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Глава 1

Основные понятия

Лекция I
14 февраля 2024 г.

1.1 Гладкие многообразия

Определение 1.1.1 (Топологическое многообразие). Хаусдорфово топологическое пространство M
со счётной базой, такое что ∀x ∈M : ∃U ∋ x : U ∼ Rn. Данное число n называется размерностью
многообразия, пишут dimM = n, или же часто пишут это число верхним индексом: Mn.

Далее пусть Mn — топологическое многообразие.

Определение 1.1.2 (Карта). Пара из открытого U ⊂ Mn, и гомеоморфизма ϕ : U → Ω, где
открытое Ω ⊂ Rn. U называется носителем карты.

«В половине случаев в литературе картой называется обратное отображение».

Определение 1.1.3 (Атлас). Набор карт (Ui, ϕi), таких, что
⋃
i

Ui =M .

Пусть даны две карты (U, ϕ) и (V, ψ). Далее удобно считать, что их носители пересекаются:
U ∩ V ̸= ∅, иначе определение не несёт смысла.

Определение 1.1.4 (Отображение перехода). Отображение ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V ). Обо-
значается fϕψ.

Определение 1.1.5 (Карты (U, ϕ) и (V, ψ) согласованы). Отображение перехода и ему обратное
гладкие.

Определение 1.1.6 (Гладкий атлас). Атлас, такой, что любые две карты согласованы.

Далее все атласы предполагаются гладкими.

Определение 1.1.7 (Атласы эквивалентны). Их объединение (то есть все карты из первого и из
второго атласа вместе взятые) — тоже гладкий атлас.

Предложение 1.1.1. Эквивалентность атласов — отношение эквивалентности.

Определение 1.1.8 (Гладкая структура на многообразии). Максимальный гладкий атлас (атлас, к
которому нельзя добавить карт).

Замечание. К атласу можно добавить произвольное количество карт, согласованных с теми, что
в атласе, и они будут согласованы между собой. В частности, для задания гладкой структуры
достаточно произвольного атласа A: в A можно добавить всевозможные карты, согласованные с
картами из A, и он станет максимальным.

Определение 1.1.9 (Гладкое многообразие). Многообразие с гладкой структурой.
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Примеры (Атласы).

• Стандартная гладкая структура на Rn задаётся атласом {(Rn, id)}.

• В частности, стандартная структура на R1 задаётся атласом {(R1, [x 7→ x])}.

• Можно задать нестандартную структуру на R1: {(R1, [x 7→ x3])}.

Предостережение. Это действительно гладкая структура, хотя обратное отображение [x 7→ x1/3]
не гладкое. Тем не менее, определение и не требует гладкости от него.

• Пусть f =

{
x, x ⩾ 0
1
2x, x ⩽ 0

. Тогда {(R1, f)} — тоже гладкий атлас на R1.

Тем не менее, любые два атласа из приведённых выше атласов на R1 не эквивалентны —
отображения перехода получаются не гладкими.

• Гладкая структура на сфере задаётся двумя картами: пусть S2 — сфера с северным полю-
сом N и южным S, пусть f, g — стереографические проекции с данными полюсами. Тогда
{(S2 \ {N}, f), (S2 \ {S}, g)} — атлас.

Замечание. Если M — гладкое многообразие, и открытое W ⊂M , то на W естественным образом
определена гладкая структура, наследующаяся с M .

1.1.1 Гладкие отображения

Пусть Mm, Nn — гладкие многообразия, AM , AN — соответствующие атласы. Рассмотрим отобра-
жение f :M → N .

Определение 1.1.10 (Координатное представление f в картах (U, ϕ) на M и (V, ψ) на N). Такое
f̃ : ϕ(U) → ψ(V ), что диаграмма коммутативна везде, где определена (то есть f̃ = ψ ◦ f ◦ ϕ−1 на
ϕ(U ∩ f−1(V ))).

U V

ϕ(U) ψ(V )

ϕ ψ

f

f̃

Далее считаем, что f : M → N непрерывна (эквивалентно, все координатные представления
непрерывны).

Определение 1.1.11 (f гладкое). Любое координатное представление — гладкое.

Определение 1.1.12 (f — гладкое в точке x ∈ M). Найдётся окрестность Ux ∋ x и карты (U, ϕ),
(V, ψ) (где V ∋ y := f(x)), такие, что Ux ⊂ U и сужение на Ux координатного представления f —
гладко.

Свойства (Гладкие отображения).

• Гладкость в точке не зависит от выбора карт.

• Гладкость отображения не зависит от выбора атласа в одном классе эквивалентности.

• Отображение гладкое ⇐⇒ оно гладкое в любой точке. На лекции было доказательство ⇐.

• Пусть f :M → N, g : N → K гладкие. Тогда их композиция g ◦ f гладкая.

• Тождественное отображение гладкое, если в образе и прообразе выбраны эквивалентные
атласы.

• Определение гладкости отображения совпадает с определением гладкости из матанализа (ес-
ли считать, что M ⊂ Rm, N ⊂ Rn открыты, и порождающие атласы наследуют структуры Rm
и Rn)

Определение 1.1.13 (Диффеоморфизм f :M → N). Гладкое f , такое, что f−1 — тоже гладкое.
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Определение 1.1.14 (Многообразия M и N диффеоморфны). Между ними существует диффео-
морфизм.

Понятно, что диффеоморфность — отношение эквивалентности.

Утверждение 1.1.1. Если Mm диф∼ Nn, то m = n.

Доказательство. Рассмотрим произвольную x ∈ M . Пусть f : M → N — диффеоморфизм, пусть
f̃ — его координатное представление. Тогда f̃−1 — координатное представление f−1, откуда f̃−1 —
тоже гладкое. Рассмотрим дифференциал dxf̃(_), это изоморфизм векторных пространств, значит,
m = n.

По умолчанию всегда считается, что на Rm введена стандартная гладкая структура.

Предложение 1.1.2. ПустьM — гладкое многообразие, тогда карта — диффеоморфизм между
U и ϕ(U). Обратно, любой диффеоморфизм между открытым подмножеством W ⊂ M и
областью Ω ⊂ Rm — карта.

Доказательство.

V U

M

ϕ
ϕ(U)

N

id

ϕ(U)

ψ

ψ(V )

Гладкость карты, как диффеоморфизма, эквивалентна тому, что карта согласована с остальными в
атласе: пунктирная стрелка ψ(U ∩V ) → ϕ(U ∩V ) одновременно является и отображением перехода
между картами (U, ϕ) и (V, ψ), и координатным представлением ϕ в картах (V, ψ), (U, id).

Следствие 1.1.1. Диффеоморфизм f : M → N задаёт естественную биекцию между картами
M и картами N (а ещё между (максимальными) атласами M и (максимальными) атласами
N).

Лекция II
21 февраля 2024 г.

Пример (Диффеоморфизм). Ранее приводились неэквивалентные карты (R, id) и (R, [x 7→ x3]).
Вещественные прямые с данными картами диффеоморфны: [x 7→ x3] — диффеоморфизм, ему об-

ратный [x 7→ 3
√
x]

(
где, как в школе, 3

√
x =

{
3
√
x, x ⩾ 0

− 3
√
−x, x < 0

)
.

Таким образом, создать две недиффеоморфные структуры на одном и том же многообразии не то
чтобы просто.

Интересный факт. Пусть M — n-мерное многообразие.

Если


n < 4, на нём существует единственная гладкая структура

n = 4, на нём существует бесконечно много гладких структур

n > 4, на нём существует конечное число гладких структур

.

В частности, при n > 4: если Mn = Rn, то гладкая структура единственна.
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1.1.2 Касательное пространство

Пусть M — гладкое многообразие, p ∈ M . Пусть α, β : (−ε,+ε) → M — гладкие (естественно, в
смысле отображения многообразий) кривые, такие, что α(0) = p = β(0).

Определение 1.1.15 (α и β соприкасаются в p). В любой карте (U, ϕ) (где U ∋ p) их производные
в нуле совпадают: (ϕ ◦ α)′(0) = (ϕ ◦ β)′(0).

Предостережение. Определение требует совпадение векторов скорости, а не просто параллельно-
сти или сонаправленности.

Свойства (Соприкасающиеся кривые).

• Соприкасаемость кривых в какой-то конкретной точке — отношение эквивалентности.

• Соприкасаемость не зависит от выбора карты: достаточно проверить в любой одной, содер-
жащей p.

Доказательство. Пусть (U, ϕ), (V, ψ) — две карты, содержащие точку p, отображение fϕψ =
ψ ◦ ϕ−1 гладкое, значит, его дифференциал переводит равные векторы в равные.

Определение 1.1.16 (Касательный вектор в точке p ∈ M). Класс эквивалентности соприкасаю-
щихся в точке p кривых.

Множество всех касательных векторов — касательное пространство, обозначают TpM .

Координаты касательного вектора

Пусть p ∈M , и (U, ϕ) — карта, содержащая p.

Определение 1.1.17 (Координатное представление вектора v = [α] ∈ TpM). Вектор скорости

данной кривой в данной карте vϕ
def
= (ϕ ◦ α)′(0).

Понятно, что определение не зависит от выбора представителя — кривой α.

Также координаты vϕ в Rn называют координатами v в карте ϕ.

Свойства (Координатное представление).

• ∀p ∈M, ∀(U, ϕ) : p ∈ U ⇒ координатное представление — биекция TpM → Rn, v 7→ vϕ.

Доказательство. Это инъекция, так как если образы u, v равны, то по определению u и v
соприкасаются.

Это сюръекция: ∀w ∈ Rn можно рассмотреть кривую γ : R → Rn, γ(t) := wt + ϕ(p). Коорди-
наты [ϕ−1 ◦ γ] в карте ϕ как раз окажутся равными w.

Преобразование координатного представления в зависимости от карты

Утверждение 1.1.2. Пусть Mn ∋ p — гладкое многообразие и точка, (U, ϕ) и (V, ψ) — карты,
содержащие p. Тогда vψ = dϕ(p)fϕψ(vϕ).

Доказательство. Пусть v = [α]. Тогда vϕ = (ϕ ◦ α)′(0), vψ = (ψ ◦ α)′(0), и действительно, так как
fϕψ = ψ ◦ ϕ−1, то vψ = (fϕψ ◦ ϕ ◦ α)′(0). Дифференцируя композицию, получаем утверждение.

