, но локально постоянная функция на связном множестве —
константа (прообраз любого элемента из образа открыто-замкнут).

Лекция V
15 марта 2024 г.

Теперь определим интеграл
∫
γ

Φ = v(b) − v(a), где v — первообразная для Φ вдоль пути γ, полу-

чившаяся из (теорема 1.3.1). Теперь интеграл определён для любой замкнутой формы вдоль пути
(однако для кусочно-гладкого пути интеграл (определение 1.1.3) был определён для необязательно
замкнутой формы).

Свойства (Свойства первообразной вдоль пути).

• Аддитивность по дифференциальной форме:
∫
γ

(Φ + Ψ) =
∫
γ

Φ+
∫
γ

Ψ.

• Аддитивность вдоль пути:
∫

γ1⊕γ2
Φ =

∫
γ1

Φ+
∫
γ2

Φ.

• Если γ — кусочно-гладкий путь, то определение совпадает со старым.

Доказательство. γ′ существует везде, кроме, может быть, конечного множества.

При помощи леммы Лебега разобьём отрезок точками a = t0 < · · · < tk = b так, что
∀j < k : ∃Uj ⊃ γ([tj , tj+1]) такая, что на Uj найдётся первообразная Hj :

∀τ ∈ [tj , tj+1] : F (τ) = Hj(γ(τ))

И старый, и новый интегралы аддитивны вдоль пути. Несложно видеть, что в обеих опреде-
лениях

∫
γ
∣∣
[tj ,tj+1]

Φ совпадают.

• Так как путь γ необязательно дифференцируем (а если даже и так, то необязательно спрям-
ляем), то основную оценку интеграла вдоль пути распространить на новое определение про-
блематично: длины может не существовать.

• Пусть ϕ : [a, b] → [c, d] — гомеоморфизм, γ : [a, b] → G — путь, тогда∫
γ

Φ = ±
∫
γ◦ϕ

Φ
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где знак зависит от того, возрастает ϕ, или убывает.

Причина. Если F — первообразная Φ вдоль пути γ, то F ◦ ϕ — первообразная для Φ вдоль
пути γ ◦ ϕ.

1.3.3 О гомотопности путей

Пусть K = [0, 1]× [a, b] — квадрат гомотопии.

Определение 1.3.2 (Гомотопия). Непрерывное отображение Γ : K → C.

Положим γs := Γ(s, _). Как водится, γ0, γ1 — два пути [a, b] → C, и существование Γ по определе-
нию влечёт гомотопность этих путей.

Пути γ0, γ1 : [a, b] → G гомотопны в G, если найдётся гомотопия Γ : K → G.

Будем говорить о гомотопности двух замкнутых путей γ1 и γ2 при условии существования гомо-
топии Γ : K → G, соединяющей γ1 и γ2 в классе замкнутых путей: ∀s ∈ [0, 1] : Γ(s, a) = Γ(s, b).

Гомотопность путей — отношение эквивалентности, так же как и гомотопность замкнутых путей.

Определение 1.3.3 (Односвязная область). Область, в которой всякий замкнутый путь гомотопен
постоянному. Иными словами, фундаментальная группа тривиальна.

Определение 1.3.4 (Звёздная область A ⊂ Rn). Такая область, что для некоторого центра z0 ∈ A:
∀z ∈ A : {z0 + s(z − z0) | s ∈ [0, 1]} ⊂ A.

z0

z

Факт 1.3.2. Всякая звёздная область A односвязна.

Доказательство. Прогомотопируем путь γ : [a, b] → A в постоянный при помощи

Γ : [0, 1]× [a, b] → K

τ, t 7→ z0τ + (1− τ)γ(t)

Пример (Неодносвязная область). Пусть A — звёздная область, выкинем точку w0 ∈ A.

w0

ω

Интеграл dz
z−w0

по маленькой окружности ω, обходящей w0, равен 2πi, значит, путь не стягиваем
(поскольку интеграл не ноль, см. теорема 1.3.3).
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Теорема 1.3.2 (Первообразная вдоль гомотопии). Пусть K = [0, 1]× [a, b] — «квадрат», Γ : K → G
— гомотопия, и Φ = f dx + g dy — замкнутая дифференциальная форма в G. Тогда ∃F : K → C
— первообразная формы Φ вдоль гомотопии Γ, то есть такая функция, что ∀(s, t) ∈ K : ∃U ∋
Γ(s, t) : U ⊂ G,∃δ > 0 : ∃H : U → C — первообразная формы Φ, такая, что{

|σ − s| < δ

|τ − t| < δ
⇒ F (σ, τ) = H(Γ(σ, τ))

Доказательство. Покроем множество Γ(K) кругами U ⊂ G, такими что в каждом круге U у Φ
есть первообразная HU .

По лемме Лебега и теореме Кантора ∃ρ > 0 : ∀e ⊂ K : diam(e) < ρ ⇒ e лежит в одном из кругов
данного покрытия.

Разобьём квадрат гомотопии K на прямоугольники диаметра меньше ρ:

. . .

Аналогично доказательству (теорема 1.2.2), в каждом горизонтальном прямоугольнике найдётся
первообразная Fj , а дальше их надо сшить. Сшить несложно: вдоль горизонтального отрезка —
пересечения прямоугольничков — Fj

∣∣
...

= Fj+1

∣∣
...
. Так как это — первообразные вдоль одного и

того же пути, то они отличаются на константу. Значит, можно изменить все Fj на константы так,
чтобы их склейка была непрерывной функцией.

Дальше надо проверить, что действительно получилась первообразная на квадрате. Выберем точку
(s, t) ∈ K. Если точка попала внутрь какого-то прямоугольничка, то можно выбрать окрестность,
лежащую внутри прямоугольничка, иначе чуть сложнее, но несильно.

Теорема 1.3.3. Интегралы от замкнутой формы Φ по гомотопным замкнутым путям равны.

Доказательство. Определим w(t) :=
∫
γt

Φ для всех t ∈ [0, 1].

Пусть F — первообразная для формы Φ вдоль гомотопии Γ. Понятно, что w(t) = F (t, b)− F (t, a).

Докажем, что w локально постоянна на [0, 1], следствием будет, что w постоянна, что и требуется
доказать.

∀(α, β) ∈ [0, 1]× [a, b]: ∃δ > 0, круг U и первообразная HU , такие, что{
|α− α′| < δ

|β − β′| < δ
⇒ F (α′, β′) = HU (Γ(α

′, β′))

Пусть U1, U2 — такие шары для (t, b) и (t, a) соответственно. Тогда для τ , достаточно близких к
t, выполнено w(t) = HU1(Γ(t, b))−HU2(Γ(t, a)). H1, H2 — две первообразные в одной окрестности,
они отличаются на константу, а Γ(t, a) ≡ Γ(t, b), поэтому w локально постоянна.

Замечание. Если очень хочется, то можно соединить пути γ0 : [a0, b0] → C и γ1 : [a1, b1] → C
гомотопией Γ : K → C, где K := {(t, s) | t ∈ [0, 1], s ∈ [at, bt]} (at, bt — какие-то непрерывные
функции от t, такие, что at < bt).

23



1.4 Ряды Лорана

Ряд Лорана f(z) — ряд вида f(z) =
∑
n∈Z

cn(z − z0)
n.

Говорят, что ряд Лорана сходится в точке z, если оба ряда f+(z) =
∑
n⩾0

cn(z − z0)
n и f−(z) =∑

n<0
cn(z − z0)

n сходятся.

Первый ряд степенной, имеется некий радиус сходимости r+, такой, что |z − z0| < r+ ⇒ f+
сходится. При замене переменной w := 1

z−z0 , f−(z0 + 1/w) становится степенным рядом от w,
сходящимся при w < 1

r−
.

Таким образом, ряд сходится абсолютно внутри «кольца» {z ∈ C | r− < |z − z0| < r+}:

r−

r+

Теорема 1.4.1. Пусть 0 ⩽ r− < r+ ⩽∞, функция f голоморфна в «кольце» K := {z ∈ C | r− < |z| < r+}.

Тогда f представима в K сходящимся рядом Лорана.

Доказательство. Пусть z ∈ K. Определим ϕz : K → C, ϕz(ζ) =

{
f(ζ)−f(z)

ζ−z , ζ ̸= z

f ′(z), ζ = z
.

Согласно (теорема 1.2.9), форма ϕz(ζ) dζ замкнута в K.

Выберем r,R ∈ R так, что r− < r < |z| < R < r+. Для ρ ∈ R определим γρ : [0, 2π] → K, γρ(t) := ρeit.
Пути γR и γr гомотопны, значит,

∫
γr

ϕz(ζ) dζ =
∫
γR

ϕz(ζ) dζ. А именно,

∫
γR

f(ζ)− f(z)

ζ − z
dζ =

∫
γr

f(ζ)− f(z)

ζ − z
dζ

Преобразовывая, получаем∫
γR

f(ζ)

ζ − z
dζ −

∫
γr

f(ζ)

ζ − z
dζ = f(z)

∫
γR

1

ζ − z
dζ

︸ ︷︷ ︸
2πi

−f(z)
∫
γr

1

ζ − z
dζ

︸ ︷︷ ︸
0

Тем самым, получили малую интегральную форму Коши для кольца:

f(z) =
1

2πi

∫
γR

f(ζ)

ζ − z
dζ −

∫
γr

f(ζ)

ζ − z
dζ


Осталось преобразовать дроби в ряды:∫
γR

f(ζ)

ζ − z
dζ =

∫
γR

f(ζ)

(ζ − z0)− (z − z0)
dζ =

∫
γR

1

ζ − z0

f(ζ)

1− z−z0
ζ−z0

dζ =

∞∑
j=0

∫
γR

f(ζ)

(ζ − z0)j+1
dζ · (z − z0)

j

∫
γr

f(ζ)

ζ − z
dζ =

∫
γr

f(ζ)

(ζ − z0)− (z − z0)
dζ = − 1

z − z0

∫
γr

f(ζ)

1− ζ−z0
z−z0

dζ = − 1

z − z0

∞∑
k=0

∫
γr

f(ζ)(ζ − z0)
k dζ · 1

(z − z0)k
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Сходимость степенная, имеется признак Вейерштрасса, можно поменять местами сумму и инте-
грал, поэтому все преобразования законны.

При замене j = −k − 1, второе выражение преобразуется в форму

−
−∞∑
j=−1

∫
γr

f(ζ)

(ζ − z0)j+1
dζ · (z − z0)

j

Теперь можно заметить, что интегралы вдоль γr и γR равны, так как особенностей у интегралов
— слагаемых в ряде — в кольце нет. Окончательно получаем

f(z) =
∑
j∈Z

cj(z − z0)
j , где cj =

∫
|z−z0|=ρ

f(ζ)

(ζ − z0)j+1
dζ для любого ρ ∈ (r−, r+)

Лекция VI
22 марта 2024 г.

Ряд Лорана g(z) =
∑
j∈Z

cj(z− z0)
j принято раскладывать на две части — регулярную

∑
j⩾0

cj(z− z0)
j

и главную
∑
j<0

cj(z − z0)
j .

Если ряд Лорана изучать в маленькой окрестности z0, то главная часть асимптотически больше.

1.5 Изолированные особенности голоморфных функций

Пусть область G ⊂ C, z0 ∈ G, f задана и аналитична в G \ {z0}. Тогда говорят, что f имеет
изолированную особенность в z0.

Возможны случаи:

1. f ограничена вблизи z0.

Точка z0 называется устранимой особенностью, так как в силу (теорема 1.5.1) ∃ lim
z→z0

f(z).

2. lim
z→z0

|f(z)| = ∞.

Точка z0 называется полюсом.

3. f не имеет предела в z0.

Точка z0 называется существенно особой точкой.

Теорема 1.5.1. В первом случае — f ограничена вблизи z0 — f единственным образом продол-
жается до аналитической функции в области G.

Доказательство. Выберем R > 0 такой, что B(z0, R) ⊂ G. f разложится в некоторый ряд Лорана
при 0 < |z − z0| < R.

Запишем cj = 1
2πi

2π∫
0

f(z0 + ρeit)(ρeit)−j−1 · ρieit dt и грубо оценим коэффициенты главной части

(j < 0). Пусть |f | ⩽ C внутри круга B(z0, R) для некоторой константы C.

|cj | ⩽
C

2π

2π∫
0

ρ−j dt = Cρ−j

Устремляя ρ → 0, получаем cj = 0. Тем самым, f раскладывается в ряд Тейлора в окрестности
z0.
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Запишем несколько другую классификацию особенностей точки, опирающуюся на ряд Лорана
f(z) =

∑
j∈Z

cj(z − z0)
j .

I При всяком j < 0: cj = 0.

II Множество A := {j < 0 | cj ̸= 0} конечно.

III Множество A := {j < 0 | cj ̸= 0} бесконечно.

Понятно, что I эквивалентно 1.

Теорема 1.5.2. На самом деле, II ⇐⇒ 2, III ⇐⇒ 3.

Доказательство.

II ⇒ 2 Пусть k = −minA.

f(z) =
c−k

(z − z0)k
+

c−k+1

(z − z0)k−1
· · ·+ c0 +

∑
j>0

cj(z − z0)
j =

=
1

(z − z0)k
(c−k + c−k+1(z − z0) + · · · ) = g(z)

(z − z0)k

При этом g(z0) ̸= 0 и g(z) аналитична. Тем самым, lim
z→z0

|f(z)| = ∞.

2 ⇒ II Положим h(z) := 1
f(z) в некоторой окрестности z0.

h аналитична при z ̸= z0, и lim
z→z0

h(z) = 0, значит, h имеет устранимую особенность в z0.

Пусть k — наименьший номер, такой, что bk ̸= 0, где bk — коэффициент из разложения h в
ряд Тейлора:

h(z) = bk(z−z0)k+bk+1(z−z0)k+1 · · ·+ · · · = (z−z0)k(bk+bk+1(z−z0)+ · · · ) = (z−z0)k ·u(z)

u аналитична вблизи z0, и u(z0) = bk ̸= 0.

f(z) =
1

(z − z0)k
1

u(z)
=

1

(z − z0)k
(c0 + c1(z − z0) + · · · )

Почленно деля, действительно получаем, что f(z) имеет конечное число ненулевых членов в
разложении в ряд Лорана.

Пусть z0 — полюс f , k := −min {j < 0 | cj ̸= 0}. Число k называется порядком полюса z0.

Если же g аналитична в z0, g(z0) = 0, g ̸≡ 0, то g(z) =
∑
j⩾0

aj(z−z0)j , положим l := min {j | aj ̸= 0}.

Число l — порядок нуля z0.

Факт 1.5.1. f имеет полюс порядка k в z0 ⇐⇒ 1
f имеет ноль порядка k в z0.

Интересный факт (Теорема Пикара). Пусть z0 — существенно особая точка аналитической функ-
ции f . Тогда ∀ε > 0 : f({z | 0 < |z − z0| < ε}) есть C, кроме, может быть, двух точек.

Мы докажем более простой вариант теоремы Пикара.

Теорема 1.5.3 (Сохоцкий). Пусть z0 — существенно особая точка аналитической функции f .
Тогда ∀ε > 0 : B := f({z | 0 < |z − z0| < ε}) плотно в C.

Доказательство. От противного: пусть ∃w0 /∈ B, то есть ∃δ > 0 : B(w0, δ) ∩ B = ∅.

Определим

h : B(z0, ε) \ {z0} → C

z 7→ 1

f(z)− w0
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Хотя h и имеет особенность при z = z0, но h ограничена (модуль знаменателя больше δ), то есть
особенность устранима. f(z) = 1

h(z) +w0, и так как h аналитична в z0, то особенность в z0 — то ли
тоже устранимая особенность, то ли полюс, но уж никак z0 — не существенно особая точка.

1.5.1 Интеграл sinx
x

Пример. Возьмём
∞∫
0

sin x
x dx. У подынтегральной функции в нуле особенность устранимая, а с бес-

конечностью есть некоторые проблемы. Впрочем, избавимся и от нуля в области интегрирования:

∞∫
0

sinx

x
dx = lim

ε→0,R→∞

R∫
ε

sinx

x
dx =

Запишем формулу Эйлера eix = cosx+ i sinx. Интегрируя по всей оси cos x
x , мы получим нуль из-за

нечётности, поэтому можно продолжить равенство так:

=
1

2i
lim

ε→0,R→∞

∫
ε<|x|<R

eix

x
dx

Теперь перейдём к функции, аналитической в комплексной плоскости без нуля: ϕ(z) := eiz

z .

Введём замкнутый путь Γ, полученный склейкой двух отрезков и двух полуокружностей:

ℜ

ℑ

γε

γR

−R Rε−ε

∫
γε

ϕ(z) dz = −
π∫

0

eiεe
i(π−t)

εei(π−t)
εiei(π−t) dt = −

π∫
0

ieiεe
i(π−t)

dt
подынтегральное выражение равномерно сходится к i.−→

ε→0
−iπ

∫
γR

ϕ(z) dz =

π∫
0

eiRe
it

Reit
Rieit dt = i

π∫
0

eiRe
it

dt

Оценим eiRe
it

= eiR cos t−R sin t = eiR cos t · e−R sin t. По теореме Лебега о мажорируемой сходимости
интеграл по γR будет стремиться к нулю при больших R.

Так как путь Γ стягиваем, то из равенства
∫
Γ

ϕ(z) dz = 0 сразу следует

−ε∫
−R

ϕ(x) dx+

R∫
ε

ϕ(x) dx −→
ε→0
R→∞

iπ

Искомый интеграл в 2i раз меньше:
∞∫
0

sinx

x
dx =

π

2

Этот интеграл получилось так взять, так как у ϕ была особенность в нуле, и мы её обошли. А
иногда особенности находятся внутри пути интегрирования, в таком случае пригождается формула
в вычетах.
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1.6 Вычеты

Пусть f задана и голоморфна в G \ {z0}, где G — область, z0 ∈ G — изолированная особенность.

Вблизи z0 функция f раскладывается в ряд Лорана f(z) =
∑
j∈Z

cj(z − z0)
j .

Определение 1.6.1 (Вычет функции f в точке z0). Коэффициент c−1, обозначается Resz0 f .

Этот коэффициент так важен, так как у cj(z − z0)
j при j ̸= −1 имеется первообразная в G, и при

интегрировании по окружности, обходящей z0, пропадут все коэффициенты ряда Лорана, кроме
вычета.

1.6.1 Как вычислять вычеты

У нас есть формула для вычисления коэффициентов ряда Лорана, но она получается интегриро-
ванием, а мы как раз и хотим использовать вычеты, чтобы уметь удобно интегрировать. Поэтому
иногда пригождаются следующие частные случаи:

• Пусть z0 — полюс функции f степени k:

f(z) =
c−k

(z − z0)k
+

c−k+1

(z − z0)k−1
+ · · ·+ c−1

(z − z0)
+ f+(z)

где f+ — аналитическая вблизи z0.

Домножая f на (z − z0)
k, получаем аналитическую

(z − z0)
kf = c−k + c−k+1(z − z0) + · · ·+ c−1(z − z0)

k−1 + (z − z0)
k · f+(z)

Теперь можно найти Resz0 f по формуле: Resz0 f = 1
(k−1)! ·

(
d
dz

)k−1 [
(z − z0)

kf(z)
] ∣∣∣
z=z0

.

• Пусть k = 1 — у f имеется полюс первого порядка. Тогда дифференцировать не надо, и
формула вырождается в

Resz0 f = lim
z→z0

(z − z0)f(z)

• Возьмём ещё более частный случай: f(z) = g(z)
h(z) , где g, h аналитичны в окрестности z0,

g(z0) ̸= 0, а h имеет простой нуль в z0 (нуль кратности 1).

Resz0 f = lim
z→z0

g(z)(z − z0)

h(z)
= lim
z→z0

g(z)
z − z0

h(z)− h(z0)
=

g(z0)

h′(z0)

1.6.2 Индекс замкнутого пути относительно точки

Пусть G ⊂ C — область, Φ — замкнутая дифференциальная форма в G. Пусть γ1, . . . , γn — какие-
то замкнутые пути с носителем в G. Обозначим Γ = {γ1, . . . , γn}.

Определим интеграл от формы Φ по данной совокупности путей
∫
Γ

Φ
def
=

n∑
j=1

∫
γj

Φ.

Назовём систему путей Γ правильной, если для всякой аналитической функции f в G:
∫
Γ

f(z) dz =

0.

Примеры (Правильные системы путей).

• |Γ| = 1. Если γ1 гомотопен тождественному, то Γ, конечно, правильная.

• В частности, любой замкнутый путь в односвязной области формирует правильную систему
из одного пути.

• Пусть в кольце имеются два пути γ1, γ2, обходящие концентрические окружности в противо-
положных направлениях. Тогда {γ1, γ2} — правильная система, так как γ1 ∼ γ−2 .
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• Рассмотрим область с двумя дырками, ограниченную синими линиями. В ней система из
красных путей правильная, так как можно разложить их в сумму двух зелёных стягиваемых
путей:

Пусть γ — петля в C, z0 /∈ Im(γ).

Определение 1.6.2 (Индекс пути γ относительно z0). Значение интеграла 1
2πi

∫
γ

dz
z−z0 . Обознача-

ется Indz0 γ.

Индекс означает число раз, которые мы обошли вокруг данной точки с учётом ориентации, но пока
непонятно даже, почему индекс — целое число.

Это определение очевидным образом распространяется на систему путей: ∀γj ∈ Γ : z0 /∈ Im(γj) ⇒

определён Indz0 Γ
def
=

n∑
j=1

1
2πi

∫
γj

dz
z−z0

Свойства (Свойства индекса, докажем потом (подраздел 1.6.6)).

• Indz0 γ ∈ Z.

• Функция [z0 7→ Indz0 γ] постоянна на каждой компоненте связности C \ Im(γ).

• На неограниченной компоненте связности C \ Im(γ) индекс равен нулю.

Теорема 1.6.1 (Формула вычетов). Пусть G ⊂ C — область, Γ — правильная система путей в G,
f : G \ {z1, . . . , zk} → C — аналитическая функция, и z1, . . . , zk — особенности. Если все точки zj
не лежат на носителе системы путей Γ, то

∫
Γ

f(z) dz = 2πi

 k∑
j=1

Reszj f · Indzj Γ


Доказательство. Положим H := G \ {z1, . . . , zk}. Для каждой точки zj имеется r+, такой, что
B(zj , r+) \ {zj} ⊂ H. Тем самым, в окрестности точки zj функция f разложима в ряд Лорана, и
его главная часть сходится везде кроме zj .

Пусть g1, . . . , gk — главные части рядов Лорана для f в точках z1, . . . , zk соответственно. Функция
h(z) := f(z)−g1(z)−· · ·−gk(z) — аналитическая функция в области G, так как она имеет конечное
число особых точек, в которых ограничена.

Так как Γ — правильная, то
∫
Γ

h(z) dz = 0. Тем самым, мы получили

∫
Γ

f(z) dz =

k∑
j=1

∫
Γ

gj(z) dz
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Посчитаем
∫
Γ

gj(z) dz. Распишем

gj(z) =
Reszj g

z − zj
+

a1
(z − zj)2

+ · · ·+ as−1

(z − zj)s
+ · · ·︸ ︷︷ ︸

hj(z)

У hj имеется первообразная, так как ряд Лорана можно интегрировать и дифференцировать
почленно — доказательство аналогично оному для степенных рядов.

Значит,
∫
Γ

g(z) dz = (Reszj f)2πi · Indz0 Γ (очевидно, Reszj gj = Reszj f).

Лекция VII
29 марта 2024 г.

1.6.3 Обобщение интеграла sinx
x

Обозначим C+
def
= {x+ iy | x ∈ R, y ∈ R>0}.

Пусть f аналитична в {x+ iy | y > −ε}, кроме конечного числа особых точек в C+, назовём их
z1. . . . , zn. В {x+ iy | −ε < y ⩽ 0}, получается, у f особенностей нет.

Предложение 1.6.1. Пусть при θ ∈ [0, π], R > 0: |f(Reiθ)R| ограничена в C+, причём ∀θ ∈ [0, π] :
lim
R→∞

f(Reiθ)R = 0.

Например, f(z) = g(z)
h(z) , где g, h — многочлены, deg g < deg h.

Тогда
∞∫

−∞
f(x) dx = 2πi

n∑
j=1

Reszj f . Здесь
∞∫

−∞
= lim

R→∞

R∫
−R

, то есть особенности несобственного

интеграла на плюс-минус бесконечностях могут сокращать друг друга.

Доказательство. Проинтегрируем f по синему пути, где полуокружность — радиуса R:

ℜz

ℑz

zk

Пусть R — настолько большое, что все особые точки в C+ содержатся во внутренней области,
отсекаемой данным путём. Оценим интеграл по верхней полуокружности:

π∫
0

f(Reit)iReit dt
теорема Лебега о мажорируемой сходимости−→

R→∞
0

Далее применяем формулу в вычетах.

Из гомотопности зелёной окружности и синего пути в C+ \ {zj} получаем, что их индексы равны
1 — ведь интеграл dz

z−z0 по окружности мы знаем.
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1.6.4 2-я формула замены переменной

Пусть Φ = f dx+g dy — замкнутая дифференциальная форма в G, γ : [a, b] → G — путь, рассмотрим
интеграл

∫
γ

Φ. Изменение параметризации для γ — 1-я формула замены переменной.

Теперь пусть g : G1 → G2 — голоморфная функция, f — голоморфная функция в G2, γ : [a, b] → G1

— непрерывный путь. Тогда ∫
g◦γ

f(z) dz =

∫
γ

(f ◦ g)(z)g′(z) dz

Наводящее соображение: пусть путь γ — кусочно-гладкий, ρ(t) := g(γ(t)). Тогда

∫
ρ

f(z) dz =

b∫
a

f(ρ(t))ρ′(t) dt =

b∫
a

f(g(γ(t)))g′(γ(t))γ′(t) dt =

∫
γ

(f ◦ g)(z) · g′(z) dz

Но нам эта формула пригодится в случае негладкого пути.

Пусть ρ = g ◦ γ – путь в области G2, ϕ — первообразная для формы f(z) dz вдоль ρ.

Рассмотрим t0 ∈ [a, b]. ∃U ∋ ρ(t0) — окрестность, такая, что на ней есть первообразная Φ для
f(z) dz. Значит, ∃δ > 0 : ∀t ∈ (t0 − δ, t0 + δ) : ϕ(t) = Φ(ρ(t)).

Положим z0 := γ(t0). ∃V ∋ z0 : g(V ) ⊂ U из непрерывности g. ∀w ∈ U : Φ′(w) = f(w). Запишем

∀z ∈ V : (Φ ◦ g)′(z) = Φ′(g(z)) · g′(z)

Тем самым, Φ◦ g есть первообразная для (Φ′ ◦ g) · g′ в V . Значит, ϕ◦ g — первообразная для формы
f(g(z)) · g′(z) dz вдоль пути γ.

Пусть γ — замкнутый путь, не проходящий через z0. По определению

Indz0 γ =
1

2πi

∫
γ

dz

z − z0

Применим функцию [z 7→ z − z0]. Согласно 2-й формуле замены переменной,

Indz0 γ =
1

2πi

∫
γ−z0

dz

z
= Ind0(γ − z0)

Следствие 1.6.1. Индекс пути γ относительно z0 — локально постоянная функция от z0.

Доказательство. Пусть z0 — точка вне носителя γ. Выберем настолько маленькое δ > 0, что
B(z0, δ) ∩ γ([a, b]) = ∅.

Рассмотрим z1 ∈ B(z0, δ), и докажем, что Indz0 γ = Indz1 γ. Определим гомотопию путей γ − z0 и
γ − z1:

Γ(t, τ) := (1− τ)(γ(t)− z0) + τ(γ(t)− z1) = γ(t)− ((1− τ)z0 + τz1)

Эта гомотопия не проходит через 0, значит, интегралы по γ − z0 и γ − z1 равны.

Следствие 1.6.2. Индекс постоянен на каждой компоненте связности C \ γ([a, b]).

Следствие 1.6.3. Indz0 γ = 0 на неограниченной компоненте связности C \ γ([a, b]).

Доказательство. Оценим
∫

γ−z0

dw
w при достаточно большом |z0|. Для такого z0 носитель пути

γ − z0 лежит в некоторой полуплоскости, не содержащей нуля. Полуплоскость односвязна, это
даже звёздная область, в ней путь стягиваем, значит, интеграл равен нулю.
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1.6.5 О логарифме

Логарифм — это функция, обратная к экспоненте, а экспонента имеет период 2πi.

Пусть w ∈ C.

1. Логарифм w — любое z ∈ C : ez = w.

2. У w = 0 логарифма нет; если z — одно из значений логарифма w, то все остальные значения
имеют вид {z + 2πik | k ∈ Z}.

3. Для w ̸= 0 : w = |w|eiθ, где θ ∈ R. Комплексное число log |w| + iθ — одно из значений
логарифма, и все значения получаются при различных θ, подходящих по условию выше.

Пусть G — область.

Определение 1.6.3 (Функция ϕ в G — ветвь логарифма в G). ϕ непрерывна в G, и eϕ(z) = z для
z ∈ G.

Факт 1.6.1. Всякая ветвь логарифма обязательно голоморфна в G, и ϕ′(z) = 1
z .

Доказательство. Рассмотрим z0 ∈ G,U := {z ∈ C | |z − z0| < δ} ⊂ G. Так как производная экспо-
ненты (как вещественной функции R2 → R2) невырождена, то при достаточно малом δ у экспо-
ненты имеется обратная ψ : eψ(z) = z при z ∈ U .

С другой стороны, eϕ(z) = z при z ∈ U . Значит, ϕ − ψ — непрерывная функция, принимающая
значения в дискретном множестве {2πik | k ∈ Z}. Значит, это константа.

Тем самым, ϕ дифференцируема, и ϕ′(z) = 1
z .

Теорема 1.6.2. Во всякой односвязной области G: 0 /∈ G⇒ ∃ непрерывная ветвь логарифма.

Доказательство. Напрямую следует из (теорема 1.6.3) для тождественного отображения.

Пусть F : G→ C — аналитическая.

Определение 1.6.4 (Аналитическая Φ : G → C — ветвь логарифма функции F ). ∀z ∈ G : eΦ(z) =
F (z).

Замечание. В определении можно требовать лишь непрерывности Φ, аналитичность получится
автоматически.

Теорема 1.6.3. Если G — односвязная область, ∀z ∈ G : F (z) ̸= 0 и F аналитична в G, то в G
существует ветвь логарифма для F .