Следствием данного утверждения является альтернативное определение касательного вектора:

Определение 1.1.18 (Касательный вектор в точке p ∈M). Отображение из множества всех карт,
содержащих точку p (обозначим их Mp) в Rn

Mp → Rn

такое, что выполнены соотношения (утверждение 1.1.2).
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Можно показать, что данное определение, и определение через соприкасающиеся кривые, эквива-
лентны.

Это определение сродни тому определению тензора, которое говорит: «Тензор — это многомерная
матрица чисел, преобразующихся при замене базиса следующим образом. . . »

1.1.3 Структура векторного пространства на TpM

Зафиксируем p ∈M , и карту (U, ϕ), содержащую p. Пусть v, w ∈ TpM .

Определение 1.1.19 (Сумма векторов v и w). Такой вектор v + w, что (v + w)ϕ = vϕ + wϕ.

Определение 1.1.20 (Растяжение вектора v с коэффициентом α). Такой вектор αv, что (αv)ϕ =
α · vϕ.

Иными словами, у нас была биекция TpM с векторным пространством, и мы просто перенесли
структуру векторного пространства с Rn на TpM . Определение не зависит от выбора карты, так
как замена координат касательных векторов при переходе между картами — изоморфизм векторных
пространств (дифференциал — линейный оператор).

Замечание. Из определения получается, что v → vϕ — изоморфизм векторных пространств.

1.2 Касательное расслоение

Как множество, T (M) =
⊔
p∈M

TpM . Оказывается, на T (M) можно естественно ввести топологию

и гладкую структуру размерности 2n. Преобразуем определение атласа так, чтобы это случилось
одновременно.

Утверждение 1.2.1 (Атлас для множества). Пусть X — множество с картами (U, ϕ), то есть
парами (U, ϕ) где U ⊂ X, и каждая ϕ — биекция U → Rn. При этом X =

⋃
U

Потребуем для любых двух карт (U, ϕ) и (V, ψ): ϕ(U ∩V ) открыто (в частности, ϕ(U) откры-
то), и потребуем, чтобы все функции перехода fϕψ = ψ ◦ ϕ−1 были гладкими.

Введём на X топологию: W ⊂ X открыто, если ∀(U, ϕ) : ϕ(U ∩W ) открыто, и предположим,
что топология получилась хаусдорфовой, и что на X есть счётная база.

Тогда утверждается, что данная процедура задаёт на X одновременно и топологию, и глад-
кую структуру.

Зададим такую гладкую структуру на T (M). Обозначим TU =
⊔
p∈U

TpM . Можно рассматривать

TU как множество пар, состоящих из точки и вектора: TU = {(p, v) | p ∈ U, v ∈ TpM}.

Пусть имеется карта (U, ϕ) на M . Построим по ней карту

Φ : TU → Rn × Rn

(p, v) 7→ (ϕ(p), vϕ)

Проверим согласованность: пусть (U, ϕ) и (V, ψ) — две карты на M . По ним построены карты
(TU,Φ) и (TV,Ψ) соответственно. Тогда (Ψ ◦ Φ−1)(p, v) = ((ψ ◦ ϕ−1)(p),dϕ(p)fϕψ(v)), видно, что
Ψ ◦ Φ−1 гладко.

Упражнение 1.2.1. Получилось хаусдорфовое пространство со счётной базой.

1.2.1 Дифференциал гладкого отображения

Пусть M и N — гладкие многообразия, и есть гладкое отображение f : M → N . Зафиксируем
p ∈M .

Определение 1.2.1 (Дифференциал f в точке p). Отображение dpf : TpM → Tf(p)N , заданное
следующим образом: dpf : [α] 7→ [f ◦ α].
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Утверждение 1.2.2. Определение дифференциала не зависит от выбора представителей.

Доказательство. Пусть α ∼ β — две кривые, α(0) = β(0) = p, α′(0) = β′(0) = v.

Проверим, что f ◦ α ∼ f ◦ β. Достаточно проверить, что совпадают координатные представления.

Выберем две карты (U, ϕ) и (V, ψ) (где U ∋ p, V ∋ f(p)). Координатное представление f — это
f̃ = ψ ◦ f ◦ ϕ−1.

Дифференциал f̃ переносит координаты представления векторов из TpM в координаты представ-
ления векторов из Tf(p)N :

ψ ◦ f ◦ α = f̃ ◦ ϕ ◦ α и ψ ◦ f ◦ β = f̃ ◦ ϕ ◦ β

(ψ ◦ (f ◦ α))′(0) = dϕ(p)f̃((ϕ ◦ α)′(0)) = dϕ(p)f̃((ϕ ◦ β)′(0)) = (ψ ◦ (f ◦ β))′(0)

Нетрудно заметить, что (dpf(v))ψ =
(
df(p)f̃

)
(vϕ) в обозначениях из доказательства выше

(и v = [α]).

Следствие 1.2.1. dpf — линейное отображение.

Лекция III
28 февраля 2024 г.

Замечание. Можно естественным определить дифференциал на всём пространстве TM вот так:
Tf : TM → TN . На вектор v ∈ TpM отображение Tf действует понятным образом: v 7→ dpf(v).

Если U ⊂ Rn, то касательное пространство TU естественным образом отождествляется с U × Rn.

1.3 Гладкие векторные поля

Пусть M — гладкое многообразие, выберем произвольное подмножество A ⊂M .

Определение 1.3.1 (Непрерывное векторное поле на A). Непрерывное отображение X : A→ TM ,
такое, что ∀p ∈ A : X(p) ∈ TpM . Часто пишут Xp вместо X(p).

Определение 1.3.2 (Гладкое векторное поле на A). Векторное поле X : A → TM , такое, что ∃
открытое U ⊂ M : U ⊃ A, и X продолжается на U , как гладкое векторное поле (то есть гладкое
отображение U → TM , являющееся непрерывным векторным полем).

Для гладкого многообразия M будем обозначать пространство всех гладких векторных полей за
X(M).

Пусть в M имеется карта (U, ϕ). Векторные поля задавались на подмножестве A ⊂M , а не на всём
многообразии, так как один из самых частых примеров гладкого векторного поля — координатное
векторное поле — задаётся лишь в карте U :

Определение 1.3.3 (Координатное векторное поле, соответствующее i-й координате). Векторное
поле Vi : U → TM , такое, что dϕ(Vi) = ei (с координатами Vi(p)ϕ = ei).

Лемма 1.3.1. Пусть имеется открытое U ⊂ Rn, и компактное K ⊂ U . Утверждается, что
∀V ⊃ K : ClV ⊂ U ⇒ можно построить гладкую функцию f : Rn → R, такую, что f

∣∣
K

= 1,
f
∣∣
Rn\V = 0.

Доказательство. Rn \ V замкнуто, значит, d := dist(Rn \ V,K) > 0. Функция χK почти подходит,
только она не гладкая. Немножко увеличим носитель: рассмотримW := Ud/2(K) =

{
x ∈ Rn | dist(x,K) < d

2

}
.

Для χW условие выполняется и в окрестности K, а, значит, подойдёт свёртка χW ◦ g d
2
, где g d

2
—

подходящая аппроксимативная единица, гладкая функция с компактным носителем, равная нулю
вне B d

2
(0).
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Следствие 1.3.1. Пусть Vi — координатное поле карты (U, ϕ). Тогда ∀K ⊂ U : ∃ векторное
поле Ṽi : Ṽi

∣∣
K

= Vi, Ṽi
∣∣
M\U ≡ 0.

Иными словами, всегда немного уменьшив карту, можно продолжить координатное векторное
поле на всё многообразие.

1.4 Гладкие подмногообразия

Пусть Mm — гладкое многообразие размерности m.

Определение 1.4.1 (Гладкое подмногообразие размерности n ⩽ m). Подмножество N ⊂M , такое,
что ∀p ∈ N : ∃ выпрямляющая карта (U, ϕ) (карта на M), такая, что U ∋ p и ϕ(U)∩Rn = ϕ(N ∩U).

Здесь имеется в виду, что ϕ действует в Rm, и имеется определённое вложение Rn ↪→ Rm (скажем,
в Rm выбран базис, и на первые n векторов натянуто Rn).

Утверждение 1.4.1. На N каноническим образом индуцируется гладкая структура из M .
Карты на N — сужения выпрямляющих карт (карте (U, ϕ) отвечает карта (N ∩ U,ψ), где
ψ : N ∩ U → Rn ⊂ Rm, ψ(x) = ϕ(x)).

Доказательство. Согласованность карт на N следует из согласованности карт на M .

Пусть Nn,Mm — гладкие многообразия.

Определение 1.4.2 (Погружение f : N → M). Гладкое отображение f : N → M , такое, что
∀p ∈ N : dpf — инъекция. Само f не обязано быть инъекцией.

Понятно, что такое возможно только при n ⩽ m.

Определение 1.4.3 (Вложение f : N → M). Погружение f : N → M , которое является топологи-
ческим вложением, то есть гомеоморфизмом на образ.

Примеры.

• В случае поверхностей размерности 2 погружение подмногообразия размерности 1 — кривой
— называлось регулярной параметризацией.

• Петля слева является погружением, но даже инъективная петля справа вложением не явля-
ется: в выделенной точке топология не совпадает с топологией интервала.

Предложение 1.4.1.

1. Погружение локально является вложением: ∀x ∈ N : ∃Ux ∋ x : f
∣∣
Ux

— вложение.

2. Образ вложения — гладкое подмногообразие.

Доказательство. Достаточно доказать для случая открытых N ⊂ Rn, M ∼= Rm, потому что карты
— диффеоморфизмы, и определения сохраняются при диффеоморфизмах.

Зафиксируем x ∈ N . Введём координаты в Rm, выделив первые n координат, так, чтобы подпро-
странство, натянутое на них, совпадало с dxf(Rn).

Также прибавим (в смысле ⊕) к пространству Rn, содержащему N , слагаемое Rm−n.

Лемма 1.4.1. Существуют W ∋ x,W ′ ∋ f(x), и диффеоморфизм ϕ : W → W ′ :
ϕ
∣∣
N∩W = f (обе окрестности m-мерные: W ∈ Rn ⊕ Rm−n,W ′ ∈ Rm).
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Доказательство леммы.