Доказательство. Функция F ′(z)
F (z) — голоморфна в G. Форма F ′(z)

F (z) dz замкнута в G, значит, имеется

первообразная ψ — голоморфная в G функция, такая, что ψ′(z) = F ′(z)
F (z) .(

eψ(z)

F (z)

)′

=
eψ(z) · ψ′(z)F (z)− F ′(z)eψ(z)

F (z)2

По построению ψ числитель равен нулю. Тем самым, eψ(z) = c · F (z) (c ̸= 0). ∃a ∈ C : c = ea.
Положим ϕ := ψ − a, это искомая ветвь логарифма.

Замечание. Не всякая первообразная для F ′

F есть ветвь логарифма — логарифмы отличаются на
целые кратные 2πi, а первообразные — на произвольную константу. Однако если ψ — первообраз-
ная F ′

F , и ∃z0 ∈ C : eψ(z0) = F (z0), то ψ — ветвь логарифма для F .

Замечание. Если ψ — ветвь логарифма, то все ветви логарифма имеют вид {ψ + 2πik | k ∈ Z}.

Данная функция F ′

F называется логарифмической производной функции F .

Пусть G — область, f : G→ C — голоморфна, γ : [a, b] → G — путь, ∀z ∈ γ([a, b]) : f(z) ̸= 0.
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Определение 1.6.5 (Ветвь логарифма вдоль пути γ). Функция ϕ : [a, b] → C, такая что ∀t0 ∈ [a, b] :
∃δ > 0,∃U ∋ γ(t0), и существует ветвь логарифма ψ функции f в U , такая, что

∀t ∈ (t0 − δ, t0 + δ) : ϕ(t) = ψ(γ(t))

Теорема 1.6.4. При сделанных предположениях существует ветвь логарифма f вдоль пути γ. При
этом любые две ветви отличаются на 2πik, k ∈ Z.

Доказательство. Рассмотрим функцию f ′

f , аналитическую в некоторой окрестности γ([a, b]). Пусть

ϕ — первообразная для f ′

f вдоль γ.

∀t0 ∈ [a, b] : ∃δ > 0,∃U ∋ γ(t0) вместе с первообразной ψ функции f ′

f :

∀t ∈ (t0 − δ, t0 + δ) : ϕ(t) = ψ(γ(t))

Существует c, вообще говоря, зависящая от t, такая, что eψ(z) = cf(z). При |t − t0| < δ : eϕ(t) =

eψ(γ(t)) = cf(γ(t)). Значит, eϕ(s)

f(γ(s)) локально постоянна на [a, b], то есть оказалось, что c всё-таки
не зависит от t.

Найдётся a ∈ C : c = ea. Теперь ϕ̃ := ϕ − a — тоже первообразная для f ′

f вдоль γ, причём

eψ(γ(t))−a = f(γ(t)). Так как ψ− a — тоже первообразная в U для f ′

f , то ψ̃ — ветвь логарифма.

В частности, для f(z) = z − z0, и пути γ, не проходящего через z0, получается ветвь логарифма
z − z0 вдоль γ.

1.6.6 Ветвь аргумента и целочисленность индекса

Пусть w ∈ C. Все значения логарифма спрятаны в формуле logw = log |w|+ iArgw, где Argw
def
={

θ | eiθ = w
|w|

}
.

Пусть 0 /∈ G.

Определение 1.6.6 (Непрерывная ветвь аргумента в области G). Непрерывная функция v : G →
R : ∀z ∈ G : v(z) ∈ Arg(z)

Факт 1.6.2. В области G существует непрерывная ветвь логарифма ⇐⇒ в G существует
непрерывная ветвь аргумента.

Определение 1.6.7 (Ветвь аргумента вдоль пути γ). Функция ϕ : [a, b] → G, такая что ∀t0 ∈ [a, b] :
∃δ > 0,∃U ∋ γ(t0), и существует ветвь аргумента ψ функции f в U , такая, что

∀t ∈ (t0 − δ, t0 + δ) : ϕ(t) = ψ(γ(t))

В качестве ветви аргумента всегда можно выбрать мнимую часть ветви логарифма.

Пусть γ : [a, b] → G — путь, f : G→ C — аналитическая, предположим, что f(z) ̸= 0 на γ([a, b]).

Пусть u — ветвь логарифма для f вдоль γ.

Определение 1.6.8 (Приращение логарифма вдоль γ). u(b)− u(a).

Определение 1.6.9 (Приращение аргумента вдоль γ). ℑ(u(b)− u(a)).

Пусть теперь γ — петля. Тогда ℜ(u(b) − u(a)) = 0, и вообще, u(b) − u(a) = 2πik для некоторого
k ∈ Z.

Тем самым, 1
2πi

∫
γ

f ′(z)
f(z) dz есть целое число. В частности, для f(z) = z − z0, Indz0 γ ∈ Z. Это

показывает, что индекс петли есть целое число.

Лекция VIII
5 апреля 2024 г.
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1.7 Принцип аргумента и теорема Руше

Пусть γ : [a, b] → C — простой (без самопересечений) замкнутый путь, γ(a) = γ(b). Положим
D := γ([a, b]).

Интересный факт (Теорема Жордана). C \D состоит из двух компонент связности. Одна из них
— G — ограничена, и ∀z ∈ G : Indz γ = ±1.

Если Indz γ = 1, то γ называют положительно ориентированным, иначе — отрицательно ориенти-
рованной.

Определение 1.7.1 (Жорданова область). Ограниченная область, граница которой — простой
замкнутый путь.

Чтобы избежать трудностей, связанных с доказательством теоремы Жордана, подменим посылку
и следствие: будем доказывать теоремы для жордановых областей.

Теорема 1.7.1 (Принцип аргумента). Пусть G — жорданова область, ∂G — носитель простого
замкнутого пути γ, ориентированного положительно.

f — аналитическая в окрестности G, кроме, может быть, конечного числа полюсов внутри G.
Более того, ∀w ∈ ∂G : f(w) ̸= 0.

Тогда

1

2π
· (приращение аргумента f вдоль γ) = (число нулей f в G)− (число полюсов f в G)

Нули и полюса надо учитывать с кратностью.

Доказательство. Левая часть есть 1
2πi

∫
γ

f ′(z)
f(z) dz. Это интеграл по простому замкнутому пути;

посчитаем его с помощью вычетов f внутри G.

Рассмотрим z0 ∈ G. Пусть вблизи z0 : f(z) = (z−z0)k ·g(z), где k ∈ Z (отвечает нулю или полюсу),
а g аналитична вблизи z0, причём g(z0) ̸= 0.

f ′(z) = k · (z − z0)
k−1g(z) + (z − z0)

kg′(z) ⇒ f ′(z)

f(z)
=

k

z − z0
+
g′(z)

g(z)

g′(z)
g(z) аналитична в окрестности z0, тем самым, вычет логарифмической производной f ′(z)

f(z) в z0 равен
k.

Пусть u1, . . . , us — нули f внутри G кратностей b1, . . . , bs соответственно; пусть v1, . . . , vt — полюса

f кратностей l1, . . . , lt соответственно. Суммируя вычеты, получаем 1
2πi

∫
γ

f ′(z)
f(z) dz =

s∑
j=1

kj −
t∑

j=1

lj .

Теорема 1.7.2 (Теорема Руше). Пусть G — жорданова область с положительно ориентированной
границей — носителем замкнутого пути γ.

Функции f, g аналитичны в окрестности G. Пусть ∀z ∈ ∂G : |f(z)| > |g(z)|. В частности, ∀z ∈ ∂G :
|f(z)| ≠ 0, |(f + g)(z)| ≠ 0.

Тогда f и f + g имеют одинаковое число нулей в G.

Доказательство. Согласно принципу аргумента, число нулей (f + g) в G равно 1
2π

∫
γ

f ′(z)+g′(z)
f(z)+g(z) dz.

В то же время, f имеет внутри G ровно 1
2π

∫
γ

f ′(z)
f(z) dz нулей.

Надо доказать, что интегралы равны, вычтем их:

1

2πi

∫
γ

(
f ′(z) + g′(z)

f(z) + g(z)
− f ′(z)

f(z)

)
dz
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Теперь преобразуем выражение в скобках:(
. . .
)

= �����
f ′(z) · f(z) + g′(z) · f(z)−�����

f ′(z) · f(z)− f ′(z) · g(z)
(f(z) + g(z)) · f(z)

=

=
g′(z)f(z)− f ′(z)g(z)

f(z)2
· f(z)

f(z) + g(z)
=

(
1 +

g(z)

f(z)

)′

· 1

1 + g(z)
f(z)

Обозначим Φ(z) := 1 + g(z)
f(z) . Тем самым, надо доказать, что 1

2πi

∫
γ

Φ′(z)
Φ(z) dz = 0. При этом, ∀z ∈ ∂G :

|g(z)|
|f(z)| < 1. Из непрерывности ∃δ > 0 : |g(z)|

|f(z)| < 1− δ.

Применим к интегралу формулу замены переменной: 1
2πi

∫
γ

Φ′(z)
Φ(z) dz = 1

2πi

∫
Φ◦γ

dw
w . При этом носитель

пути Φ ◦ γ лежит внутри B(1, 1 − δ), значит, путь гомотопен тождественному, и гомотопия не
задевает нуля. В результате 1

2πi

∫
Φ◦γ

dw
w = 0.

1.8 Сходимость аналитических функций

Пусть G ⊂ C — открытое множество. Пускай {hn}n∈N — последовательность функций hn : G→ C.

1.8.1 Равномерная сходимость на компактах

Пусть h : G → C — ещё функция. Говорят, что hn сходятся к h равномерно на компактах
(hn −→

n→∞
h), если ∀ компакта K ⊂ G: hn

∣∣
K
⇒ h

∣∣
K
.

В дальнейшем, говоря о сходимости аналитических функций, будем подразумевать именно равно-
мерную сходимость на компактах.

Теорема 1.8.1 (Вейерштрасс, 1-я). Пусть все hn : G → C — аналитичны, и hn −→
n→∞

h. Тогда h

аналитична в G.

Доказательство. Достаточно доказать, что ∀ прямоугольника P ⊂ G :
∫
∂P

h(z) dz = 0. Это ясно из

равномерной сходимости на компактах:∣∣∣∣∣∣
∫
∂P

(h(z)− hn(z)) dz

∣∣∣∣∣∣ ⩽ sup
z∈∂P

|hn(z)− h(z)| · l(∂P )

Далее достаточно применить теорему Мореры (теорема 1.2.14).

Теорема 1.8.2 (Вейерштрасс, 2-я). Пусть все fn : G → C — аналитичны, и fn −→
n→∞

f , где

аналитичная f : G→ C. Тогда f ′n −→
n→∞

f ′.

Доказательство. Пусть K = B(w0, r) — круг, K ⊂ G. Понятно, ∃R > r : B(w0, R) ⊂ G. Рассмот-
рим z ∈ K.

f ′n(z) =
1

2πi

∫
|ζ−w0|=R

fn(ζ)

(ζ − z)2
dζ −→

n→∞

1

2πi

∫
|ζ−w0|=R

f(ζ)

(ζ − z)2
dζ = f ′(z)

К пределу под интегралом можно перейти, так как сходимость равномерна в K, знаменатель
отделён от нуля числом R− r. Более того, видно, что сходимость равномерна в K.

Пусть S ⊂ G — компакт. ∀s ∈ S : ∃Ks — круг с центром в s, такой, что Ks ⊂ G. Внутренности
этих кругов покрывают S, выберем конечное подпокрытие.

На каждом из кругов конечного подпокрытия имеется равномерная сходимость. Стало быть, име-
ется равномерная сходимость на S.
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Лемма 1.8.1. Пусть fn, f — аналитические функции в области G, fn −→
n→∞

f , f не равна
тождественному нулю.

Пусть D — круг, D ⊂ G, предположим, что f имеет нуль в D. Тогда для всех достаточно
больших n: fn имеет нуль в круге D.

Доказательство. Пусть f(z0) = 0. Уменьшая D, можем считать, что D = B(z0, r) — круг, такой,
что D ⊂ G.

По теореме единственности f не постоянна в D.

Разложим f в ряд Тейлора в D:

f(z) = a0 + a1(z − z0) + a2(z − z0)
2 + · · ·

Ряд сходится в некоторой окрестности D. a0 = 0, но не все коэффициенты равны нулю. Распишем

f(z) = (z − z0)
k · g(z), g(z0) ̸= 0, где g аналитична в окрестности D

Пусть ρ ⩽ r выбрано так, что ∀z : |z− z0| ⩽ ρ⇒ |g(z)| > δ > 0. Оценим f при |z− z0| = ρ : |f(z)| =
|z − z0|k · |g(z)| ⩾ ρkδ.

Разложим fn(z) = f(z) + (fn(z) − f(z)). При достаточно больших n : |fn(z) − f(z)| < ρkδ, по
теореме Руше fn имеет нуль внутри D.

Определение 1.8.1 (Однолистная функция f : G→ C). Инъективная аналитическая функция f .

Теорема 1.8.3. Пусть fn — последовательность однолистных функций в области G, fn −→
n→∞

f .

Тогда либо f ≡ const, либо f — тоже однолистна.

Доказательство. Предположим, что ∃z0, z1 ∈ G : z0 ̸= z1 и w := f(z0) = f(z1). Построим g(z) :=
f(z)− w, gn(z) := fn(z)− w. Сходимость сохранилась.

Пусть U0, U1 — круги с центрами в z0 и z1 соответственно, U0 ∩ U1 = ∅, U0, U1 ⊂ G. Функция g
имеет нуль в каждом из U1, U2. Предположим, что g ̸≡ 0, значит, при достаточно большом n : gn
имеет нуль как в U1, так и в U2. Но gn однолистна, значит, всё же g ≡ 0.

Теорема 1.8.4 (Риман). Пусть G ⊂ C — область. Следующие условия эквивалентны:

1. G односвязна, G ̸= C.

2. ∃ однолистная ϕ : G↠ D = {z ∈ C | |z| < 1}.

Доказательство. Потом (теорема 1.9.1).

1.8.2 Нормальные семейства. Теорема Монтеля

Пусть дано множество A аналитичных функций в области G.

Определение 1.8.2 (Нормальное множество A). Такое A, что ∀ компакта K ⊂ G : ∃C ∈ R : ∀z ∈
K, ∀f ∈ A : |f(z)| ⩽ C.

Лекция IX
12 апреля 2024 г.

Теорема 1.8.5 (Монтель). Следующие условия эквивалентны:

1. Множество A нормально.

2. ∀{fn}n∈N, fn ∈ A: найдётся сходящаяся подпоследовательность n1 < n2 < . . . : для некоторой
аналитической f : fnj −→

j→∞
f .
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Доказательство.

(2) ⇒ (1) Предположим противное: ∃K ⊂ G : ∀m ∈ N : ∃fm ∈ A : sup
z∈K

|fm(z)| > m.

Согласно посылке, существует сходящаяся подпоследовательность {mk}k∈N, такая, что ∃f :
fmk

⇒
k→∞

f равномерно на K. f ограничена на K, значит, начиная с некоторого места, fmk

тоже ограничены. Противоречие.

(1) ⇒ (2) Лемма 1.8.2. Рассмотрим счётный набор последовательностей
x
(1)
1 , x

(1)
2 , x

(1)
3 , . . .

x
(2)
1 , x

(2)
2 , x

(2)
3 , . . .

x
(3)
1 , x

(3)
2 , x

(3)
3 , . . .

· · · · · · · · ·
. . .

Пусть каждая последовательность ограничена: ∀n ∈ N : ∃M (n) : ∀j : |x(n)j | <
M (n). Тогда ∃k1 < k2 < . . . — подпоследовательность индексов, такая, что
∀n ∈ N : ∃x(n) : x(n)kj

−→
j→∞

x(n).

Иными словами, каждая последовательность ограничена, значит, из каждой
можно выбрать сходящуюся подпоследовательность, но оказывается, что мож-
но так выбрать индексы этой подпоследовательности, чтобы она сходилась во
всех строчках.

Доказательство леммы.

Пусть {k(1)j }j∈N — такая подпоследовательность индексов, что ∃x(1) : x
k
(1)
j

−→
j→∞

x(1).

Выберем из этой последовательности индексов подпоследовательность индексов
{k(2)j }j∈N, что ∃x(2) : x

k
(2)
j

−→
j→∞

x(2). И так далее.

Тем самым, мы получим счётное количество последовательностей индексов, таких,
что k(n+1) — подпоследовательность k(n), и ∀n ∈ N : ∃x(n) : x

k
(n)
j

−→
j→∞

x(n).

А теперь возьмём диагональ: kj := k
(j)
j .

Пусть {fn}n∈N — какая-то последовательность функций из A, выберем из неё сходящуюся
подпоследовательность.

1. Рассмотрим компактный замкнутый круг Br(z0) ⊂ G. Выберем R ∈ (r, dist(z0, ∂G)).
Разложим все функции fn в степенные ряды с центром в z0, эти ряды будут сходиться
уж точно в круге радиуса R:

f1(z) = c
(1)
0 + c

(1)
1 (z − z0) + c

(1)
2 (z − z0)

2 + . . .
...

fn(z) = c
(n)
0 + c

(n)
1 (z − z0) + c

(n)
2 (z − z0)

2 + . . .
...

(◦)

Так как семейство нормально, то ∃d > 0 : |z − z0| ⩽ R⇒ ∀n : |fn(z)| ⩽ d.

Распишем формулы для коэффициентов Тейлора: c(n)j = 1
2πi

∫
|z−z0|=R

fn(ζ)
(ζ−z0)j+1 dζ, откуда

∣∣∣c(n)j

∣∣∣ ⩽ 1

2π

2π∫
0

|fn
(
z0 + eiθ

)
|

Rj+1
R dθ ⩽

d

Rj
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Получили равномерную по n оценку на c(n)j , значит согласно (лемма 1.8.2) имеется под-
последовательность строк c(n) в (◦), такая, что в каждом столбце коэффициенты сходят-
ся. Без потери общности эта последовательность совпадает с исходной: ∀j : c(n)j −→

n→∞
cj .

Дальше хочется написать ряд
∑
j⩾0

cj(z − z0)
n, доказать, что он сходится, где положено,

и что он является пределом какой-то подпоследовательности fn.

– Первое просто: |z − z0| ⩽ r ⇒
∞∑
j=0

|cj(z − z0)
j | ⩽

∞∑
j=0

rj · d
Rj = d

∞∑
j=0

(
r
R

)j
. Тем самым,

f(z) =
∞∑
j=0

cj(z − z0)
j — функция в B, аналитичная в B.

– Рассмотрим начальные куски рядов fn,k(z) :=
k∑
j=0

c
(n)
j (z − z0)

j , и запишем анало-

гичный многочлен для f : fk(z) :=
k∑
j=0

cj(z − z0)
j . Это конечные суммы, и так как

коэффициенты сходятся, то lim
n→∞

fn,k = fk равномерно во всём круге B.

Теперь покажем, что сходимость fn,k −→
k→∞

fn равномерна по n:

|fn,k(z)− fk(z)| ⩽
∞∑

j=k+1

∣∣∣c(n)j

∣∣∣ |z − z0|j ⩽ d
∞∑

j=k+1

( r
R

)j

– По теореме о перестановке предельных переходов имеется искомая сходимость:

f(z) =

∞∑
j=0

cj(z − z0)
j =

∞∑
j=0

lim
n→∞

c
(n)
j (z − z0)

j = lim
n→∞

∞∑
j=0

c
(n)
j (z − z0)

j = lim
n→∞

fn(z)

2. Теперь покажем, что для любого компакта K ⊂ G тоже найдётся подпоследователь-
ность fnj

, сходящаяся на K. Пусть w ∈ K, положим rw := 1
2 dist(w, ∂G). Семейство

{Brw(w)}w∈K — открытое покрытие K, значит, имеется конечное подпокрытие: K по-
крывается кругами B1, . . . , Bs, такими, что Bs ⊂ G.

s раз выбирая сходящуюся подпоследовательность (каждый раз — в соответствии с
предыдущим пунктом), получаем такую подпоследовательность fn, что она сходится во
всех кругах B1, . . . , Bs.

3. Пусть K1 ⊂ K2 ⊂ . . . — исчерпывающая последовательность компактов для G.

В соответствии с предыдущим пунктом найдётся подпоследовательность f (1)1 , f
(1)
2 , . . . ,

равномерно сходящаяся на K1. Далее из неё выбирается новая подпоследовательность
f (2), равномерно сходящаяся на K2.

И так далее, на s-м шаге выберется подпоследовательность f (s)1 , f
(s)
2 , . . . , f

(s)
s , . . . , схо-

дящаяся на Ks. Диагональ {f (s)s }∞s=1 подходит: функции в этой последовательности
сходятся на любом компакте Ks.

1.8.3 Про монтелевые пространства

Через H(G) обозначим пространство всех функций, голоморфных в G. Сходимость, которую мы
только что изучали на этом пространстве, отвечает некоторой топологии.

H(G) можно превратить в локально выпуклое пространство, в котором топология задаётся полу-
нормами pK : f 7→ max

z∈K
|f(z)|, где K ⊂ G — компакты в G. Несложно видеть, что это как раз

топология равномерной сходимости на компактах.
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Несложно видеть, что если {Kj}∞j=1 — исчерпывающая последовательность компактов для G,
то pj := pKj — определяющий набор полунорм. А раз имеется счётный определяющий набор
полунорм, то пространство метризуемо. Одна из возможных метрик имеет вид

ρ(f, g) =

∞∑
j=1

2−j
pj(f − g)

1 + pj(f − g)

Из самой формулы видно, что всё пространство лежит в шаре радиуса 1, тем не менее, в локально
выпуклом пространстве есть понятие ограниченного множества — это множество, ограниченное по
всем полунормам. В H(G) ограниченные множества — нормальные семейства.

Тем самым, теорема Монтеля на языке функционального анализа звучит так: всякое ограниченное
множество в H(G) относительно компактно.

Как известно, в бесконечномерных банаховых пространствах это неверно, откуда видно, что одной
нормой топологию на H(G) не описать.

В честь Монтеля, доказавшего теорему об аналитических функциях, все пространства, в которых
ограниченные множества относительно компактны, называются монтелевыми.

1.9 Однолистные функции. Теорема Римана

Рассмотрим функцию f : z 7→ (z − z0)
k, где k ∈ N. Если k = 1, то функция линейна и, следова-

тельно, однолистна. Если же k ⩾ 2, то ∀w ̸= 0 найдётся k значений корня k
√
w, и, следовательно,

f не однолистна ни в какой окрестности z0.

Лемма 1.9.1. Если f : G→ C однолистна, то ∀z ∈ G : f ′(z) ̸= 0.

Доказательство. Пусть f ′(z0) = 0. Разложим f(z) = c0 + c1(z − z0) + c2(z − z0)
2 + . . . . Так как

f ′(z0) = 0, то c1 = 0.

Так как f однолистна, то f ̸≡ const, то есть имеется некоторое наименьшее k > 0 : ck ̸= 0.
Можно записать f(z) = c0 + (z − z0)

k · g(z), где g(z) ̸= 0 в некоторой окрестности z0. Скажем, эта
окрестность имеет вид круга Br(z0).

Пусть ϕ : Br(z0) → C — ветвь логарифма g, то есть ∀z ∈ Br(z0) : eϕ(z) = g(z). Тогда f(z) =

c0 +
(
(z − z0) e

ϕ(z)
k

)k
.

Обозначим ψ(z) = (z−z0)e
ϕ(z)
k , прямое вычисление показывает ψ′(z0) ̸= 0. По теореме об обратной

функции ψ(Br(z0)) ⊃ Bδ(0) для некоторого δ > 0.

Если u ∈ C, причём |u−c0| ∈ (0, δ), то уравнение f(z) = u имеет хотя бы k решений, возникающих
из уравнений ψ(z) = k

√
u− c0 (k значений у корня k-й степени). Противоречие с инъективностью

f .

Обратное неверно, контрпримером может служить, например, экспонента. Это верно только ло-
кально: если f ′(z) ̸= 0 вблизи z0, то по теореме об обратной функции f однолистна в некоторой
окрестности z0.

Факт 1.9.1. Если f : U → C такова, что ∀z ∈ U : f ′(z) ̸= 0, то f(U) открыто.

Доказательство. Это тоже следует из вещественной теоремы об обратной функции.

1.9.1 О дробно-линейных отображениях

Введём расширенную комплексную плоскость Ĉ = C ∪ {∞}. Базой Ĉ, как топологического про-

странства, являются круги {Br(z0) | z0 ∈ C, r > 0}, и «бесконечно удалённые круги»
{
Ĉ \Br(0) | r > 0

}
.

Это одноточечная компактификация C.
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Для аналитической функции f : (Ω ⊂ C) → C, заданной и аналитичной в проколотой окрестности
∞, будем говорить, что она аналитична в точке ∞, если f

(
1
z

)
аналитична в окрестности нуля.

Например, для ряда Лорана f(z) =
∑
n∈Z

anz
n: f аналитична в ∞, если для всех n > 0 : an = 0.

Определение 1.9.1 (Дробно-линейное отображение). Отображение вида ϕ : z 7→ az+b
cz+d , где a, b, c, d ∈

C и |c|+ |d| > 0 (чтобы получалось поделить).

Если c ̸= 0, то функция определена и аналитична в бесконечности, равна там пределу a
c , и в точке

−d
c имеется полюс. Если же c = 0, то функция тоже аналитична в Ĉ за исключением одного

полюса, на этот раз этот полюс находится в точке ∞.

Если ad = bc, то ситуация не особо интересная: ϕ ≡ a
c ≡ const. Иначе же, при ad − bc ̸= 0,

дробно линейные преобразования обратимы: можно разрешить уравнение az+b
cz+d = w относительно

z, полученная функция z(w) тоже будет дробно-линейной. В матрицах это записывается так:[
a b
c d

] [
z
1

]
=

[
w
1

]
⇐⇒

[
z
1

]
=

[
a b
c d

]−1 [
w
1

]
Квадратные скобки значат фактор по скалярным преобразованиям (гомотетиям).

Аналогичная выкладка показывает, что обратимые дробно-линейные преобразования образуют

группу относительно композиции, и эта группа изоморфна PGL(n,C) def= GL(n,C)/C∗E (где C∗E

— скалярные матрицы вида
(
λ 0
0 λ

)
, λ ∈ C∗).

Преобразования Мёбиуса

Преобразованиями Мёбиуса называются дробно-линейные преобразования вида ϕ : z 7→ c z−a1−az ,
где |c| = 1, a ∈ D. Функция такого вида имеет полюс в 1

a , и уж точно определена в круге D.

Факт 1.9.2. Оказывается, ϕ (D) = D.

Доказательство. Заметим, что ∀z : |z| = 1 ⇒ |ϕ(z)| =
∣∣∣c z−a
z(z−a)

∣∣∣ = 1, откуда ϕ переводит окруж-

ность в окружность. По принципу максимума модуля ∀z ∈ D : |ϕ(z)| < 1.

С другой стороны, не просто ϕ(D) ⊂ D, но на самом деле ϕ(D) = D, так как ϕ−1 — тоже преобра-
зование Мёбиуса: [

c −ca
−a 1

]−1

=

[
1 ca
a c

]
=

[
c−1 a
c−1a 1

]
то есть ψ : z 7→ c−1 z+ac

1−acz — обратное к ϕ преобразование Мёбиуса.

Факт 1.9.3. Преобразования Мёбиуса образуют подгруппу в группе дробно-линейных преобра-
зований.

Как отобразить полуплоскость на круг

Пусть Π := {z ∈ C | ℜz < 0}. Выберем α ∈ C : ℜα < 0, и устроим преобразование θ(z) := z−α
z+α . У

него полюс в точке −α.

Факт 1.9.4. Оказывается, θ (Π) ⊂ D.

Доказательство. Пусть z = a+ ib, α = γ + iδ, где a, b, γ, δ ∈ R (a, γ < 0).

Сосчитаем |θ(z)|2 =
∣∣∣ (a−γ)+i(b−δ)(a+γ)+i(b−δ)

∣∣∣2 = (a−γ)2+(b−δ)2
(a+γ)2+(b−δ)2 < 1.

Упражнение 1.9.1. Убедиться, что θ(Π) = D.
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1.9.2 Теорема Римана

Теорема 1.9.1 (Риман, о конформном отображении). Пусть G ⊂ C — область. Следующие условия
эквивалентны:

1. G односвязна, G ̸= C.

2. ∃ однолистная сюръекция ϕ : G↠ D = {z ∈ C | |z| < 1}.

Доказательство.

(2) ⇒ (1) Это просто, если ϕ(G) = D, где ϕ — как в посылке, то ϕ — гомеоморфизм, откуда G тоже
односвязна. Факт о том, что G ̸= C, называется теоремой Лиувилля.

(1) ⇒ (2) – Можно считать, что область не содержит некоторого круга:

Выберем z0 ∈ C\G, в области G найдётся ϕ — ветвь логарифма функции z−z0. Функция
ϕ однолистна, и без потери общности можно работать с ϕ(G) =: G1 вместо G.

Пусть K ⊂ G1 — какой-то круг. Заметим, что (K + 2πi) ∩G1 = ∅:

Доказательство. Пусть w ∈ (K+2πi)∩G1. Тогда w = u+2πi, где u ∈ K, и одновременно
w = ϕ(v), u = ϕ (ṽ), где v, ṽ ∈ G. Так как v = eϕ(v) = ew = eu+2πi = eu = ṽ. Тем самым,
v = ṽ, значит, w = ϕ(v) = ϕ(ṽ) = u, противоречие (w = u+ 2πi).

– Можно считать, что область ограничена:

Устроим ψ : G1 ↠ G2, z 7→ 1
z−z0 , теперь так как ∀z ∈ G1 : |z − z0| отделён от нуля, то

область G2 ограничена. При помощи сдвига и гомотетии (z 7→ az + b) можно заменить
G2 на G3 так, что 0 ∈ G3 и G3 ⊂ D.

– Отныне 0 ∈ G ⊂ D. Введём A := {f : G→ D | f однолистна, но необязательно сюръекция, f(0) = 0}.
По определению A — нормальное семейство.

Пусть C := sup
f∈A

|f ′(0)| (пока не факт, что C <∞).

Пусть A1 := {f ∈ A | |f ′(0)| ⩾ 1}. Очевидно, что супремум можно вычислять по функ-
циям из A1 (оно непусто, id ∈ A1).

∗ Этот супремум конечен: C < +∞.

Пусть это не так, тогда ∀n ∈ N : ∃fn ∈ A1 : |f ′n(0)| > n.

Так как семейство нормально, то можно выбрать подпоследовательность fnj −→
j→∞

f .

Так как fnj
аналитичны, и сходятся к f , то f тоже аналитична, и f ′nj

−→
j→∞

f . Но

|f ′nj
(0)| не может иметь предела.