Обозначим координаты в Rn ⊕ Rm−n за (ξ, ζ), и определим ϕ(ξ, ζ) = f(ξ) + (0, ζ). Диф-
ференциал dxϕ = (dxf, id) невырожден (матрица блочно-диагональна), и ϕ

∣∣
N

= f .

По теореме об обратной функции ∃W : ϕ
∣∣
W

— диффеоморфизм.

1. Образ ϕ
∣∣
N∩W — подмногообразие W ′ ∩ Rn ⊂ N . ϕ−1

∣∣
W ′ — выпрямляющая карта,

2. ϕ — гомеоморфизм на образ ⇒ f
∣∣
N∩W — топологическое вложение и гомеоморфизм. Значит,

локально погружение — вложение.

3. Так как f — топологическое вложение, то f(N) — подмногообразие.

Лекция IV
6 марта 2024 г.

Контрпример. Тождественное отображение между прямыми с разными атласами (R, x3) → (R, id)
— не вложение (и даже не погружение). Ему соответствует координатное представление x 7→ 3

√
x,

которое не является гладким в нуле.

Пусть N ⊂ M — гладкое подмногообразие. Отображение in : N ↪→ M можно рассматривать, как
вложение многообразий.

Утверждение 1.4.2. Следующие определения подмногообразия равносильны:

• Подмножество N ⊂M с выпрямляющими картами.

• Образ вложения некоторого многообразия.

Интересный факт (Теорема Уитни). Для любого гладкого многообразия Mm существует вложе-
ния Mm ↪→ R2m.

1.5 Риманова структура

Пусть дано гладкое многообразие Mm.

Определение 1.5.1 (Риманова структура на Mm). Совокупность (положительно определённых)
скалярных произведений {gx}x∈M (gx : TxM × TxM → R, gx = ⟨_, _⟩x)). Иначе это называют
метрическим тензором.

Напомним, что X(M) — пространство гладких векторных полей на M .

Определение 1.5.2 (Гладкая риманова структура наMm). Такая риманова структура, что ∀X,Y ∈ X(M):
отображение M → R, x 7→ ⟨Xx, Yx⟩x гладко

Далее везде будем говорить риманово многообразие для гладкого многообразия с гладкой рима-
новой структурой.

Пример. Пример (гладкого) метрического тензора для поверхностей — первая квадратичная форма.

Пусть заданы два римановых многообразия (M, ⟨_, _⟩) и (N, ⟨_, _⟩).

Определение 1.5.3 (Изометрия между M и N). Диффеоморфизм f : M → N , сохраняющий
скалярные произведения: ∀x ∈M : ∀v, w ∈ TxM : ⟨v, w⟩x = ⟨dxf(v),dxf(w)⟩f(x).

Примеры.

• Пусть имеется вложение гладкого многообразия f :Mm → Rn. В соответствии с ним на Mm

можно естественным образом задать риманову метрику:

∀x ∈M : ∀v, w ∈ TxM : ⟨v, w⟩x := ⟨dxf(v),dxf(w)⟩f(x)

Так как dpf инъективен, то скалярное произведение получится невырожденным.

В предыдущем семестре в точности это происходило с вложением поверхности в R3.
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• Пусть на многообразии Nn задана риманова структура, и имеется вложение f : Mm → Nn.
Тогда абсолютно аналогично можно задать риманову метрику на Mm:

∀x ∈M : ∀v, w ∈ TxM : ⟨v, w⟩x := ⟨dxf(v),dxf(w)⟩f(x)

• В обеих пунктах можно ослабить требования на f : достаточно, чтобы f было погружением.

Пусть (Mm, g) — риманово многообразие, (U, ϕ) — карта: ϕ : U → ϕ(U) ⊂ Rm. Выберем в Rm
ортонормированный базис (ei)1⩽i⩽m. Базисный вектор ei — координатное представление вектора
dxϕ

−1(ei), и (dxϕ
−1(ei))1⩽i⩽m — базис TxM .

Для краткости записи в дальнейшем будет использоваться запись Ei := d−1
ϕ (ei), если карта ясна

из контекста. В этой карте Ei — координатные векторные поля.

Можно записать координаты метрического тензора gx в данных базисных векторах Ei, получатся
метрические коэффициенты для карты (U, ϕ): (gi,j)1⩽i,j⩽m.

Для векторов X = X1E1 + · · ·+XmEm и Y = Y1E1 + · · ·+ YmEm:

⟨X,Y ⟩ =
∑
i,j

Xigi,jYj

Теорема 1.5.1. gi,j — гладкие во всех картах ⇐⇒ метрический тензор g гладок.

Доказательство.

⇐. В определении гладкого метрического тензора были X,Y ∈ X(M), но на прошлой лекции мы
обсудили, что координатное поле можно продлить с любого компакта: (следствие 1.3.1).

Проверим гладкость метрического тензора в карте (U, ϕ). Пусть p ∈ U , захватим точку p
открытым множеством V ∋ p : ClV ⊂ U . Согласно (следствие 1.3.1), можно продлить коор-
динатные векторные поля Ei и Ej , получив некоторые поля Ei и Ej , совпадающие с Ei и Ej
на V .

g
(
Ei, Ej

)
— гладкая функция, совпадающая с gi,j на V .

⇒. Рассмотрим гладкие векторные поля X,Y ∈ X(M).

Проверим гладкость в точке x ∈ M . Рассмотрим произвольную карту (U, ϕ), содержащую x,
Распишем X =

∑
i

ξiEi, Y =
∑
j

ηjEj . Так как поля гладкие, то ξi, ηj : M → R — гладкие

функции.

Получается, ⟨X,Y ⟩x =
∑
i,j

ξiηj ⟨Xi, Xj⟩ =
∑
i,j

ξiηjgi,j .

Пример. Пусть многообразиеMm покрыто одной картой (M,ϕ). Для задание римановой структуры
на M необходимо и достаточно ввести m ×m гладких метрических коэффициентов gi,j : M → R
так, что матрица (gi,j) всюду положительно определена.

В случае покрытия M несколькими картами так может не получиться, надо ещё проверять согла-
сованность, что может быть неудобно.

1.5.1 Длина путей

Пусть v ∈ TxM .

Определение 1.5.4 (Длина вектора v). |v| def=
√
⟨v, v⟩x.

Теперь γ : [a, b] → M — кусочно-гладкая кривая (имеется разбиение a = t0 ⩽ t1 ⩽ . . . ⩽ tn = b,
такое, что γ

∣∣
[ti,ti+1]

— гладкая).
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Определение 1.5.5 (Длина кривой). L(γ) =
∑
i

ti+1∫
ti

|γ′(t)|dt. Длина γ′ определена: из гладкости

∀t ∈ (ti, ti+1) : γ
′(t) ∈ Tγ(t)M .

Пусть (M, g) — связное риманово многообразие, x, y ∈M — две точки.

Определение 1.5.6 (Расстояние между точками x, y). dl(x, y)
def
= infγ l(γ), где инфимум берётся

по всем кусочно гладким γ : [a, b] →M , таким, что γ(a) = x, γ(b) = y.

Теорема 1.5.2.

1. dl — метрика

2. Топология, порождённая dl совпадает с исходной топологией ΩM .

Доказательство.

1. Проверим три аксиомы метрики.

• Меняя направление пути, получаем dl(x, y) = dl(y, x).

• Выберем ε > 0, найдутся две кусочно гладкие кривые γx,y и γy,z, почти оптимально
соединяющие x, y и y, z соответственно (l(γx,y) ⩽ d(x, y) + ε; l(γy,z) ⩽ d(y, z) + ε).
Конкатенируя γx,y · γy,z, получаем dl(x, z) ⩽ dl(x, y) + dl(y, z) + 2ε. Устремляя ε → 0,
получаем неравенство треугольника.

• Проверим положительную определённость.

Лемма 1.5.1. ∀x ∈ M : ∃ карта (U, ϕ), содержащая x, такая, что ∀ε > 0 :
∃V ⊂ U (V ∋ x), причём ϕ

∣∣
V
: V → ϕ(V ) (1± ε)-билипшицево:

∀a, b ∈ V : (1− ε)|ϕ(a)− ϕ(b)| ⩽ dl(a, b) ⩽ (1 + ε)|ϕ(a)− ϕ(b)|

Отсюда сразу получается, что ∀γ : [c, d] → V :

(1− ε) · l(ϕ ◦ γ) ⩽ l(γ) ⩽ (1 + ε) · l(ϕ ◦ γ)

Доказательство леммы.

Выберем ортонормированный базис X1, . . . , Xm в TxM (такой найдётся, так
как скалярное произведение положительно определено).

Выберем произвольную карту (U, ϕ), содержащую x. dxϕ(X1), . . . ,dxϕ(Xm) —
базис в Rm, его можно линейным преобразованием L перевести в ортонорми-
рованный. Далее считаем, что он уже ортонормирован (можно заменить карту
ϕ на L ◦ ϕ).

Коэффициенты метрического тензора в этой карте gi,j таковы, что gi,j(x) = δi,j .

Из непрерывности gi,j : ∀ε > 0 : ∃V
∋x

⊂ U : ∀y ∈ V, v ∈ TyM :

(1− ε)|v| ⩽ |dyϕ(v)| ⩽ (1 + ε)|v|

2. Применяем (лемма 1.5.1) для ε = 1/2. Из билипшицевости сразу получается совпадение
топологий.
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1.5.2 О внутренней метрике

Более частым случаем является определение расстояния, как инфимум длин всех кривых, а не
только кусочно-гладких. Однако риманова структура на многообразии определяет лишь метрику
в каждой точке, а непосредственных средств для вычисления длин непрерывных путей риманова
структура не предоставляет.

Пусть (X, d) — метрическое пространство, γ : [c, d] → X — (непрерывный) путь. Его длину можно
определить по формуле Ld(γ) = sup

∑
i

d(γ(ti), γ(ti+1)), где супремум берётся по всем разбиениям

c = t0 ⩽ t1 ⩽ . . . ⩽ tn = d. Пусть x, y ∈ X.

Определение 1.5.7 (Внутренняя метрика, порождённая метрикой d). dI(x, y)
def
= infγ Ld(γ), где

инфимум берётся по всем непрерывным γ : [a, b] → M , таким, что γ(a) = x, γ(b) = y. Не уверен в
правильности этого определения.

Из неравенства треугольника сразу получается dI ⩾ d (для всякой кривой γ, соединяющей точки
x и y: Ld(γ) ⩾ d(x, y) по определению супремума).

В силу теоремы, которую мы скоро докажем (теорема 1.5.3), имеет место равенство (dI)I = dI .
Это позволяет ввести следующее определение.

Определение 1.5.8 (Внутренняя метрика). Метрика d, совпадающая с внутренней метрикой, по-
рождённой d.

Конечно, не все метрики — внутренние.

Пример (Не внутренняя метрика). Рассмотрим окружность S1 ⊂ R2. Метрика, индуцированная с
R2 на S1 — не внутренняя: расстояние между диаметрально-противоположными точками равно 2,
но не существует пути, их соединяющего, длиной меньше π.

Лекция V
13 марта 2024 г.

В этой лекции везде γ̂ обозначают кусочно-гладкие кривые, а γ — произвольные (непрерывные)
кривые.

Определение 1.5.9 (Длина кусочно-гладкой кривой γ̂). Число L(γ̂)
def
=
∑∫

|γ̂′|.

Построим внутреннюю метрику, порождённую длинами кривых dL: dL(x, y) = inf
γ̂
L(γ̂). По произ-

вольной метрике d можно определить длину кривых по формуле Ld(γ) = sup
∑
i

d(γ(ti), γ(ti+1)).

Что будет, если по формуле для длин кривых построить метрику, а потом согласно этой метрике
научиться измерять длины кривых?

Утверждение 1.5.1. Для всякой кусочно-гладкой кривой γ̂ : [a, b] →M : LdL(γ̂) ⩽ L(γ̂).

Доказательство. Выберем ε > 0, по определению длины, построенной по метрике, найдётся раз-

биение a = t0 < · · · < tk = b, такое, что LdL(γ̂) ⩽
k−1∑
i=0

dL (γ̂(ti), γ̂(ti+1)) + ε.

Теперь оценим dL (γ̂(ti), γ̂(ti+1)) ⩽ L(γ̂
∣∣
[ti,ti+1]

). Устремляя ε→ 0, получаем искомое неравенство в
силу аддитивности длины.

Теорема 1.5.3. dL — внутренняя метрика: ∀x, y ∈M : dL(x, y) = inf
γ
LdL(γ), где инфимум берётся

по всем непрерывным путям γ : [a, b] →M ; γ(a) = x, γ(b) = y.

Доказательство. Для любой кривой γ : [a, b] →M , такой, что

{
γ(a) = x

γ(b) = y
верно, что dL(x, y) ⩽

LdL(γ): можно в качестве разбиения выбрать a = t0 < t1 = b.
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Тем самым, достаточно для всякого ε > 0 предъявить кривую γ : [a, b] → M , соединяющую x и y,
так, что LdL(γ) ⩽ dL(x, y) + ε.

Лемма 1.5.2. Функция длины L от кусочно-гладких кривых полунепрерывна снизу:
если γ̂n −→

n→∞
γ̂ поточечно, то lim

n→∞
L(γ̂n) ⩾ L(γ̂).

Доказательство леммы.

Выберем ε > 0; согласно (лемма 1.5.1) каждая точка γ̂ вместе с некоторой окрестностью
покрывается картой, так что

(1− ε)Lmap

(
ϕ ◦ γ̂

∣∣
[tj ,tj+1]

)
⩽ L

(
γ̂
∣∣
[tj ,tj+1]

)
⩽ (1 + ε)Lmap

(
ϕ ◦ γ̂

∣∣
[tj ,tj+1]

)
где Lmap — длина кривой в Rn.

Так как γ̂([a, b]) — компакт, то можно выделить конечное количество таких карт. Начиная
с некоторого номера, все точки γ̂n тоже лежат в соответствующих картах.

В евклидовом пространстве полунепрерывность снизу есть: lim
n→∞

Lmap(ϕ ◦ γ̂n) ⩾ Lmap(ϕ ◦ γ̂),

значит, 1
1−ε lim

n→∞
L(γ̂n) ⩾ 1

1+εL(γ̂). Устремляя ε→ 0, получаем искомое утверждение.

Возьмём кусочно-гладкую кривую γ̂, соединяющую x и y так, что dL(x, y) + ε ⩾ L(γ̂) (она берётся
из определения dL). Осталось доказать следующую лемму.

Лемма 1.5.3. Для кусочно-гладких кривых: L(γ̂) = LdL(γ̂).

Доказательство леммы.

В силу (утверждение 1.5.1) достаточно доказать, что L(γ̂) ⩽ LdL(γ̂).

Выберем ε > 0. По определению супремума: LdL(γ̂) ⩾
N∑
i=1

dL(γ̂(ti), γ̂(ti+1)). Теперь

для каждой пары точек γ̂(ti), γ̂(ti+1) найдётся кривая ĥi, соединяющая их так, что
dL(γ̂(ti), γ̂(ti+1)) ⩾ L(ĥi)− ε

N . Обозначим за ĥ = ĥ1 · . . . · ĥN−1, цепочка неравенств пока-

зывает LdL(γ̂) ⩾ L
(
ĥ
)
− ε. При стремлении N → ∞ происходит поточечное стремление

ĥ → γ̂, откуда согласно (лемма 1.5.2) мы получаем искомое неравенство с точностью до
ε. Про поточечное стремление не очень ясно.

1.6 Плоскость Лобачевского

Плоскость Лобачевского — двумерное многообразие постоянной кривизны −1. При этом евклидова
плоскость R2 имеет постоянную кривизну, равную 0, а сфера S2 — постоянную положительную
кривизну 1. Плоскость Лобачевского по важности сравнима с этими двумя объектами, но вло-
жить в трёхмерное пространство ей не получится. Поэтому мы её изучаем вместе с римановой
геометрией, явно определяя метрический тензор.
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1.6.1 Модель в верхней полуплоскости

Как гладкое многообразие, плоскость Лобачевского H2 =
{
(x, y) ∈ R2 | y > 0

}
— открытое под-

множество евклидовой плоскости, покрываемое одной тождественной картой.

Зададим метрический тензор на H2 формулой g(x, y) =

( 1
y2 0

0 1
y2

)
. Карта отождествляет каса-

тельные пространства H2 и верхней полуплоскости R2, как векторные пространства, но скалярное
произведение в этих касательных пространствах различается: ∀v ∈ T(x,y)H2 : |v|H = 1

y |v|E . Здесь
|_|H и |_|E — длины векторов в касательной плоскости к точке на плоскости Лобачевского, либо,
соответственно, на евклидовой полуплоскости.

У гладкой кривой γ̂ : [a, b] → H2 (в координатной записи γ(t) = (x(t), y(t))) вектор скорости равен

(ẋ(t), ẏ(t)), а длина кривой в плоскости Лобачевского равна L(γ̂) =
∫
|γ̂′|H =

∫ √
ẋ2+ẏ2

y dt.

Пусть f : (M, gM ) → (N, gN ) — диффеоморфизм римановых многообразий.

Определение 1.6.1 (f конформно). f сохраняет углы, то есть ∀p ∈ M : dpf : TpM → Tf(p)N
— гомотетия: ∃λ ∈ R : ∀v ∈ TpM : |dpf(v)|N = λ|v|M , число λ называют коэффициентом
конформности.

Две метрики g1 и g2 на одном многообразии M называют конформно эквивалентными, если idM

конформно. В частности, если одна из метрик евклидова (с метрическим тензором
(
1 0
0 1

)
), то

метрический тензор второй имеет вид
(
λ2 0
0 λ2

)
, где λ – конформный фактор. Метрики, эквива-

лентные евклидовой, называют конформными.

Тем самым, плоскость Лобачевского имеет конформную метрику, конформный фактор в точке (x, y)
равен 1

y .

Известное нетривиальное конформное отображение — инверсия.

Определение 1.6.2 (Инверсия Rn относительно точки O ∈ Rn и сферы радиуса R). Отображение
I : Rn \ {O} → Rn \ {O}, при котором точка A переходит в такую точку A′ на луче OA, что

|OA| · |OA′| = R2. Иначе говоря,
−−→
OA′ = R2

|OA|2
−→
OA.

R

A

A′

O

Замечание. Инверсия — инволюция, то есть I2 = id

Теорема 1.6.1. Инверсия — конформное отображение, его конформный фактор в точке A равен
λ(A) = R2

|OA|2 . При инверсии плоскости окружности и прямые переходят в окружности и прямые.

Доказательство.

2. Сначала покажем, что окружности и прямые переходят в окружности и прямые. На рисун-
ках O — центр инверсии, а образы точек при инверсии называются теми же буквами с
добавлением штриха.

• На левом рисунке показано, как окружность, проходящая через центр инверсии, пере-
ходит в прямую: если OB — диаметр окружности, то прямая, перпендикулярная OB, и
проходящая через B′ — образ окружности. В самом деле, для любой пары точек A и
A′ треугольники OAB и OB′A′ подобны; угол OAB прямой, если и только если A на
окружности, а угол OB′A′ прямой, если и только если A′ на прямой.
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A

B
B′

A′

O

O D C

A
B

D′C ′

A′

B′

• На правом рисунке изображены точки A,B,C,D, лежащие на окружности, не содер-
жащей ни внутри себя, ни на границе, центра инверсии. Тогда (ссылка на факт из
школьной геометрии) |OA| · |OB| = |OC| · |OD|, применяя определение инверсии полу-
чаем |OA′| · |OB′| = |OC ′| · |OD′|, откуда (применяя обратный факт) точки A′, B′, C ′, D′

тоже лежат на одной окружности.

• Случай, когда центр инверсии лежит внутри одной из окружностей аналогичен преды-
дущему, тогда центр инверсии лежит внутри и образа этой окружности.

• Наконец, прямая, проходящая через центр инверсии, при инверсии переходит в себя.

1. Для проверки, что λ(A) = R2

|OA|2 , достаточно рассмотреть все плоскости, содержащие прямую
OA. Пусть γ1 — параметризация одномерной окружности радиуса OA, γ1(0) = A, и γ2 —
параметризация луча OA, γ2(0) = A:

O A

γ′2(0)

γ′1(0)

Векторы γ′1(0) и γ
′
2(0) образуют базис TAR2. Применим инверсию к картинке.

• (I ◦ γ1)(t) = R2

|OA|2 γ1(t), откуда |(I ◦ γ1)′(0)| = R2

|OA|2 |γ
′
1(0)|.