∗ Аналогичное рассуждение показывает, что он достигается (∃f ∈ A : |f ′(0)| = C):

Выберем fn ∈ A : |f ′n(0)| ⩾ C − 1
n . Выберем подпоследовательность fnj

−→
j→∞

f .

Так как fnj
аналитичны, и сходятся к f , то f тоже аналитична, и f ′nj

−→
j→∞

f ′.

Тем самым, |f ′(0)| = C, и согласно (теорема 1.8.3), f однолистна либо константа
(второго быть не может, C ⩾ 1).

Лекция X
19 апреля 2024 г.

Тем самым, существует f ∈ A, такая, что |f ′(0)| максимально. Далее покажем, что
f : G→ D — сюръекция.
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– Пойдём от противного: пусть ∃a ∈ D : a /∈ Im(f). Введём ϕ := v ◦ f , где v(w) := w−a
1−aw —

некоторое преобразование Мёбиуса. ϕ(z) := f(z)−a
1−af(z) .

К сожалению, пока ϕ /∈ A : ϕ(0) ̸= 0, и вообще ϕ(z) ̸= 0 везде. Но раз так, то у
ϕ имеется ветвь логарифма Φ. Так как ℜ log(u) = log |u|, то ∀z ∈ G : ℜΦ(z) < 0.
При помощи другого дробно-линейного преобразования переведём левую полуплоскость
обратно в D : g(z) := Φ(z)−Φ(0)

Φ(z)+Φ(0)
. Утверждается, что g ∈ A: g(0) = 0, и преобразование

w 7→ w−a
w+a однолистно стреляет в круг D.

– Осталось получить противоречие, получив в результате вычислений, что |g′(0)| > |f ′(0)|.

g′(z) =

(
1− 2ℜΦ(0)

Φ(z) + Φ(0)

)′

=
2ℜ(Φ(0))

(Φ(z) + Φ(0))2
Φ′(z) =

2ℜ(Φ(0))
(Φ(z) + Φ(0))2

ϕ′(z)

ϕ(z)
=

=
2ℜ(Φ(0))

(Φ(z) + Φ(0))2
1

ϕ(z)
· (1− af(z)) · f ′(z) + a · f ′(z)(f(z)− a)

(1− af(z))2

Подставляя 0, получаем

g′(0) =
2ℜΦ(0)

(2ℜΦ(0))2
1

−a
· f

′(0)(1− |a|2)
1

Тем самым, |g′(0)| = 1

2 log( 1
|a| )

1−|a|2
|a| · |f ′(0)|. Осталось убедиться, что для t := |a| ∈ (0, 1)

выполнено неравенство 1−t2
2t log( 1

t )
> 1. Это эквивалентно неравенству 1−t2

t − 2 log
(
1
t

)
> 0.

При t = 1 левая часть равняется нулю, и производная левой части
(
1
t − t+ 2 log (t)

)′
=

− 1
t2 − 1 + 2

t = −
(
1
t − 1

)2
< 0.

1.9.3 Автоморфизмы односвязных областей

Пусть f1, f2 : G↠ D — возможно различные однолистные отображения. Тогда f−1
2 ◦f1 — однолист-

ное отображение круга D на себя. Например, это может быть каким-то преобразованием Мёбиуса,
но оказывается, что ими всё и исчерпывается.

Определение 1.9.2 (Автоморфизм области G). Однолистное отображение G↠ G.

Вообще практически все односвязные области эквивалентны (при помощи однолистной сюръекции)
кругу, как говорит только что доказанная теорема Римана, но есть ещё две области — C и Ĉ,
имеющие другую природу.

Сначала займёмся автоморфизмами C.

Теорема 1.9.2. Автоморфизмы C — линейные функции z 7→ az + b при a ̸= 0.

Доказательство. Пускай f : C ↠ C — ещё какой-то автоморфизм C. Тем самым, f — целая, то
есть f = a0 + a1z + . . .

Если aj ̸= 0 для бесконечного множества индексов j, то ∞ — существенно особая точка (в ряду
Лорана f

(
1
z

)
бесконечно много ненулевых членов). Так как ∀z ∈ C : f ′(z) ̸= 0, то f — открытое

отображение. Отсюда f(D) открыто. С другой стороны, по теореме Сохоцкого (теорема 1.5.3)
f({z ∈ C | |z| > 1}) всюду плотно в C. Значит, ∃w ∈ f(D)∩f({z ∈ C | |z| > 1}), и это противоречие
с однолистностью f .

Тем самым, f — многочлен, и если deg f ⩾ 2, то f ′ имеет корень, опять-таки противоречие с
однолистностью. Получается, f — линейная функция, или константа, но константа не подходит.

Замечание. Ĉ односвязна, так как топологически это — сфера, что видно из стереографической
проекции.

Теорема 1.9.3. Автоморфизмы Ĉ — дробно-линейные отображения z 7→ az+b
cz+d при ad− bc ̸= 0.
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Доказательство.

Лемма 1.9.2 (О действии групп). Пусть группа Γ действует на множестве X;

H ⩽ Γ — подгруппа. Если ∃x ∈ X : H ⊃ Γx (Γx
def
= {γ ∈ Γ | γx = x} — стабилизатор

x), и H действует на X транзитивно (∀x, y ∈ X : ∃γ ∈ H : γx = y), то H = Γ.

Доказательство леммы.

Рассмотрим какой-то γ ∈ Γ. Пусть γ(x) = y. Из транзитивности ∃δ ∈ H : δy = x. Тем
самым, δγx = x, то есть δγ ∈ H ⇒ γ ∈ H.

Введём в качестве Γ группу всех однолистных отображений Ĉ ↠ Ĉ, и в качестве H ⩽ Γ —
подгруппу дробно-линейных отображений.

Легко видеть, что H действует на C транзитивно: скажем, любая точка лежит в одной орбите с

∞: ∀z0 ∈ C : 1
z−z0

∣∣∣
z=z0

= ∞. С другой стороны, стабилизатор ∞ — автоморфизмы C, и так как

они лежат в H, то H = Γ.

Лемма 1.9.3 (Шварц). Пусть f : D → D — аналитическая функция, такая, что f(0) = 0. Тогда
∀z ∈ D : |f(z)| ⩽ |z|. При этом если ∃z ∈ D \ {0} : |f(z)| = |z|, то ∃c ∈ C (|c| = 1) : f(z) = cz.

Доказательство.

• Пусть дополнительно f задана и аналитична в круге радиуса R > 1 с центром в 0. Рассмотрим
g(z) := f(z)

z — она аналитична в круге {z ∈ C | |z| < R}, так как в нуле — устранимая
особенность.

При |z| = 1 : |g(z)| = |f(z)|
|z| ⩽

1
1 = 1. Согласно принципу максимума модуля (теорема 1.2.13),

|g| ⩽ 1 везде.

• Теперь такого предположения о f не имеется. Выберем R > 1. Определим fR(z) := f
(
z
R

)
.

Согласно предыдущему пункту ∀z ∈ D : |fR(z)| ⩽ |z|. Устремляя R → 1, получаем искомое
неравенство.

• Осталось разобраться со случаем равенства внутри круга. Пусть ∃z0 ∈ D \ {0} : |f(z0)| = |z0|.
Тем самым, g(z) := f(z)

z достигает своё наибольшее значение внутри круга, то есть g ≡ c =
const. Подставляя z0, получаем |c| = 1.

Пусть Γ — группа всех автоморфизмов круга D. Вычислим стабилизатор 0 ∈ D. Пусть ϕ ∈ Γ0 —
аналитическая биекция, такая, что ϕ(0) = 0. То же верно и для ϕ−1.

По лемме Шварца |ϕ(z)| ⩽ |z|, но применяя её же к ϕ−1, получаем z = ϕ−1(ϕ(z)) ⇒ |z| =
|ϕ−1(ϕ(z))| ⩽ |ϕ(z)|. Тем самым, |ϕ(z)| = |z| во всех точках, и по лемме Шварца ϕ — гомотетия с
коэффициентом c (|c| = 1).

Группа преобразований Мёбиуса
{
w 7→ c · w−a

1−aw | a ∈ D, |c| = 1
}
содержит при a = 0 гомотетии с

данными коэффициентами, и действует транзитивно на D: любая a ∈ D переводится соответству-
ющим преобразованием в нуль.

Упражнение 1.9.2. Проверить, что группа Мёбиуса — действительно группа, то есть за-
мкнута относительно умножения и взятия обратного.

Факт 1.9.5 (Конформность однолистного отображения). Пусть G — область, z0 ∈ G, Φ : G → C
— однолистное отображение. Пусть γ1, γ2 : (−ε, ε) → G — два регулярно параметризованных
гладких пути (γ′1 ̸= 0, γ′2 ̸= 0), причём γ1(t1) = γ2(t2) = z0. Проводя касательные к носителям

γ1, γ2 в z0, получаем угол, его косинус можно посчитать по формуле ⟨γ′
1(t1),γ

′
2(t2)⟩

|γ′
1(t1)|·|γ′

2(t2)|
.

Подействуем при помощи Φ на данную картинку. γ̃j := Φ ◦ γj при j := 1, 2. Несложно посчи-
тать, что γ̃′j(tj) = Φ′(z0) · γ′j(tj), что действительно сохраняет косинус угла.
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Такие отображения, сохраняющие углы, называют конформными. В силу исторических причин,
говоря про однолистные отображения, часто добавляют слово «конформные», а сама наука зовётся
теорией конформных отображений, хотя, как мы только что видели, однолистность сильнее.

1.10 Целые функции с заданными нулями

Определение 1.10.1 (Целая функция). Аналитическая C → C.

1.10.1 Произведение Вейерштрасса

Пусть f ̸≡ 0 — целая, N := {a ∈ C | f(a) = 0}. По теореме единственности N не имеет предельных
точек. В частности, все нули изолированы, откуда множество нулей не более, чем счётно.

Нули удобно считать с учётом кратности, получая при этом мультимножество N .

Пронумеруем N = {a0, a1, a2, . . . }, удобно считать, что |a0| ⩽ |a1| ⩽ . . . .

Теорема 1.10.1 (Вейерштрасс). Существует целая функция f , мультимножество нулей которой
совпадает с данным мультимножеством N = {a0, a1, . . . }. Считаем |a0| ⩽ |a1| ⩽ . . . . Дополнительно
предполагается, что |aj | −→

j→∞
∞. Это, кстати, необходимое и достаточное условие того, что у N

нет предельных точек.

Доказательство. Если бы нулей было конечное количество, то многочлен (z − a0) · . . . · (z −
aN ) подошёл бы, но нулей, увы, бесконечно. Предположим, что 0 /∈ N (это не ограничивает
общность: выкинем 0 из N , построим f , потом домножим на нужную степень zk), и заметим, что

произведение
(
1− z

a0

)
· . . . ·

(
1− z

aN

)
тоже решает задачу в случае конечного N .

В бесконечном же случае стоит озаботиться вопросом сходимости. Во втором семестре мы про-

веряли, что сходимость
∞∏
j=0

aj не к нулю эквивалентна сходимости ряда
∞∑
j=0

log(aj), где log :

(C \ (−∞, 0]) → C — главная ветвь логарифма.

Рассмотрим бесконечное произведение
∞∏
j=0

uj(z), где uj — аналитические функции. Будем говорить,

что данное произведение сходится, если ∀ компакта K ⊂ G : ∃M ∈ N : ∀j ⩾M, z ∈ K : uj(z) ̸= 0,
и произведение

∏
j>N

uj(z) сходится на K равномерно.

Определим множители Вейерштрасса:

uj(z) :=

(
1− z

aj

)
· exp

(
z

aj
+

1

2

(
z

aj

)2

+ · · ·+ 1

j − 1

(
z

aj−1

)j−1
)

Показатель экспоненты подогнан так, чтобы при взятии логарифма много чего сократилось (а
log(1 − w) = −w − w2

2 − w3

3 − . . . при |w| < 1, например, потому что этот ряд совпадает с рядом
для вещественного логарифма на R>0, и имеется теорема единственности)

Осталось показать, что произведение
∞∏
j=0

uj(z) сходится равномерно на компактах, и её нули — в

точности aj с учётом кратности.

Определим компакт K :=
{
z ∈ C | |z| ⩽ |aN |

2

}
, и покажем, что

∏
j>N

uj(z) сходится равномерно на

K.

uj(z) = exp

(
log

(
1− z

aj

)
+

z

aj
+ · · ·+ 1

j − 1

(
z

aj

)j−1
)

= exp

−
∑
s⩾j

1

s

(
z

aj

)s
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При этом log
(
1− z

aj

)
определён, так как |z| < |aj |. Оценим∣∣∣∣∣∣
∑
s⩾j

1

s

(
z

aj

)s∣∣∣∣∣∣ ⩽
∣∣∣∣∣∣
∑
s⩾j

(
z

aj

)s∣∣∣∣∣∣ ⩽
∣∣∣∣∣∣
∑
s⩾j

∣∣∣∣ aN2aj
∣∣∣∣s
∣∣∣∣∣∣ ⩽

(
1

2

)j

Убедимся, что ряд из логарифмов равномерно сходится:∣∣∣∣∣∣
∑
j>N

∑
s⩾j

1

s

(
z

aj

)s∣∣∣∣∣∣ ⩽
∑
j>N

(
1

2

)j
⩽ 1

Получатся, данное произведение
∏
j⩾0

uj(z) подходит.

Лекция XI
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1.10.2 Упрощённый вид множителей Вейерштрасса

Если известно, насколько быстро происходит стремление |aj | −→
j→∞

∞, то можно утверждать нали-

чие сходимости и при множителях Вейерштрасса более простого вида.

1. Если
∑
n⩾0

1
|an| <∞, то никаких премудростей не надо:

∞∏
j=1

(
1− z

aj

)
сходится.

Доказательство. Зафиксируем N ∈ N, и рассмотрим компакт K :=
{
z ∈ C

∣∣∣|z| ⩽ 1
2aN

}
. Надо

доказать, что
∑
j⩾N

log
(
1− z

aj

)
сходится.

Под логарифмом стоят выражения вида 1 − t, где |t| ⩽ 1
2 . Разложим в ряд и оценим:

|log(1− t)| =
∣∣∣t+ t2

2 + t3

3 + . . .
∣∣∣ = ∣∣∣t(1 + t

2 + t2

3 + . . .
)∣∣∣ ⩽ |t| · C, где C :=

∑
n⩾1

(1/2)n−1

n . Этой

оценки достаточно:
∑
j⩾N

∣∣∣log (1− z
aj

)∣∣∣ ⩽ ∑
j⩾N

C
∣∣∣ zaj ∣∣∣, что сходится равномерно по z ∈ K.

2. Если
∑
n⩾0

1
|an|2 <∞, то хватит первого члена при разложении логарифма в ряд:

∞∏
j=1

(
1− z

aj

)
e

z
aj

сходится.

Доказательство. Зафиксируем N ∈ N, и рассмотрим компакт K :=
{
z ∈ C

∣∣∣|z| ⩽ 1
2aN

}
. Надо

доказать, что
∑
j⩾N

log
(
1− z

aj

)
+ z

aj
сходится.