• (I ◦ γ2)(t) = R2

|γ2(t)|2 γ2(t), откуда |(I ◦ γ2)′(0)| =
∣∣∣ d
dt

∣∣
t=0

R2

|γ2(t)|

∣∣∣ = R2

|OA|2 · |γ′2(0)|.

Замечание. Стереографическая проекция — сужение инверсии — сохраняет углы.

В модели плоскости Лобачевского в верхней полуплоскости имеется абсолют — прямая
{
(x, y) ⊂ R2 | y = 0

}
.

Определение 1.6.3 (Изометрия). Диффеоморфизм, сохраняющий метрику (|_| или ⟨_, _⟩ — доста-
точно что-то одно из двух).

Теорема 1.6.2. Следующие отображения — изометрии плоскости Лобачевского:

1. Сдвиг Sc : (x, y) 7→ (x+ c, y).

2. Отражение Rc : (x, y) 7→ (2c− x, y).

3. Гомотетия с центром на абсолюте и положительным коэффициентом.

4. Инверсия с центром на абсолюте.

Доказательство. Надо просто проверить, что данные отображения сохраняют |_|.

1., 2. Очевидно.

3. Такая гомотетия сопряжена при помощи сдвига гомотетии с центром в (0, 0). Пусть f :
(x, y) 7→ (kx, ky), тогда ∀v ∈ T(x0,y0)H2 :

∣∣d(x0,y0)f(v)
∣∣
E

= k|v|E , и так как конформный
фактор в (kx0, ky0) в k раз меньше фактора в (x0, y0), то действительно

∣∣d(x0,y0)f(v)
∣∣
H = |v|H.
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4. В силу доказанного выше, достаточно проверить для инверсии с центром в O = (0, 0) и
радиусом R = 1. Такая инверсия действует по правилу I : (x0, y0) 7→

(
x0

r2 ,
y0
r2

)
, где r =√

x20 + y20 . Согласно (теорема 1.6.1), в евклидовой метрике ∀v ∈ T(x0,y0)H2 :
∣∣d(x0,y0)I(v)

∣∣
E
=

1
r2 |v|E . Получаем

|d(x0,y0)I(v)|H =
|d(x0,y0)I(v)|E

y0/r2
=

|v|E
y0

= |v|H

Определение 1.6.4 (Движение плоскости Лобачевского). Изометрия плоскости Лобачевского, по-
лучаемая композицией пунктов (1 – 4) из (теорема 1.6.2).

Когда-нибудь докажем, или нет, что других изометрий у плоскости Лобачевского нет.

Плоскость Лобачевского удобно представлять, как C+
def
= {z ∈ C | ℑz > 0}. В этом случае все

движения записываются в виде{
z 7→ az+b

cz+d , где a, b, c, d ∈ R, ad− bc > 0

z 7→ az+b
cz+d , где a, b, c, d ∈ R, ad− bc < 0

Так как I(z) = 1
z , то несложно проверить, что это группа, и (1 – 4) из (теорема 1.6.2) — её

образующие.

Определение 1.6.5 (Прямые в плоскости Лобачевского). Прямые, перпендикулярные абсолюту, и
окружности, перпендикулярные абсолюту (то есть с центром на нём).

Теорема 1.6.3. Через любые две точки плоскости Лобачевского проходит единственная прямая,
и её отрезок реализует кратчайшее расстояние между данными точками.

Доказательство. При движении прямые переходят в прямые, поэтому достаточно доказать эту
теорему для случая двух точек, находящихся на одной вертикальной прямой. В самом деле,
несложно построить окружность с центром на абсолюте, проходящую через две данные точки,
и инверсией перевести её в вертикальную прямую.

Итак, через две точки (x0, y1) и (x0, y2) очевидным образом проходит всего одна прямая — верти-
кальная евклидова прямая. Если кусочно-гладкий путь γ(t) = (x(t), y(t)) соединяет данные точки,

то его длина равна
N−1∑
i=0

ti+1∫
ti

√
ẋ2+ẏ2|y|

d t ⩾
N−1∑
i=0

ti+1∫
ti

ẏ|y|
d t, и равенство наблюдается только при x′ ≡ 0.

Иными словами, любой путь при проекции на прямую x = x0 не увеличивает свою длину, причём
понятно, что путь будет кратчайшим, если он монотонный.

Лекция VI
20 марта 2024 г.

1.6.2 Аксиомы плоскости Лобачевского

«На самом деле, аксиом много, и их можно по-разному выбирать»

Аксиомы аналогичны евклидовым, выпишем некоторые из них:

1. Через любые две точки проходит единственная прямая (евклидова окружность с центром на
абсолюте или вертикальная прямая).

2. Прямая разбивает плоскость на две части: любой отрезок, соединяющий две точки, пересе-
кает данную прямую не более, чем в одной точке, и точки бьются на два класса эквивалент-
ности относительно данного отношения.

3. Аксиома параллельных не верна: через одну точку можно провести много прямых, парал-
лельных данной (не пересекающих данную).
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На данной картинке синим нарисованы некоторые прямые, проходящие через точку p, не
пересекая данную зелёную прямую l:

l

p

x

Интересный факт. Это равносильно тому, что не существует точки O, в которой можно
произвести гомотетию, то есть такое отображение H : H2 → H2 с коэффициентом λ ∈ R, что
H(O) = O, d(H(A), H(B)) = λd(A,B).

4. Однородность движения.

Определение 1.6.6 (Флаг). Тройка из точки, луча и полуплоскости, расположенных так:

Говоря словами, берётся точка, из прямой (в смысле гиперболической плоскости — евклидова
прямая либо окружность), проходящей через данную точку, оставляется только одна поло-
вина — луч, и так как прямая делит плоскость на две части, то также выбирается одна из
частей — полуплоскость.

Аксиома однородности движения говорит, что любой такой флаг (набор из точки, луча и
полуплоскости), переводится в любой другой флаг движением.

Предложение 1.6.1. Докажем, что данная аксиома верна в нашей модели.

Доказательство. Достаточно доказать, что в данный флаг можно перевести любой другой.

В качестве фиксированного флага выберем флаг [(0, 1), вверх, вправо]:

x

y

(0, 1)

Рассмотрим другой флаг, характеризующийся точкой p, и выберем на луче другую точку q.
Пусть d := d(p, q). Переведём точки p и q в точки (0, 1) и (0, ed) соответственно:
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• Если p и q не лежат на одной вертикальной прямой, то прямая, проходящая через них
— евклидова окружность с центром на абсолюте. Пусть она пересекает абсолют в точке
X (и ещё какой-то), сделав инверсию в X, мы сведёмся к следующему случаю.

• Теперь p и q лежат на одной вертикальной прямой, пересекающей абсолют в точке Y .
Если p выше q, то сделаем инверсию в Y , теперь p ниже q.

• Далее гомотетией с центром в Y переведём p в (0, 1). Так как все проделанные преоб-
разования — изометрии, а последняя сохраняет вертикальную прямую pq, то q перейдёт
в точку (0, ed).

• Чтобы совместить флаги, осталось, если нужно, сделать отражение относительно прямой
x = 0 (точки и лучи уже совмещены, но надо ещё совместить полуплоскости).

5. Неравенство треугольника: d(x, y) ⩽ d(x, z) + d(z, y), и равенство имеет место только когда
z ∈ [x, y] (разумеется, отрезок — множество точек гиперболической прямой xy, лежащих
между x и y).

1.6.3 Модель Пуанкаре в круге

Обозначим модель Лобачевского в верхней полуплоскости HL. Сделаем инверсию I модели Лоба-
чевского относительно A = (0,−1) с коэффициентом K =

√
2.

Абсолют y = 0 перешёл в окружность, проходящую через точки (0, 1) (образ (0, 0)) и (0,−1) (образ
бесконечно удалённой). Из симметрии относительно прямой x = 0 получаем, что абсолют перешёл
в окружность ω :=

{
(x, y) | x2 + y2 = 1

}
.

Данная модель, получающаяся при инверсии модели Лобачевского в верхней полуплоскости, на-
зывается моделью Пуанкаре в круге, обозначим её HP . Так как инверсия конформна, а ⟨v, w⟩HP

=
⟨dI(v),dI(w)⟩HL

, то метрика осталась конформной.

Роль прямых теперь играют диаметры ω и дуги окружностей, ортогональных ω (инверсия сохра-
няет углы, а все прямые ортогональны абсолюту).

Теорема 1.6.4. Конформный фактор метрики равен 2
1−x2−y2 . Иными словами, для v ∈ T(x,y)HP :

|v|HP
= 2

1−x2−y2 |v|E .

Доказательство. Рассмотрим (x0, y0) ∈ HP . Пусть (x1, y1) = I(x0, y0). Конформный фактор ги-
перболической плоскости в модели Лобачевского в точке (x1, y1) равен 1

y1
.

Пусть при инверсии с центром в точке A = (0,−1) точка B переходит в B′. Тогда имеется

равенство
−−→
AB =

−−→
AB′ R2

|AB′|2 . Выразим y1 через x0, y0 (здесь r =
√
x20 + (y0 + 1)2):

y1 = −1 + (y0 + 1) · 2

x20 + (y0 + 1)2
=

−x20 − y20 + 1

r2

С другой стороны, конформный фактор инверсии равен λI = 2
r2 |v|E .

Получаем для v ∈ T(x0,y0)HP : так как инверсия I сохраняет метрику (мы просто так определили

метрику на HP ), то |v|HP
= |d(x0,y0)I(v)|HL

= | dI(v)|E
y1

= 2
1−x2

0−y20
|v|E .

Можно записать теперь, что матрица Грама имеет вид

(
4

(1−x2−y2)2 0

0 4
(1−x2−y2)2

)
.

Теперь несложно проверить, что никаких изометрий плоскости Лобачевского, кроме объявленных
в (теорема 1.6.2) нет. Так как движения действуют транзитивно на флагах, то достаточно увидеть,
что движения содержат стабилизатор любого флага (здесь применяется лемма о действии групп,
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доказанная в курсе комплексного анализа при изучении автоморфизмов Ĉ). При этом всякая изо-
метрия, оставляющая в модели Пуанкаре центр круга (0, 0), оставляет на месте и все окружности
x2 + y2 = r2 для r ∈ (0, 1). Рассмотрим изометрии, стабилизирующие следующий флаг:

(0, 0)

Рассмотрим окружность x2 + y2 = 1
2 . Она изометрична евклидовой окружности (конформный фак-

тор во всех точках одинаков), очевидно, что любая изометрия, стабилизирующая данный флаг,
действует на ней тождественно.

Так как изометрия сохраняет прямые, в частности, диаметры окружности x2+y2 = 1, то изометрия,
тождественно действующая на окружности x2+y2 = 1

2 тождественно действует на всём круге. Тем
самым, стабилизатор каждой точки тривиален, то есть движения совпадают с изометриями.

1.7 Касательный вектор как дифференцирование

Пусть M — гладкое многообразие. F(M) — множество гладких функций M → R, X(M) —
множество гладких векторных полей.

Естественным образом, F(M) и X(M) образуют векторные пространства над R. При этом, на
F(M) также есть поточечное умножение, и F(M) таким образом формируют ассоциативную,
коммутативную R-алгебру. А ещё X(M) также является модулем над F(M) — относительно
поточечного умножения.

Как известно из курса алгебры, дифференциальный оператор D на R-алгебре A — это такой R-
линейный оператор D : A → A, что выполнено правило Лейбница: D(f · g) = D(f) · g + f ·D(g).
Все дифференцирования образуют R-линейное пространство Der(A).

Для алгебры F(M) всякий X ∈ X(M) индуцирует дифференцирование DX :

f ∈ F(M) 7→ DX(f) ∈ F(M), определённый так: (DX(f))(x) = dxf(Xx)

Правило Лейбница выполнено, так как оно имеет место при дифференцировании произведения.

Факт 1.7.1. Отображение X(M) → Der(F(M)), X 7→ DX — гомоморфизм R-векторных про-
странств.

Доказательство. Несложно проверить.

Далее применение дифференцирования, индуцированного векторным полем X, к функции f обо-
значается просто X(f).

Теорема 1.7.1. Выше определённое отображение X(M) → Der(F(M)) является изоморфизмом.

Доказательство.

Лемма 1.7.1. Зафиксируем p ∈M .

Пусть D : F(M) → R — R-линейное отображение, такое, что D(f · g) = D(f) · g(p) +
f(p) ·D(g). Например, подходит отображение «продифференцировать вдоль данного
вектора и взять значение в точке p».
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1. Тогда ∃!v ∈ TpM : D = Dv
def
= [f 7→ dpf(v)].

2. Несложно получить координаты этого вектора v. Рассмотрим карту (U, ϕ),
содержащую точку p. В Rn есть координаты x1, . . . , xn, пусть (x̃i)

n
i=1 ⊂ F(M)

— функции, отвечающие координатам (x̃i = xi ◦ ϕ).

Утверждается, что vi = D(x̃i).

Доказательство леммы.

Заметим, что D(const) = 0 (проверим для f ≡ 1 : D(1) = D(1) · 1 + 1 ·D(1) = 2D(1)).

Далее проверим, что D локально: если f
∣∣
Up

= g
∣∣
Up
, то D(f) = D(g). Сконструируем

такую «шапочку» h ∈ F(M), что h(p) = 1, и h
∣∣
M\Up

≡ 0. Для проверки локальности

заметим, что f
∣∣
Up

= g
∣∣
Up

⇐⇒ f · h = g · h. Выкладка

D(f · h = g · h) =

{
D(f) · h(p) + f(p) ·D(h)

D(g) · h(p) + g(p) ·D(h)

показывает локальность.

Теперь убедимся, что такой вектор v ∈ TpM , если существует, то единственен. Для этого
проверим равенства во втором пункте, явно задающие координаты v. Пусть ϕ — карта,
v = (v1, . . . , vn). Так как Dv(x̃i) = vi, то отсюда следует второй пункт.

Теперь докажем существование такого вектора v ∈ TpM . Зафиксируем карту (U, ϕ), со-
держащую p. Положим vi := D(Ei), и убедимся, что вектор (v1, . . . , vn) задаёт D.

Лемма 1.7.2 (Адамар). Пусть f ∈ C∞(Rn). Тогда ∃g1, . . . , gn — гладкие, та-
кие, что f(x)− f(0) =

∑
i

gi(x) · xi.

Доказательство леммы.

Положим gi(x) :=
1∫
0

∂f
∂xi

(tx) dt. Они подходят:

f(x)− f(0) =

1∫
0

d

dt
f(tx) dt =

1∫
0

n∑
i=1

∂f

∂xi
(tx) · xi dt =

n∑
i=1

gi(t) · xi

Можно считать, что ϕ(p) = 0 ∈ Rn. Выберем f̃ ∈ F(M), применим к f := f̃ ◦ ϕ−1 ∈
C∞(Rn) лемму Адамара, получим функции gi ∈ C∞(Rn). Обозначим g̃i := gi ◦ ϕ−1,

получили разложение f̃(x) = f̃(p) +
n∑
i=1

g̃i(x)x̃i. Теперь распишем

D
(
f̃
)
= D

(
f̃(p) +

n∑
i=1

x̃i · g̃i

)
=

n∑
i=1

D (x̃i · g̃i) =

=

n∑
i=1

D (x̃i) · g̃i(p) + x̃i(p)︸ ︷︷ ︸
=0

·D (g̃) =

n∑
i=1

vi · g̃i(p)

Так как g̃i(p) = gi(0) =
∂fi
∂xi

(0) = ∂f̃
∂x̃i

(p), то действительно D(f̃) = Dv(f̃).

Рассмотрим дифференцирование D ∈ Der(F(M)). Согласно лемме, ∀p ∈ M : ∃!vp ∈ TpM , такой,
что отображение f 7→ D(f)(p) совпадает с f 7→ Dvp(f). Это показывает инъективность X(M) →
Der(F(M)), а для сюръективности надо убедиться, что полученное поле p 7→ vp гладкое.
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Проверим гладкость p 7→ vp в карте. Лемма даёт координатное представление (vp)i = D(x̃i)(p),
это действительно гладкая функция. Осталось сказать, что для проверки гладкости достаточно
проверить гладкость координат.

Лекция VII
27 марта 2024 г.

1.8 Скобка Ли векторных полей

Пусть M — гладкое многообразие, X,Y ∈ X(M).

Определение 1.8.1 (Скобка Ли векторных полей). Отображение [_, _] : X(M) ×X(M) → X(M),
сопоставляющее двум полям X,Y векторное поле, отвечающее дифференцированию

X(Y (f))− Y (X(f)) ([−])

Иными словами, [X,Y ]f = X(Y (f))− Y (X(f)).

Проверим, что ([−]) является дифференцированием. Линейность очевидна; правило Лейбница го-
ворит, что должно быть равенство такого

[X,Y ](f · g) = ([X,Y ]f) · g + f · ([X,Y ]g) = (X(Y (f))− Y (X(f))) · g + f · (X(Y (g))− Y (X(g)))

и такого выражений:

[X,Y ](f · g) = X(Y (f · g))− Y (X(f · g)) = X(Y (f) · g + f · Y (g))− Y (X(f) · g + f ·X(g)) =

X(Y (f))·g+((((((Y (f) ·X(g)+((((((X(f) · Y (g)+f ·X(Y (g))−Y (X(f))·g−((((((X(f) · Y (g)−((((((Y (f) ·X(g)−f ·Y (X(g))

1.8.1 Выражение для скобки Ли в координатах

Пусть X,Y — два гладких векторных поля, ϕ : U → Ω — карта.

Введём x̃i := xi ◦ ϕ, запишем (где Xϕ def
= dϕ ◦X ◦ ϕ−1 — векторное поле на ϕ(U) ⊂ Rn)

[X,Y ]i = D[X,Y ](x̃i) = D[Xϕ,Y ϕ](xi) = [Xϕ, Y ϕ]i = Xϕ(Y ϕ(xi))− Y ϕ(Xϕ(xi)) = Xϕ(Yi)− Y ϕ(Xi)

1.8.2 Пространство X(M) вместе со скобкой Ли, как алгебра Ли

Чтобы проверить, что X(M) образует алгебру Ли, убедимся, что выполнены три аксиомы алгебр
Ли:

1. Линейность по обеим аргументам: ∀αi, βj ∈ R, X, Y ∈ X(M):

[α1X1 + α2X2, Y ] = α1[X1, Y ] + α2[X2, Y ]

[X,β1Y1 + β2Y2] = β1[X,Y1] + β2[X,Y2]

2. Кососимметричность: [X,Y ] = −[Y,X], или же (эквивалентно) антисимметричность [X,X] = 0.

3. Тождество Якоби [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

Все три свойства следуют из того, что изоморфизм R-векторных пространств X(M) → Der(F(M))
сохраняет скобку Ли (просто по определению скобки Ли на X(M)). То, что для любой алгебры A:
Der(A) — алгебра Ли — известный факт. Проверим тождество Якоби: ∀X,Y, Z ∈ Der(A),∀a ∈ A:

[X, [Y,Z]](a) = X([Y,Z](a))− [Y,Z](X(a)) =

= X(Y (Z(a)))−X(Z(Y (a)))− Y (Z(X(a))) + Z(Y (X(a)))

Записывая аналогичные равенства для [Y, [Z,X]] и [Z, [X,Y ]], и складывая, получим 0 — всё
сократится.
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1.8.3 Специфичные свойства скобки Ли векторных полей

Пусть f, g ∈ F(M).

Свойства (Скобка Ли векторных полей).

• [f ·X,Y ] = f · [X,Y ]− Y (f) ·X.

Доказательство. Применим к h ∈ F(M):

[f ·X,Y ](h) = (f ·X)(Y (h))− Y ((f ·X)(h)) = (f ·X)(Y (h))− Y (f ·X(h)) =

Так как (f ·X)(· · · ) — это производные по направлению, то это равно f ·X(· · · ).

= f · (X(Y (h)))− Y (f) ·X(h)− f · Y (X(h))

• [X, g · Y ] = g · [X,Y ] +X(g) · Y .

Доказательство. Ради разнообразия, выведем из первого и кососимметричности

[X, g · Y ] = −[g · Y,X] = −(g · [Y,X]−X(g) · Y ) = g · [X,Y ] +X(g) · Y

• [f ·X, g · Y ] = f · g · [X,Y ] + f ·X(g) · Y − g(Y (f)) ·X.

Доказательство.