Разложим в ряд и оценим: | log(1− t)+ t| =
∣∣∣ t22 + t3

3 + t4

4 + . . .
∣∣∣ = t2

∣∣∣ 12 + t
3 + t2

4 + . . .
∣∣∣ ⩽ t2 ·C,

где C :=
∑
n⩾0

(1/2)n

n+2 . Этой оценки достаточно:
∑
j⩾N

∣∣∣log (1− z
aj

)
z
aj

∣∣∣ ⩽ ∑
j⩾N

C
∣∣∣ zaj ∣∣∣2, что сходится

равномерно по z ∈ K.

Замечание. Понятно, что целая функция с данным мультимножеством нулей не единственна —
можно взять любую другую целую функцию без нулей (скажем, экспоненту), и домножить на неё.

Следствие 1.10.1. Пусть f : C → C — целая функция с бесконечным числом нулей, и g —
произведение Вейерштрасса по нулям функции f (неважно, общего вида, или с упрощёнными
множителями).

Тогда ∃ целая h : C → C: f = geh.
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Доказательство. f
g — целая функция (там, где у g нули, у f — нули той же кратности, поэтому

все особенности устранимы). По той же причине ∀z ∈ C : fg (z) ̸= 0. Тем самым, у неё есть ветвь
логарифма, выберем какую-то ветвь h, она как раз подходит.

Пусть G — область, f аналитична в G кроме некоторого множества полюсов. Такая функция
называется мероморфной в G. Так как полюса по определению изолированы, то их не более, чем
счётное количество.

Мероморфную в C функцию называют мероморфной (без указания области).

Следствие 1.10.2. f мероморфна ⇐⇒ ∃ целые g1, g2 : f = g1
g2
.

Доказательство. Рассмотрим функцию 1
f . Она не равна тождественно нулю.

Пусть g2 := g — произведение Вейерштрасса по нулям функции 1
f , g1 := g ·f — целая функция.

1.10.3 Разложение синуса в произведение

Разложим синус в произведение, построив произведение Вейерштрасса по его нулям. А где нули
синуса? sin z = eiz−e−iz

2 .

sin z = 0 ⇐⇒ eiz = e−iz ⇐⇒ e2iz = 1 ⇐⇒ z ∈ {j · π | j ∈ Z}

Как видим, сумма обратных квадратов нулей сходится, поэтому можно записать произведение
Вейерштрасса в виде

z ·
∏

j∈Z\{0}

(
1− z

jπ

)
e

z
jπ

где произведение берётся в порядке возрастания модулей j. Иными словами,

z · lim
N→∞

∏
|j|⩽N
j ̸=0

(
1− z

jπ

)
e

z
jπ = z · lim

N→∞

N∏
j=1

(
1− z2

j2π2

)
= z

∞∏
j=1

(
1− z2

j2π2

)

Как мы выяснили, ∃ целая h : C → C : sin(z) = eh(z)z
∞∏
j=1

(
1− z2

j2π2

)
Факт 1.10.1. h ≡ 0 подойдёт (понятно, что если это правда, то h ≡ 2πik для k ∈ Z тоже
подойдёт).

Доказательство.

Замечание (О логарифмической производной). Пусть ϕ — аналитическая функция, как
известно, её логарифмическая производная ϕ′

ϕ . Как видно из записи, она не зависит от
того, какая ветвь логарифма где взята.

Если ϕ = ϕ1 · . . . · ϕk, то несложно посчитать, что ϕ′

ϕ =
ϕ′
1

ϕ1
+ · · ·+ ϕ′

n

ϕn
. Утверждается, что

формула сохраняется и для бесконечного произведения.

Пусть произведение
∞∏
j=1

ϕj(z) сходится равномерно на любом компакте, не содержащем

нулей функций ϕj . Пусть K — такой компакт, то есть (ϕ1 · . . . ·ϕn)(z)⇒ ϕ(z) равномерно.

Тогда (ϕ1 · . . . ·ϕN )′(z)⇒ ϕ′(z) на этом же компакте, и как следствие, ϕ
′
1(z)
ϕ1(z)

+ · · ·+ ϕ′
N (z)
ϕN (z) =

(ϕ1·...·ϕN )′(z)
(ϕ1·...·ϕN )(z) ⇒

ϕ′(z)
ϕ(z)
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• Возьмём логарифмическую производную обеих частей равенства sin(z) = eh(z)·z· lim
N→∞

∏
|j|⩽N
j ̸=0

(
1− z

jπ

)
:

cos z

sin z
= h′(z) +

1

z
− lim
N→∞

∑
|j|⩽N
j ̸=0

1

jπ

1

1− z
jπ

= h′(z) +
1

z
+ lim
N→∞

∑
|j|⩽N
j ̸=0

1

z − jπ

Отлично, у нас имеется равномерная сходимость на компактах, продифференцируем ещё раз:

1− ctg(z)2 = h′′(z)− 1

z2
− lim
N→∞

∑
|j|⩽N
j ̸=0

1

(z − jπ)
2

• Проведём окружность Γk с центром в нуле, и радиусом π
(
k + 1

2

)
, и докажем, что h′′ ограни-

чена на Γk некоторой константой C, не зависящей от k.

Понятно 1
|z|2 ⩽

4
π2 , оценим при z ∈ Γk : 1

|z−jπ|2 ⩽
1

(k+ 1
2−|j|)

2
π2
:

ℜ

ℑ

1
. . .

πk

π
2

Γk

Осталось оценить котангенс:

ctg(z) =
cos z

sin z
= i

eiz + e−iz

eiz − e−iz

Раскладывая z = x+ iy, получаем

| ctg(z)| =
∣∣∣∣e−yeix + eye−ix

e−yeix − eye−ix

∣∣∣∣
Выберем ε < π

4 , и оценим котангенс вблизи вещественной оси (на красных дужках Γk) при
помощи периодичность и непрерывность котангенса в круге радиуса 2ε, там он ограничен, и
при |y| ⩾ ε на синих дужках:∣∣∣∣e−yeix + eye−ix

e−yeix − eye−ix

∣∣∣∣ ⩽ ey + e−y

|e−y − ey|
=

ey + e−y

e|y| − e−|y| =
e2|y| + 1

e2|y| − 1
= 1 +

2

e2|y| − 1
⩽ 1 +

2

e2ε − 1

• Тем самым, на Γk: h′′ ограничена C, по принципу максимума h′′ ограничена внутри круга
этой же константой, значит, h′′ вообще ограничена.

Согласно теореме Лиувилля, h′′ = const, тем самым, h(z) = A + Bz + Cz2 для некоторых
A,B,C ∈ C.
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• Подставим h(z) = A+Bz + Cz2:

cos z

sin z
= B + 2Cz + lim

N→∞

∑
|j|⩽N

1

z − jπ

Здесь все слагаемые 2π-периодичны, кроме 2Cz. Вывод один: C = 0

• Теперь подставим sin z
z = eA+Bz

∞∏
j=1

(
1− z2

j2π2

)
. В силу чётности B = 0.

• Обозначим D := eA. sin z
z = D

∞∏
j=1

(
1− z2

j2π2

)
. Сопоставляя значения в 0, получаем D = 1.

Ура,

sin z = z

∞∏
j=1

(
1− z2

j2π2

)
Попутно мы выяснили, что

ctg(z) = lim
N→∞

∑
|j|⩽N

1

z − jπ
=

1

z
+

∞∑
j=1

2z

z2 − j2π2

Ещё немного преобразуем:
ctg z − 1

z

2z
=

∞∑
j=1

1

z2 − j2π2

Устремим в этой формуле z → 0. Слева оказывается z cos z−sin z
2z2 sin z =

z− z3

2 −z+ z3

6 +O(z5)

2z3+O(z5) = − 1
6 + o(1), а

справа − 1
π2

∞∑
j=1

1
j2 + o(1), образуя знаменитую формулу, выведенную Эйлером

∞∑
n=1

1

n2
=
π2

6

1.10.4 Γ-функция Эйлера

Хотим обобщить факториал в комплексной плоскости.

Построим аналитическую функцию f в некоторой области G (где G хочется побольше), такую, что

1. z ∈ G⇒ z + 1 ∈ G.

2. f(z + 1) = zf(z) — эта формула отличается от той, что у факториала, сдвигом на 1. В таком
виде ответ будет более каноничным.

3. 1 ∈ G и f(1) = 1.

Для удовлетворяющей таким условиям функции f можно заметить, что ∀n ∈ N : f(n) = (n− 1)!.

Дополнительно потребуем ∀z ∈ G : f(z) ̸= 0, например, чтобы можно было спокойно писать
z = f(z+1)

f(z) .

К сожалению, не всё возможно в этой жизни. Заведомо 0 /∈ G: если 0 ∈ G, то f(1) = f(0 + 1) =
0 · f(0) = 0. Далее первое условие влечёт, что −1,−2,−3, . . . /∈ G.

Положим G := C \ {0,−1,−2, . . . }, и построим в этой области функцию с указанными свойствами,
имеющую простые полюса в выколотых точках. Она не единственна, но сейчас мы увидим наиболее
естественный кандидат.
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Пусть f — такая. Положим g := 1
f — целая функция с простыми нулями в {0,−1,−2, . . . }.

Построим g, используя множители Вейерштрасса (h — какая-то целая):

g(z) = zeh(z)
∞∏
n=1

(
1 +

z

n

)
e−

z
n

Теперь удовлетворим функциональное уравнение: g(z + 1) = g(z)
z .

g(z) = zeh(z) lim
N→∞

N∏
n=1

n+ z

n
e−

z
n

g(z + 1) = (z + 1)eh(z+1) lim
N→∞

N∏
n=1

1 + n+ z

n
e−

z
n− 1

n

g(z + 1)

g(z)
=
z + 1

z
eh(z+1)−h(z) lim

N→∞

N + 1 + z

1 + z
e−1− 1

2−
1
3−···− 1

N +logNe− logN

Как доказывалось во II семестре, 1+ 1
2+· · ·+ 1

N−logN −→
N→∞

γ — постоянная Эйлера — Маскерони.

Итак, от функции h хочется свойства

1

z
=
z + 1

z
eh(z+1)−h(z) lim

N→∞

N + 1 + z

N(1 + z)
e−γ =

1

z
eh(z+1)−h(z)e−γ

Самым простым решением будет взять линейную функцию h(z) = γz. Получили

g(z) = zeγz
∞∏
n=1

(
1 +

z

n

)
e−

z
n

Проверим, что g(1) = 1:

g(1) = eγ
∞∏
n=1

(
1 +

1

n

)
e−

1
n = eγ lim

N→∞

2 · 3 · . . . · (N + 1)

N !
e−1− 1

2−···− 1
N =

= eγ lim
N→∞

(N + 1)!

N ! ·N
e−1− 1

2−···− 1
N +logN = eγ lim

N→∞

N + 1

N
e−1− 1

2−···− 1
N +logN = 1

Чудесным образом ничего подкручивать не пришлось.

Лекция XII
3 мая 2024 г.

Итак, определили

Γ(z)
def
=

1

z
e−γz

1
∞∏
n=1

(
1 + z

n

)
e−

z
n

(∗)

Замечание. Пусть ϕ — целая функция с периодом 1 и ϕ(1) = 1. Тогда Γ · ϕ тоже подходит, как
функция, удовлетворяющая трём условиям из (подраздел 1.10.4), однако, при некотором дополни-
тельном условии мы можем получить «единственность» (см. теорема 1.10.2).

Немного преобразовав выражение для гамма-функции, можно получить следующее:

Γ(z) = e−γz
1

z
lim
N→∞

N !

(1 + z) · . . . · (N + z)
ez(1+···+ 1

N ) = lim
N→∞

N ! · ez logN

z · (1 + z) · . . . · (N + z)
=

= lim
N→∞

N ! ·Nz

z(1 + z) . . . (N + z)
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Также имеется так называемая формула дополнения:

Γ(z)Γ(−z) = − 1

z2
1

∞∏
n=1

(
1− z2

n2

) = −1

z

π

sin (πz)

Часто её записывают немного в другом виде, домножив на z, и воспользовавшись функциональным
уравнением: Γ(z)Γ(1− z) = π

sin(πz) . Кстати, отсюда видно, чему равен «факториал» от − 1
2 :

Γ

(
1

2

)2

= π

Определим g(z) := 1
Γ(z) , это целая функция с нулями в целых неположительных точках. Значит, у

g имеется непрерывная ветвь логарифма в C \ (−∞; 0]. Одна из них равна

log g(z) = log z + γz +

∞∑
n=1

(
log
(
1 +

z

n

)
− z

n

)
Про эту ветвь даже можно утверждать, что она главная, так как у неё, как и у гамма-функции,
значения на вещественной оси вещественные. Дифференцируя log g(z), получаем

(log g(z))
′
=

1

z
+ γ +

∞∑
n=1

( 1
n

1 + z
n

− 1

n

)
=

1

z
+ γ +

∞∑
n=1

(
1

n+ z
− 1

n

)

Таким образом, (log Γ(z))′ = − 1
z − γ −

∞∑
n=1

(
1

n+z −
1
n

)
, и

(log Γ(z))
′′
=

1

z2
+

∞∑
n=1

1

(n+ z)2
=

∞∑
n=0

1

(n+ z)2
(⋆)

Следствие 1.10.3. На R>0: log Γ(z) есть выпуклая функция.

Теорема 1.10.2. Пусть ϕ — непрерывная положительная функция на R>0, ϕ(1) = 1, и ϕ удо-
влетворяет функциональному уравнению: ∀x ∈ R>0 : xϕ(x) = ϕ(x + 1). Если log ϕ выпукла, то
∀x > 0 : ϕ(x) = Γ(x).

Доказательство. В положительных целых точках ϕ(n) = (n − 1)!, и достаточно доказать, что
ϕ(x) = Γ(x) при всех x ∈ (0, 1), функциональное уравнение влечёт равенство в остальных точках.

Определим g(x) := log ϕ(x), тогда функциональное уравнение переписывается в виде g(x + 1) −
g(x) = log x. Из выпуклости ∀n ∈ N, n > 1,∀x ∈ (0, 1):

g(n− 1)− g(n)

(n− 1)− n︸ ︷︷ ︸
log(n−1)

⩽
g(n+ x)− g(n)

(n+ x)− n
⩽
g(n+ 1)− g(n)

(n+ 1)− n︸ ︷︷ ︸
log(n)

Преобразуем средний член неравенства:

g(x+ n)− g(n) =

n−1∑
k=0

(
g(x+ k+ 1)− g(x+ k)

)
+ g(x)− g(n) =

n−1∑
k=0

log(x+ k) + g(x)− log ((n− 1)!)

Выражая g(x), получаем

x log(n− 1)−
n−1∑
k=0

log(x+ k) + log((n− 1)!) ⩽ g(x) ⩽ x log(n)−
n−1∑
k=0

log(x+ k) + log((n− 1)!)

Разность между левой и правой частями x log(n−1)−x log(n) −→
n→∞

0. Понятно, что g(x) = log Γ(x)
подходит, так как удовлетворяет посылке теоремы, и так как разность между пределами стремится
к нулю, то в пересечении всего одна точка. Тем самым, g(x) определена однозначно.
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1.10.5 Эйлеров интеграл

Определим

Ψ(z) =

∞∫
0

e−ttz−1 dt, z ∈ C

Когда Ψ определена, а интеграл сходится? Разложим z = x + iy, где x, y ∈ R. Теперь Ψ(z) =
∞∫
0

e−ttx−1tiy dt. На +∞ экспонента мажорирует остальные члены, в нуле имеется особенность, и

интеграл суммируем, если x > 0.

Тем самым, Ψ(z) определена при ℜz > 0.