[f ·X, g · Y ] = g · [f ·X,Y ] + (f ·X)(g) · Y = g · (f · [X,Y ]− Y (f) ·X) + (f ·X)(g) · Y

Определение 1.8.2 (Группа Ли). Гладкое многообразие, являющееся топологической группой:
умножение G×G→ G и взятие обратного G→ G — гладкие отображения.

Пример (Группы Ли). Различные линейные группы: GL(n,R), SL(n,R), O(n,R), . . .

Всякий элемент g ∈ G действует на группе левыми и правыми трансляциями: Lg : x 7→ gx,Rg :
x 7→ xg.

Определение 1.8.3 (Левоинвариантное векторное поле X). Такое поле, что ∀g ∈ G : dLg(X) = X.

Выберем ортонормированный базис (x1, . . . , xn) ∈ T1(G) (1 ∈ G — единица в группе), и распро-
страним x1, . . . , xn до левоинвариантных векторных полей X1, . . . , Xn соответствующим дифферен-
циалом Lg (действие транзитивно, поэтому, X1, . . . , Xn определены всюду). Это будут векторные
поля, отвечающие за ортонормированные базисы во всех точках группы.

Можно определить левоинвариантную метрику: для X̃, Ỹ ∈ Tg(G) : ⟨X̃, Ỹ ⟩ = ⟨d1Lg(X),d1Lg(Y )⟩.

1.9 Тензоры на многообразии

Пусть V — векторное пространство.

Определение 1.9.1 (Тензор типа (k,m)). Тензор (V ∗ ⊗ · · · ⊗ V ∗)︸ ︷︷ ︸
k

⊗ (V ⊗ · · · ⊗ V )︸ ︷︷ ︸
m

Мы будем рассматривать только тензоры типа (k, 0) и (k, 1), что, как известно, можно рассматри-
вать, как полилинейные отображения

V × · · · × V︸ ︷︷ ︸
k

→ R и V × · · · × V︸ ︷︷ ︸
k

→ V соответственно

Далее в качестве V выступает касательное пространство к данной точке.
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Определение 1.9.2 (Тензор (тензорное поле) на M типа (k, 0)). Семейство {Fx}x∈M тензоров
валентности (k, 0) вместе со следующим условием гладкости:

∀X1, . . . , Xk ∈ X(M) : F (X1, . . . , Xk) ∈ F(M)

Пример (Тензор типа (2, 0)).

Риманова метрика на n-мерном многообразии.

Контрпример (Не тензор).

Символ Кристоффеля Γki,j не является записью какого-то тензора в координатах: отображение
F (X,Y ) = ∇XY не F(M)-линейно: ∇X(f · Y ) = X · f + f · ∇X(Y ).

Определение 1.9.3 (Тензор (тензорное поле) на M типа (k, 1)). Семейство {Fx}x∈M тензоров
валентности (k, 1) вместе со следующим условием гладкости:

∀X1, . . . , Xk ∈ X(M) : F (X1, . . . , Xk) ∈ X(M)

Таким образом, тензорному полю на M сопоставляется R-полилинейное

F : X(M)× · · · ×X(M) →

[
F(M)

X(M)

Несложно видеть, что это отображение даже F(M)-полилинейное (проверяется поточечно), но
оказывается, что этого требования достаточно для определения тензора.

Теорема 1.9.1. Если отображение F : X(M)×· · ·×X(M) →

[
F(M)

X(M)
являетсяF(M)-полилинейным,

то F однозначно определяет соответствующее гладкое тензорное поле.

Доказательство. Сначала докажем случай k = 1, то есть F : X(M) →

[
F(M)

X(M)
—F(M)-линейное

отображение.

• Чтобы извлечь из F тензор в данной точке, сначала проверим локальность.

Рассмотрим p ∈ U . Пусть X,Y ∈ F(M), причём X
∣∣
U
= Y

∣∣
U
. Рассмотрим h — гладкий спуск

с единицы в U : h
∣∣
U ′ ≡ 1, h

∣∣
M\U ≡ 0, где p ∈ U ′ ⊂ U . Вместо h

∣∣
U ′ ≡ 1 достаточно потребовать

h(p) = 1. Теперь h ·F (X) = F (hX) = F (hY ) = h ·F (Y ), откуда получаем F (Y )(p) = F (X)(p).

• Достаточно доказать для X ∈ X(M), что значение (F (X))(p) зависит только от Xp. Доказав,
мы построим семейство, отвечающее F , и оно будет обладать требуемым условием гладкости,
так как F бьёт в F(M) или X(M).

Зафиксируем карту (U, ϕ), содержащую точку p. Выберем базис e1, . . . , en, ему отвечают коор-
динатные векторные поля Ei. Используя (следствие 1.3.1), можно считать, что Ei определены
на всём многообразии.

Пусть X ∈ X(M), разложим его по координатным полям: X = X1E1+ · · ·+XnEn (равенство
выполняется в некоторой окрестности p), где Xi ∈ F(M). Используя локальность, запишем

F (X) = F (X1E1 + · · ·+XnEn) = X1F (E1) + · · ·+XnF (En)

Тем самым, F (X)(p) = X1(p) · F (E1)(p) + · · ·+Xn(p) · Fn(En)(p).

Если k ̸= 1, то надо доказать сначала локальность (∀p ∈ U : X1

∣∣
U
= Y1

∣∣
U
⇒ F (X1, Z2, . . . , Zn)(p) =

F (Y1, Z2, . . . , Zn)(p), и по всем остальным аргументам аналогично), а потом то, что F (X1, . . . , Xn)(p)
зависит только от X1(p), . . . , Xn(p) по очереди по каждому аргументу. Это следует из случая k = 1,
так как при фиксированных k − 1 аргументах F линейно по последнему.
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Лекция VIII
3 апреля 2024 г.

Пусть Ei, Ej — координатные поля.

Факт 1.9.1. [Ei, Ej ] = 0.

Доказательство. Запишем выражение для скобки Ли в координатах в карте: (подраздел 1.8.1):

[X,Y ]ϕi = (Y ϕi )
′
Xϕ − (Xϕ

i )
′
Yϕ

При этом Xϕ
i , Y

ϕ
i — константы, их производные равны нулю.

Вообще, скобка Ли — мера некоммутативности векторных полей, что мы докажем позже.

1.9.1 Поведение скобки Ли при отображениях

Пусть M,N — гладкие многообразия, X ∈ X(M), Y ∈ X(N), F :M → N – гладкое.

Определение 1.9.4 (F переводит X в Y ). ∀p ∈M : dpF (Xp) = YF (p).

Вообще говоря, если дано отображение F : M → N , и векторное поле X ∈ X(M), то не всегда
найдётся Y ∈ X(N) такой, что X переходит в Y (например, F (p) = F (q), и dpF (Xp) ̸= dpF (Xq)),
а если и найдётся, то может быть не единственно, если F не сюръективно.

Пусть F :M → N переводит X ∈ X(M) в Y ∈ X(N).

Лемма 1.9.1. F переводит X в Y ⇐⇒ ∀ гладкого f : N → R : Y (f) ◦ F = X(f ◦ F ).

Доказательство.

⇒. X(f ◦ F )(p) = dp(f ◦ F )(Xp) = (dF (p)f ◦ dpF )(Xp) = dF (p)f(YF (p)) = (Y (f))(F (p)).

⇐. Выберем локально f := xi — координатная функция.

Yi(F (p)) = (Y (xi)◦F )(p) = X(xi◦F )(p) = dp(xi◦F )(Xp) = (dF (p)xi◦dpF )(Xp) = (dpF (X))i(p)

Совпали i-е координаты полей, значит, сами поля совпали.

Если F переводит X в Y , то будем писать F (X) = Y .

Теорема 1.9.2. Пусть F : N → M гладкое, X1, X2 ∈ X(M), Y1, Y2 ∈ X(N). Если F (X1) = Y1 и
F (X2) = Y2, то F ([X1, X2]) = [Y1, Y2].

Доказательство. Пусть f : N → R — произвольная гладкая. Проверим, что F ([X1, X2]) и [Y1, Y2]
одинаково действуют на f :

[Y1, Y2](f) ◦ F = Y1(Y2(f)) ◦ F − Y2(Y1(f)) ◦ F = X1(Y2(f) ◦ F )−X2(Y1(f) ◦ F ) =
= X1(X2(f ◦ F ))−X2(X1(f ◦ F )) = [X1, X2](f ◦ F )

Конечно, F ([X1, X2]) априори даже может быть не определено, но выкладка выше корректна, и
согласно (лемма 1.9.1), её достаточно для проверки.

Следствие 1.9.1. Пусть M — гладкое многообразие, N ⊂M — гладкое подмногообразие.

Если X,Y ∈ X(M) касательны к N , то и [X,Y ] — касательно к N .

Доказательство. Рассмотреть F = in — вложение N ↪→M .
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1.10 Аффинные связности

Пусть M — гладкое многообразие

Определение 1.10.1 (Аффинная связность ∇). Отображение

X(M)×X(M) → X(M)

V,W 7→ ∇VW

со следующими свойствами:

1. R-билинейность.

2. F(M)-линейность по первому аргументу: ∇f ·VW = f · ∇VW .

3. Правило Лейбница по второму аргументу: ∇V (f ·W ) = V (f) ·W + f · ∇VW .

Примеры.

• Обычное дифференцирование: на Rn могут быть заданы векторные поля.

• Ковариантная производная на поверхности Σ2 ⊂ R3

• Покоординатное дифференцирование в карте. (U, ϕ) — карта, Ei — координатные векторные

поля, Y =
n∑
i=1

YiEi, тогда ∇ϕ
YX(p) =

n∑
i=1

X(Yi)(p) · Ei =
n∑
i=1

dpYi(Xp)Ei

Теорема 1.10.1 (О пространстве связностей). Пусть M — гладкое многообразие, ∇, ∇̃ — две
аффинные связности.

1. ∇− ∇̃ — тензор типа (2, 1).

2. Если T — тензор типа (2, 1),∇ — связность, то T +∇ — связность.

Доказательство.

• Достаточно проверить F(M)-линейность по второму аргументу:

∇V (f ·W )− ∇̃V (f ·W ) =�����V (f) ·W + f · ∇VW −�����V (f) ·W − f · ∇̃VW

• Достаточно проверить правило Лейбница:

(∇+ T )V (f ·W ) = f(V ) ·W + f · ∇VW + T (V, f ·W ) = f(V ) ·W + f · (∇+ T )V (W )

Предложение 1.10.1 (Локальность аффинной связности). Пусть ∇ — аффинная связность.
∀V,W ∈ X(M) : ∇V (W ) зависит только от Vp и W в окрестности p.