Теорема 1.10.3. Ψ(z) = Γ(z) при z > 0.

Доказательство.

• Ясно, что Ψ(z) > 0 при z ∈ R>0.

• Ψ аналитична при ℜz > 0, так как можно продифференцировать под знаком интеграла:
производная суммируема.

• Ψ(1) =
∞∫
0

e−t dt = (−e−t)
∣∣∞
0

= 1.

• Убедимся, интегрируя по частям, что xΨ(x) = Ψ(x+ 1)

Ψ(x+ 1) =

∞∫
0

e−ttx dt = −
∞∫
0

tx d(e−t) = −
(
txe−t

) ∣∣∞
0

+

∞∫
0

xtx−1e−t dt = xΨ(x)

• Убедимся, что logΨ выпукла на вещественной оси: ∀x, y ∈ R>0,∀α, β ∈ [0, 1], α+ β = 1:

logΨ(αx+ βy) ⩽ α logΨ(x) + βΨ(y)

Ψ(αx+ βy) ⩽ Ψ(x)αΨ(y)β

∞∫
0

tαx+βy−1e−t dt =

∞∫
0

(tx−1)α · (ty−1)βe−t dt

что верно по неравенству Гёльдера.

• Согласно теореме единственности (теорема 1.10.2), Ψ(z) = Γ(z) при ℜz > 0.

В частности, получаем интеграл Гаусса:

√
π =

∞∫
0

e−tt−
1
2 dt =

∥∥∥∥ t = x2

dt = 2xdx

∥∥∥∥ = 2

∞∫
0

e−x
2

dx =

∞∫
−∞

e−x
2

dx

1.10.6 Формула Стирлинга

На первом курсе мы доказали, что ∃c ∈ R : n! ∼ c
√
nnne−n. Так как гамма-функция определена со

сдвигом, то будем преобразовывать выражение для (n− 1)!:

(n− 1)! ∼ c
√
n− 1(n− 1)n−1e−n+1 = ce

1√
n− 1

(n− 1)ne−n =

= ce
1√
n

√
n

n− 1

(
1− 1

n

)n
nne−n ∼ c

1√
n
nne−n
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Теорема 1.10.4. Пусть ϕ > 0. Для {z ∈ C | arg z ∈ (−π + ϕ, π − ϕ)}, то есть из области без угла:

ℜ

ℑ

ϕ
log(Γ(z)) = log

√
2π + log 1

z
1
2
− z + z log z +O

(
1
|z|

)

Здесь логарифм и корень определены в C \ (−∞, 0], вещественные на вещественной оси. Потенци-
руя, получаем Γ(z) ∼

√
2π 1

z
1
2
e−zez log z

Доказательство. Будем использовать (⋆). Положим ϕ(t) := 1
(t+z)2 , и приблизим

∞∑
n=1

ϕ(n) интегра-

лом. Оценим, что при замене погрешность не очень большая:

ϕ(n)−

n+ 1
2∫

n− 1
2

ϕ(t) dt =

n+ 1
2∫

n− 1
2

(ϕ(n)− ϕ(t)) dt =

1
2∫

0

(2ϕ(n)− ϕ(n+ t)− ϕ(n− t)) dt

Тем самым, ϕ(n) =
n+ 1

2∫
n− 1

2

ϕ(t) dt+

1
2∫
0

(2ϕ(n)− ϕ(n+ t)− ϕ(n− t)) dt, и согласно (⋆):

(log Γ(z))
′′
=

1

z2
+

∞∑
n=1

n+ 1
2∫

n− 1
2

1

(t+ z)2
dt

︸ ︷︷ ︸
∞∫

1/2

1
(t+z)2

dt= 1
1/2+z

+

∞∑
n=1

1
2∫

0

(
2

(n+ z)2
− 1

(n+ z + t)2
− 1

(n+ z − t)2

)
dt

Дважды почленно возьмём первообразную обеих частей, пока не заботясь вопросами сходимости:

(log Γ(z))
′ ?
= A− 1

z
+ log

(
z +

1

2

)
+

∞∑
n=1

1
2∫

0

(
1

n+ z + t
+

1

n+ z − t
− 2

n+ z

)
dt

log(Γ(z))
?
= B +Az − log z + log

(
z +

1

2

)(
z +

1

2

)
− z +

∞∑
n=1

1
2∫

0

log
(n+ z)2 − t2

(n+ z)2
dt

Так как z бегает в области без угла, то |n+z| ⩾ n sin(ϕ). Таким образом, log
(
1− t2

(n+z)2

)
оценива-

ется сверху, и ряд
∞∑
n=1

1
2∫
0

log
(
1− t2

(n+z)2

)
сходится абсолютно и равномерно. В частности, сходится

равномерно на компактах, значит, его можно дважды продифференцировать почленно, получится

(log Γ(z))′′. Вопросы сходимости решены, ?
= можно заменить на =. Оценим остаток:

∞∑
n=1

1
2∫

0

log

(
1− t2

(n+ z)2

)
dt ⩽ C1

∞∑
n=1

1

(n+ |z|)2
⩽ C2

∞∫
1

ds

(s+ |z|)2
⩽ C3

1

|z|

Заметим, что log
(
z + 1

2

)
− log (z) = log

(
1 + 1

2z

)
= 1

2z +O
(

1
|z|2

)
, и преобразуем(

z +
1

2

)
log

(
z +

1

2

)
=

1

2
+ z log z +

1

2
log z +O

(
1

|z|

)
Тем самым,

log(Γ(z)) = B +Az − 1

2
log z + z log z +O

(
1

|z|

)
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Осталось выяснить, чему равны константы A и B. Так как мы знаем для натуральных n, что
Γ(n) = (n− 1)! ∼ ce−n 1√

n
nn при n→ ∞, то A = −1.

Теперь запишем формулу дополнения Γ(z)Γ(−z) = − π
z sin(πz) . Так как Γ вещественна на веще-

ственной оси, или из интегральной формулы, видно, что Γ(z) = Γ (z). Тем самым, при y ∈ R:

|Γ(iy)|2 = − π

iy sin (πiy)
= − 2π

y (e−yπ − eyπ)
∼ 2π

yeyπ

С другой стороны, Γ(iy) ∼ eBe−iye−
1
2 (log y+

π
2 i)eiy(log y+

π
2 i), откуда |Γ(iy)| = eB 1√

y e
−π

2 y. Тем самым,

e2B = 2π, и так как B ∈ R, то B = log
√
2π

Лекция XIII
10 мая 2024 г.

1.11 Аналитическое продолжение

Ещё с первого курса мы знаем, что аналитическая функция однозначно задаётся своими значе-
ниями на множестве, содержащем предельную точку. Допустим, мы знаем функцию в маленьком
кусочке C, пусть даже в маленькой открытой области. А как (и можно ли) узнать её «целиком»?

Примеры.

• Ряд 1+ z+ z2 + . . . сходится в единичном круге D, но на самом деле сумма равна 1
1−z , и эта

функция аналитична в множестве Ĉ \ {1}.

• На предыдущей лекции мы поняли, что Γ(z) =
∞∫
0

e−ttz−1 dt, где интеграл сходится при

ℜz > 0. А про саму Γ мы знаем, что она определена в C \ {−n | n ∈ N0}.

• Про ζ-функцию Римана ζ(s) =
∞∑
n=1

1
ns легко показать, что ряд сходится при ℜs > 1. Тем не

менее, её тоже можно продолжить почти на всю комплексную плоскость (C \ {1}).

Пусть G1, G2 ⊂ C — области. Пусть f1 : G1 → C аналитична, и предположим, что G1∩G2 непусто.

Определение 1.11.1 (Аналитическое продолжение f1 в область G2). Такая аналитическая f2 :
G2 → C, что f1

∣∣
G1∩G2

= f2
∣∣
G1∩G2

.

Здесь существенно, что не факт, что G1 ⊂ G2. Так, при продолжении функции с G1 на G2, с G2

на G3, с G3 на G4, а с G4 на G1 может получиться так, что на пересечении G1 ∩G4: f1 ̸= f4.

G1G2

G3 G4

Также может не наблюдаться связности пересечения G1 ∩G2.

Несложно придумать функцию, которая не продолжается за пределы данной области (скажем,
круга D).

Теорема 1.11.1 (Адамар, «естественная граница аналитичности»). Нельзя продолжить f(z) =
∞∑
n=1

zn! ни в какую область G, такую, что G \ D непусто.
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Доказательство. Пусть f продолжается в некоторую область G, как в условии.

0

G

Значит, на выделенной дуге (какой-то дуге из пересечения) f должна быть непрерывна, и для
любой ζ на дуге должен существовать предел lim

r→1−0
f(rζ). Запишем ζ = e2πiθ, и выберем такое ζ,

чуть подвинув в случае надобности, что θ ∈ Q. Пусть θ = k
l , где k ∈ Z, l ∈ N. Теперь

f(rζ) =

∞∑
n=0

rn!e2πiθn! =

l∑
n=0

rn!e2πiθn! +

∞∑
n=l+1

rn!e2πi
k
l n! =

l∑
n=0

rn!e2πiθn! +

∞∑
n=l+1

rn!

Так как rn! −→
r→1−0

1, то сумма расходится. Тут, кстати, можно применить теорему Леви:
∞∑

n=l+1

rn!

— интеграл от rn! по n ∈ N и считающей мере — сходится к сумме единиц
∞∑

n=l+1

1 при r → ∞.

Впрочем, и без неё всё видно.

Пусть f : C → C — целая функция. Рассмотрим другую функцию z 7→ f(z). Она целая: так, если

f(z) =
∞∑
n=0

anz
n, то новая функция задаётся рядом

∞∑
n=0

anz
n.

Следствие 1.11.1. Если f : C → C — целая, и f(R) ⊂ R, то f(z) = f(z) по теореме единствен-
ности.

Если же f : (G ⊂ C) → C, то z 7→ f(z) задана и аналитична в {z | z ∈ G}. Это видно из того, что
если w0 ∈ {z | z ∈ G}, то w0 ∈ G, и можно разложить f(z) =

∞∑
n=0

an(z − w0)
n вблизи w0, откуда

f(z) =
∞∑
n=0

an(z − w0)
n.

1.11.1 Принцип симметрии Римана — Шварца

Теорема 1.11.2. Пусть область G ⊂ C+
def
= {z ∈ C | ℑz > 0}, такова, что G ∩ R =: I — отрезок

ненулевой длины. Пусть f : G→ C аналитична в G, непрерывна в G, и f
(
G ∩ R

)
⊂ R.

Пусть G̃ := G ∪ I ∪ {z | z ∈ G}. Тогда ∃!f̃ : G̃ → C : f̃ — аналитическое продолжение f на G̃, и f̃

задаётся формулой ∀z ∈ G ∪ I :

{
f̃(z) = f(z)

f̃(z) = f(z)
.

Доказательство. Очевидно, что так определённая f̃ аналитична в {z | z ∈ G}, и надо убедиться,
что аналитичность имеет место на I. Несложно проверить, что f̃ непрерывна на I: f̃

∣∣
G

= f
∣∣
G

непрерывна и f̃
∣∣
{z|z∈G} тоже, а G ∪

{
z | z ∈ G

}
— фундаментальное покрытие G̃.

Теперь проверим, что дифференциальная форма f̃(z) dz замкнута в G̃, показав тем самым анали-
тичность f̃ .

ℜ

G

{z | z ∈ G}

ℜε

54



Всякий прямоугольник либо лежит в G∪ I, либо в {z | z ∈ G} ∪ I, либо разбивается в сумму двух
таких. Интеграл формы по такому прямоугольнику равен нулю, так как можно чуть-чуть отойти
от вещественной оси, и использовать непрерывность f̃ .

В данной формулировке принцип симметрии имеет не наибольшую общность. Во-первых, доста-
точно требовать, чтобы G ∩ R было не отрезком, а лишь содержало некоторый отрезок.

Во-вторых, в качестве кривой, относительно которой происходит отражение, может выступать не
вещественная прямая, а ещё что-то. В этом случае условия вещественности f на вещественной оси
заменяются на некоторые «условия сопряжения», которые получаются из условий вещественности
применением однолистного отображения, переводящего кривую отражения в R.

G

отражение G

1.11.2 Методы аналитического продолжения

«В этом месте обычно делают такой заголовок, но собственно методов там и нет, кроме одного».

1. Переразложение в степенной ряд.

Пусть z0, z1 ∈ G, f : G → C аналитична. Тогда можно переразложить f в ряд точке z1,
и может так получиться, что радиус сходимости будет больше, чем dist(z0, ∂G), то есть
получится существенное продолжение f . Скажем, если 1 + z + z2 + · · · = 1

1−z (z0 = 0)
переразложить в ряд в z1 = − 1

2 , то радиус сходимости будет уже 3
2 .

2. Продолжение вдоль цепочки областей.

Пусть G1, . . . , Gn — области, Gj∩Gj+1 непусты и связны, и заданы f1, . . . , fn, где fj : Gj → C
аналитична. Конечно, предполагается согласованность fj

∣∣
Gj∩Gj+1

= fj+1

∣∣
Gj∩Gj+1

. Говорят,
что fn является продолжением f1 вдоль цепочки областей G1, . . . , Gn.

3. Продолжение вдоль пути.

На самом деле, этот метод эквивалентен предыдущему.

Определение 1.11.2 (Элемент аналитической функции в точке z0). Пара (f,Bz0), где Bz0 —
открытый круг с центром в z0 и f : Bz0 → C аналитична.

Пусть f определена и аналитична в точке z0. Её можно разложить в ряд с центром в точке
z0, и рассмотреть радиус сходимости.

Определение 1.11.3 (Естественный элемент в точке z0). Такой элемент (f,Bz0), что Bz0 —
круг максимально возможного радиуса.

Центр и радиус круга Bz0 элемента (f,Bz0) называются центром и радиусом элемента.
Далее везде считаем, что у f есть особенности где-то в C, значит, все круги из естественных
элементов имеют конечный радиус. Иначе f целая, и в любой точке естественный элемент
определён на всей плоскости.

Пусть γ : [a, b] → C — путь без задержек (нет невырожденных отрезков, на которых путь
постоянен). Условие необязательное, но его всегда можно добиться, стягивая отрезки, на
которых путь постоянен, до одной точки.

55



Пусть A = γ(a), B = γ(b). Не исключено, что A = B — путь может иметь самопересечения и
прочее.

Пусть ∀t ∈ [a, b] задан естественный элемент (ft, Bγ(t)) аналитической функции. Эти элемен-
ты должны быть некоторым образом связаны: пусть ϕ : [a, b] → C — связывающая функция,
такая, что ∀t ∈ [a, b] : ∃δ > 0 : |s− t| < δ ⇒ ϕ(s) = ft(γ(s)).

Замечание. Такая ϕ автоматически непрерывна: из условия следует непрерывность в каждой
точке: γ непрерывна, а ft даже аналитична.

Говорят, что (fb, Bγ(b)) — аналитическое продолжение элемента (fa, Bγ(a)) вдоль пути γ.

При продолжении некоторого элемента вдоль разных путей получится большой набор эле-
ментов, заметающих некоторую область. Совокупность таких элементов называется полной
аналитической функцией, а объединение всех кругов, составляющих элементы — есте-
ственной областью определения аналитической функции.

Пример. Пусть f(z) =
√
z = e

1
2 log(z), где в качестве log выбрана главная ветвь логарифма (веще-

ственная на вещественной оси, определённая на C \ (−∞, 0]).

Естественный элемент f в точке 1 имеет радиус 1 — расстояние до ближайшей особенности,
которая имеет место в нуле.

ℑ

ℜ10

γ

Продолжим f вдоль пути γ(t) = e2πit, где t ∈ [0, 1]. Понятно, что связывающая точка в точке t
должна принимать одна из значений корня γ(t), подойдёт ϕ(t) = e2πi

t
2 . Продлевая f вдоль пути γ,

получим ветвь корня, равную −1 в 1. Обходя вдоль пути γ ещё раз (продлевая вдоль пути γ ⊕ γ),
мы получим старую ветвь корня.

Если бы f была корнем кубическим, то надо было бы три раза обойти вокруг нуля, чтобы получить
прежнюю ветвь корня. А у логарифма всякий раз при обходе вдоль нуля аргумент будет увеличи-
ваться на 2πi, и при продолжении по пути ненулевого индекса относительно нуля мы не получим
прежнюю ветвь.

Утверждение 1.11.1. Отношение «элемент аналитической функции β есть продолжение эле-
мента α вдоль некоторого пути» является отношением эквивалентности.

Доказательство. Очевидно.

Имея в виду это утверждение, получаем, что полная аналитическая функция — класс эквива-
лентных элементов. Полная аналитическая функция, построенная по корню из примера — набор
функций вида e

1
2 log z, и значения зависят от того, какая ветвь логарифма выбрана, в каждой точке

— два варианта. Естественная область определения корня — C \ {0}.

Утверждение 1.11.2. Методы продолжения вдоль цепочки областей и вдоль пути эквивалент-
ны.

В одну сторону понятно, как сводиться: пусть есть цепочка областей G1, G2, . . . , Gn, выберем по
точке tj ∈ Gj ∩Gj+1, и соединим последовательные точки tj и tj+1 путём, проходящим по области
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Gj+1, получив путь от G1 до Gn:

В другую сторону хочется нарисовать подобную картинку, но будем чуть сложнее, так как путь
может иметь самопересечения, и надо области получить такими, чтобы соседние пересекались, и
содержали нужный отрезок пути в себе.

Лемма 1.11.1. Пусть γ : [a, b] → C — путь без задержек, и (ft, Bγ(t)) — естественные элементы
в точках γ(t) соответственно, реализующие аналитическое продолжение элемента (fa, BA) в
элемент (fb, BB) со связывающей функцией ϕ.

Пусть r(t) — радиус естественного элемента (ft, Bγ(t)) (r(t) <∞).

Тогда r непрерывна на [a, b].

Доказательство. Пусть имеются два круга B(z1, r1) и B(z2, r2), и пусть z2 ∈ B(z1, r1):

z1 z2
r1 r2

Предположим, что g аналитична в B(z1, r1) ∪B(z2, r2). Если B(z1, r1) и B(z2, r2) — естественные
элементы g, то g заведомо аналитична в B(z2, r1 − |z1 − z2|), откуда r2 ⩾ r1 − |z1 − z2|. Иными
словами, r1 − r2 ⩽ |z1 − z2|.

При этом, если |z1 − z2| < r1
2 , то r2 ⩾ r1 − |z1 − z2| ⩾ r1 − r1

2 = r1
2 , в частности |z1 − z2| < r2.

Тем самым, верна и аналогичная оценка r2 − r1 ⩽ |z1 − z2|, тем самым, |r1 − r2| ⩽ |z1 − z2| (при
|z1 − z2| < r1

2 ).

Теперь пусть t0 ∈ [a, b], и r0 — радиус элемента
(
ft0 , Bγ(t0)

)
. Выберем δ > 0 так, что |t− t0| < δ ⇒

|γ(t)− γ(t0)| < r0
2 . Тогда из проделанной выше выкладки: |r(t)− r(t0)| ⩽ |γ(t)− γ(t0)|.

Лекция XIV
17 мая 2024 г.

Почему продолжение вдоль пути можно заменить продолжением вдоль цепочки областей?

Функция t 7→ r(Bt) непрерывна, и всегда положительна, значит, s := min
t∈[a,b]

r(Bt) > 0. Выберем

δ > 0, и поделим отрезок точками a = t0 < t1 < · · · < tn = b таким образом, что osc[tj ,tj+1]
def
=

sup {|γ(x)− γ(y)| | x, y ∈ [tj , tj+1]} < δ. Пусть δ настолько мало, что |γ(u) − γ(v)| < δ ⇒ |r(u) −
r(v)| < s

10 .

Тогда цепочка кругов B0, . . . , Bn с центрами в γ(tj) такова, что Bj ∩ Bj+1 ̸= ∅. Понятно, что
продолжения вдоль пути γ, и вдоль цепочки кругов B0, . . . , Bn совпадают.

Теорема 1.11.3 (Продолжение вдоль пути единственно). Пусть Dt — элементы аналитических
функций, образующие аналитическое продолжение вдоль γ с направляющей функцией ϕ. Анало-
гично D̃t — элементы вдоль γ с функцией ϕ̃.

Если Da = D̃a, то ∀t ∈ [a, b] : Dt = D̃t и ϕ(t) ≡ ϕ̃(t).

Доказательство. Покажем, что ∀t ∈ [a, b] : ϕ(t) = ϕ̃(t). Так как (Ba, fa) = Da = D̃a = (B̃(a), f̃a),
то при τ , достаточно близких к a: ϕ(τ) = fa(γ(τ)) = f̃a(γ(τ)) = f̃a(γ(τ)), то есть в некоторой
окрестности a: ϕ = ϕ̃.
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Пусть η = sup
{
τ0 ∈ [a, b] | ∀τ ∈ [a, τ0) : ϕ(τ) = ϕ̃(τ)

}
. Покажем, что η = b от противного. Рассмот-

рим элементы Dη = (Bη, fη) и D̃η = (B̃η, f̃η). При достаточно близких τ < η: ϕ(τ) = ϕ̃(τ). Это
множество — кусочек отрезка, имеющий предельную точку — значит, fη = f̃η, и ϕ = ϕ̃ в некоторой
окрестности η. Тем самым, η не супремум.

Пусть D = (B, f) — элемент аналитической функции в точке ζ.

Определение 1.11.4 (z0 ∈ C — точка ветвления для полной аналитической функции, порождённой
элементом D). Такая точка z0 ∈ C, что ∃γ : [a, b] → C — путь с началом и концом в ζ, такой, что
Indz0 γ ̸= 0, и имеется аналитическое продолжение элемента D вдоль γ в элемент D̃ ̸= D.

1.12 Рациональные и полиномиальные приближения

Будем приближать функцию рациональными функциями, то есть элементами C(t). Нам будет до-
статочно правильных дробей, то есть частных многочленов p

q , где deg p < deg q. Используя разло-
жение на простейшие дроби, можно показать, что любая функция раскладывается в сумму дробей
вида Cj

(z−zj)k . Однако для приближений достаточно таких дробей, в которых степень знаменателя
равна 1, так как можно немножко пошевелить множители в знаменателе, сделав их различными.

Определение 1.12.1 (Рациональная дробь). Рациональная функция
N∑
j=1

Cj

z−zj .

Теорема 1.12.1 (Рунге). Пусть K — компакт на плоскости, f аналитична в окрестности K. Тогда

она приближается рациональными дробями: ∀ε > 0 : ∃R(z) =
N∑
j=1

Cj

z−zj — рациональная дробь,

такая, что все zj /∈ K, и sup
z∈K

|f(z)−R(z)| ⩽ ε.

Если C \K связно, то ∀ε > 0 : ∃p ∈ C[z] — многочлен, точно так же приближающий f : sup
z∈K

|f(z)−

p(z)| ⩽ ε, но это мы доказать не успели.

Доказательство. Напомним, что для дифференцируемой функции g : R2 → C определены опера-

торы ∂
∂z и

∂
∂z :

∂
∂z g = 1

2

(
∂g
∂x + i∂g∂y

)
и ∂
∂z g = 1

2

(
∂g
∂x − i∂g∂y

)
.

Лемма 1.12.1 (Формула Помпейю). Пусть ϕ ∈ D(C) — бесконечно дифференцируемая
(в вещественном смысле) функция с компактным носителем. Тогда ∀z ∈ C:

ϕ(z) =
1

π

∫
C

∂ϕ

∂ζ
(ζ)

z − ζ
dλ2(ζ)

Доказательство леммы.

Например, если ϕ — целая, то так как она из D(C), то по теореме Лиувилля она нуль, и
интеграл тоже берётся от нуля.

Зафиксируем z ∈ C. Пусть R > 0 настолько велико, что suppϕ ⊂ B(z,R). Введём
полярные координаты с центром в z: ζ − z = ρeiθ, где θ ∈ [0, 2π], ρ ∈ [0, R]. (Имеется
некоторая неоднозначность, но она на множестве меры нуль, что не вносит никакого
вклада). Пусть F (ρ, θ) = ϕ(ζ) = ϕ(z + ρeiθ). Продифференцируем:

∂ϕ

∂ζ
= F ′

ρ ·
∂ρ

∂ζ
+ F ′

θ ·
∂θ

∂ζ
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Выразим ζ − z = ρe−iθ, откуда ρ2 = (ζ − z)(ζ − z), и e2iθ = ζ−z
ζ−z . Теперь посчитаем

производные ∂θ
∂ζ

и ∂ρ

∂ζ
, дифференцируя по ζ эти равенства:

2ie2iθ
∂θ

∂ζ
=

∂

∂ζ

(
ζ − z

ζ − z

)
= − (ζ − z)

(ζ − z)2
⇒ ∂θ

∂ζ
=

1

2
ie−2iθ ζ − z

(ζ − z)2
=

1

2
ie−2iθ ζ − z

ρ2e−2iθ
=
i

2

ζ − z

ρ2

2ρ
∂ρ

∂ζ
= ζ − z ⇒ ∂ρ

∂ζ
=
eiθ

2

Теперь осталось записать интеграл:

ϕ(z) =
1

π

∫
C

∂
∂ζ
ϕ(ζ)

z − ζ
dλ2(ζ) =

1

π

∫
C

F ′
ρ

z − ζ

∂ρ

∂ζ
+

F ′
θ

z − ζ

∂θ

∂ζ
dλ2(ζ) =

=
1

π

2π∫
0

R∫
0

F ′
ρ

eiθ

2(z − ζ)
ρ dρ dθ +

1

π

R∫
0

2π∫
0

F ′
θ ·

i

2ρ2
ρdθ dρ

Второй интеграл обращается в нуль, как интеграл производной по периоду:
2π∫
0

F ′
θ dθ = 0.

Первый же обращается в − 1
π

2π∫
0

R∫
0

F ′
ρ

2 dρdθ = − 1
π

2π∫
0

ϕ(z+Reiθ)−ϕ(z)
2 dθ = 1

2π

2π∫
0

ϕ(z) dθ =

ϕ(z).

f аналитична в окрестности K, то есть на открытом U ⊃ K. ∃ компактное V ⊂ U : K ⊂ IntV :

KVU

Введём функцию h : V ∪ (C \ U) → C, такую, что h
∣∣
V
= f, h

∣∣
C\U ≡ 0, и продолжим её по теореме

Титце — Урысона (лемма 1.12.2) до некоторой непрерывной функции g : C → C. Подправим g до
дифференцируемой: g̃ := g ∗ αt, где αt — стандартная аппроксимативная единица, построенная по
α ∈ D(C).

При достаточно малом t функция g̃ аналитична в окрестности K: можно продифференцировать∫
g(w− z)αt(z) dz по w под знаком интеграла. Выберем ε > 0, и будем считать, что sup

K
|f − g̃| < ε.

Запишем формулу (лемма 1.12.1):

g̃(z) =
1

π

∫
C

∂g̃
∂z (ζ)

z − ζ
dλ2(ζ)

Возьмём носитель подынтегрального выражения — некоторое компактное множество S, отделённое
от K некоторым расстоянием d.

Покроем S =
N⊔
j=1

Sj , где diamSj < ε, и выберем произвольно ζj ∈ Sj , дальше положим λj =
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1
π

∫
Sj

∂g̃
∂z (ζ) dλ2(ζ). Утверждается, что

N∑
j=1

λj

z−ζj хорошо приближает g̃ на K:

∣∣∣∣∣∣g̃(z)−
N∑
j=1

λj
z − ζj

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
1

π

N∑
j=1

∫
Sj

[
∂g̃
∂z (ζ)

z − ζ
−

∂g̃
∂z (ζ)

z − ζj

]
dλ2(ζ)

∣∣∣∣∣∣∣ ⩽
⩽

1

π

N∑
j=1

∫
Sj

∣∣∣∣∂g̃∂z (ζ)
∣∣∣∣ · |ζ − ζj |

|z − ζ| · |z − ζj |
λ2(ζ) ⩽

1

π
max
ζ∈S

∣∣∣∣∂g̃∂z (ζ)
∣∣∣∣ N∑
j=1

|Sj |︸ ︷︷ ︸
const

ε

d2

при этом d тоже фиксировано. Выбирая достаточно малый ε, получаем достаточно хорошее при-
ближение.

Лемма 1.12.2 (Теорема Титце — Урысона). Пусть X — нормальное топологическое простран-
ство, замкнутое Y ⊂ X. Всякая ограниченная непрерывная функция f : Y → R продолжается
до непрерывной ограниченной (можно той же константой) f̃ : X → R. (При этом можно за-
менить R на C, разбив функцию на вещественную и мнимую части, и, применив теорему для
них отдельно, склеить их обратно.)

Доказательство. Можно считать, что −1 ⩽ f ⩽ 1 всюду (|f | ⩽ 1).

Пусть F1 :=
{
x ∈ Y | f(x) ⩾ 1

3

}
и F−1 :=

{
x ∈ Y | f(x) ⩽ − 1

3

}
. По лемме Урысона, ∃g : X → R —

непрерывная функция, такая, что g(x) =

{
1
3 , x ∈ F1

− 1
3 , x ∈ F−1

, и всюду − 1
3 ⩽ g ⩽

1
3 .

Рассмотрим f − g на Y . На F1 значения лежат в
[
0, 23

]
, на F2 значения лежат в

[
− 2

3 , 0
]
, а на

Y \(F1∪F2) — по неравенству треугольника значения лежат в
[
− 2

3 ,
2
3

]
. Тем самым, sup

t∈Y
|f(t)−g(t)| ⩽

2
3 . С другой стороны, sup

t∈X
|g(t)| ⩽ 1

3 .

Обозначим g1 := g, и начнём итерироваться. Сначала найдётся g2, такая, что |f(t)− g1(t)− g2(t)| ⩽(
2
3

)2
на Y , и |g2(t)| ⩽ 1

3 · 2
3 на X.

По индукции получим последовательность gj : |gj(t)| ⩽ 1
3 ·
(
2
3

)j−1
и |f(t)−g1(t)−· · ·−gj(t)| ⩽

(
2
3

)j
.

Видно, что g(t) :=
∑
j⩾1

gj(t) подойдёт — ряд сходится равномерно, и |g(t)| ⩽ 1
3

∑
k⩾0

(
2
3

)k
= 1.

Интересный факт (Формула Коши — Грина). Имеется область G с гладкой границей — набором
путей Γ = {γj}, таких, что при обходе область остаётся слева.

Пусть ϕ — гладкая функция в окрестности G. Тогда ∀z ∈ G : f(z) = 1
2πi

∫
Γ

f(ζ)
ζ−z dζ+

1
π

∫
G

∂f(ζ)
z−ζ dλ2(ζ)
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