Доказательство. При фиксированном втором аргументе ∇_(W ) — тензор типа (1, 1), значит, за-
висит только от Vp.

Пусть имеются два поля W1,W2, совпадающие в окрестности Up ∋ p. Пусть h — гладкий спуск с
единицы в окрестности p, h

∣∣
U∁

p
≡ 0.

h · (∇VW2) + (W2(h) · V )p︸ ︷︷ ︸
0

= ∇V (h ·W2) = ∇V (h ·W1) = h · (∇VW1) + (W1(h) · V )p︸ ︷︷ ︸
0

Следствие 1.10.1. Для аффинной связности ∇ и открытого U ⊂ M имеет смысл говорить о
сужении ∇

∣∣
U
.

Рассмотрим карту ϕ : (U ⊂M) → Rn. Пусть ∇ – аффинная связность на M , а ∇ϕ — покоординат-
ное дифференцирование в карте. Тогда ∇−∇ϕ — некоторый тензор Γ типа (2, 1).

Пусть E1, . . . , En — координатные векторные поля. Обозначим Γi,j := Γ(Ei, Ej).
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Определение 1.10.2 (Символы Кристоффеля). Γi,j = Γ(Ei, Ej).

В отличие от символов Кристоффеля прошлого семестра, эти отвечают координатам тензора, и
имеют смысл не на всём многообразии, а только в данной карте.

1.10.1 Специальные связности

Симметричная связность

Определение 1.10.3 (∇ — симметричная связность). Такая аффинная связность ∇, что ∀X,Y ∈
X(M) : ∇XY −∇YX = [X,Y ].

Утверждение 1.10.1. T := ∇XY −∇YX − [X,Y ] — тензор типа (2, 1).

Доказательство. Выражение антисимметрично (∇XX −∇XX − [X,X] = 0) и R-билинейно. Про-
верим F(M)-билинейность по второму аргументу:

∇X(f · Y )−∇f ·YX − [X, f · Y ] =�����X(f) · Y + f · ∇XY − f · ∇YX − (f · [X,Y ] +�����X(f) · Y ) =

= f · (∇XY −∇YX − [X,Y ])

Билинейность по первому аргументу следует из антисимметричности.

Этот тензор T называется тензор кручения.

Следствие 1.10.2. Проверку того, что связность симметрична, достаточно осуществлять на
координатных полях. Для координатных полей ∇EiEj − [Ei, Ej ] = ∇EiEj = Γi,j . Более того,
∇ϕ
Ei
(Ej) = 0. Тем самым, связность симметрична ⇐⇒ Γi,j = Γj,i.

Риманова связность

Пусть (M, ⟨_, _⟩) — многообразие с римановой метрикой.

Определение 1.10.4 (Риманова связность ∇). Аффинная связность ∇, согласованная с римановой
метрикой: X ⟨Y, Z⟩ = ⟨∇XY,Z⟩+ ⟨Y,∇XZ⟩.

Утверждение 1.10.2. S := X ⟨Y,Z⟩ − ⟨∇XY,Z⟩ − ⟨Y,∇XZ⟩ — тензор типа (3, 0).

Доказательство. R-полилинейность по всем аргументам и F(M)-линейность по первому очевид-
ны.

По второму и третьему аргументам симметрично, проверим F(M)-линейность по второму:

X ⟨f · Y,Z⟩ − ⟨∇X(f · Y ), Z⟩ − ⟨f · Y,∇XZ⟩ =
=((((((
X(f) · ⟨Y,Z⟩+ f ·X ⟨Y,Z⟩ −((((((⟨X(f) · Y,Z⟩ − f ⟨∇X(Y ), Z⟩ − f ⟨Y,∇XZ⟩

Следствие 1.10.3. Можно проверять римановость связности только на координатных полях.

Связность Леви-Чивиты

Определение 1.10.5 (Связность Леви-Чивиты). Симметричная риманова связность.

Лекция IX
10 апреля 2024 г.
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1.10.2 Символы Кристоффеля

Дадим второе определение, и поймём, что оно совпадает с первым. У нас зафиксирована аффинная
связность ∇, и карта (U, ϕ).

Определение 1.10.6 (Символы Кристоффеля в карте). Γϕi,j = ∇Ei
Ej .

Опять же, символы первого рода Γi,j;k
def
= ⟨Γi,j , Ek⟩, и символы второго рода — координаты в

разложении: Γi,j =
∑
k

Γki,jEk.

Это совпадает с (определение 1.10.2), так как Γϕ(Ei, Ej) = ∇Ei
Ej −∇ϕ

Ei
Ej︸ ︷︷ ︸

0

.

Факт 1.10.1. Одни символы Кристоффеля гладкие тогда и только тогда, когда гладкие —
другие.

Доказательство. Они выражаются друг через друга и матрицу Грама (координаты метрического

тензора): (gn,m)

Γ1
i,j
...

Γni,j

 =

Γi,j;1
...

Γi,j;n

, откуда
Γ1

i,j
...

Γni,j

 = (gn,m)−1

Γi,j;1
...

Γi,j;n

.
1.10.3 Существование и единственность связности Леви-Чивиты

Теорема 1.10.2 (Основная теорема римановой геометрии). Пусть (M, ⟨_, _⟩) — риманово многооб-
разие. Тогда существует и единственна связность Леви-Чивиты ∇.

Доказательство. Зафиксируем карту (U, ϕ), в ней имеется n2 гладких функций gi,j . В силу ри-
мановости связности Леви-Чивиты:

Ek(gi,j) = Ek ⟨Ei, Ej⟩ = ⟨Γk,i, Ej⟩+ ⟨Ei,Γk,j⟩ = Γk,i;j + Γk,j;i

Переставляя индексы циклически, получаем


Ek(gi,j) = ⟨Γk,i, Ej⟩+ ⟨Ei,Γk,j⟩ = Γk,i;j + Γk,j;i

Ei(gj,k) = ⟨Γi,j , Ek⟩+ ⟨Ej ,Γi,k⟩ = Γi,j;k + Γi,k;j

Ej(gk,i) = ⟨Γj,k, Ei⟩+ ⟨Ek,Γj,i⟩ = Γj,k;i + Γj,i;k
Так как символы симметричны, то есть Γi,j;k = Γj,i;k, то

Γi,j;k =
Ej(gi,k) + Ei(gj,k)− Ek(gi,j)

2
(∗)

Это показывает единственность в каждой карте, значит, и глобальную единственность.

Докажем существование. Зафиксируем карту, и проверим, что выражение через (∗) корректно
определяет связность Леви-Чивиты формулой ∇ = ∇ϕ + Γϕ. Симметричность ∇ очевидна (про-
веряем на базисных векторах). По модулю симметричности, римановость в точности значит (∗)
(достаточно проверить на базисных векторах).

Понятно, что при замене карты на ей согласованную, ковариантная производная не изменится
— она единственная удовлетворяет условиям симметричности и римановости, и эти условия не
зависят от координат карты.

Доказали существование связности Леви-Чивиты в карте, согласованность следует из единствен-
ности (пересечение карт — карта).

Ковариантное дифференцирование из прошлого семестра — эта самая связность.
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1.11 Ковариантная производная вдоль пути

Пусть γ : [a, b] →M — гладкая (необязательно регулярная) кривая на гладком многообразии M .

Определение 1.11.1 (Гладкое векторное поле вдоль пути γ). Гладкое отображение V : [a, b] →
TM , такое, что ∀t ∈ [a, b] : V (t) ∈ Tγ(t)M .

Пусть M — гладкое многообразие, ∇ — связность, γ — гладкая кривая, V — векторное поле вдоль
γ.

Определение 1.11.2 (Ковариантная производная V вдоль γ). Отображение V 7→ ∇
dtV (сопоставля-

ющее одному векторному полю вдоль γ другое векторное поле вдоль γ) со следующими свойствами:

1. ∇
dt (V +W ) = ∇

dtV + ∇
dtW .

2. ∀f ∈ C∞([a, b] → R) : ∇
dt (f · V ) = f ′ · V + f · ∇

dtV .

3. Если ∃Ṽ ∈ X(M), такое, что ∀t ∈ [a, b] : Ṽ (γ(t)) = V (t), то
(∇
dtV

)
(t) = (∇γ′(t)Ṽ )(γ(t)).

Запись корректна, здесь мы пользуемся тем, что ∇ по первому аргументу зависит только от
его значения в точке (предложение 1.10.1)

Определение выглядит, как обычная ковариантная производная (по теореме о выпрямлении данный
регулярный путь γ можно разрезать на куски, покрытые такими картами, что γ′ ⇈ E1, и ∇

dtV =
∇E1

V подойдёт), но если γ′ = 0, то придётся действовать по-другому.

Теорема 1.11.1. Ковариантная производная вдоль пути существует и единственна.

Доказательство. Сначала докажем единственность. Разложим покоординатно: V (t) =
∑
i

Vi(t) ·

Ei(γ(t)).
∇
dt
V =

∇
dt

(∑
i

Vi(t) · Ei(γ(t))

)
=
∑
i

V ′
i · Ei +

∑
j

Vj ·
∇
dt
Ej

Обозначим γ′(t) =
∑
i

αi(t) · Ei(γ(t)). Так как координатное векторное поле вдоль пути отвечает

обычному координатному векторному полю, то

∇
dt
Ej = ∇γ′Ej =

∑
k

αk∇Ek
Ej =

∑
k

αkΓk,j

Отсюда уже видна единственность — получили выражение для ∇
dt , не использующее этот символ.

Распишем подробнее, чтобы показать существование (из симметричности Γk,j = Γj,k):

∇
dt
V =

∑
i

V ′
i · Ei +

∑
i,j,k

VjαkΓ
i
j,kEi (∗∗)

Дальше, надо опять проверить, что данная формула задаёт ∇
dt в карте корректно. Линейность по

V и правило Лейбница очевидны из формулы (∗∗). Третье условие — согласованность с обыч-
ной ковариантной производной — мне менее очевидно, но, видимо, если расписать, то всё тоже
получится.

Существование, опять же, получается из единственности и соответствующей формулы: покроем
носитель открытыми множествами Wi, таких, что ∀Wi : ∃(U, ϕ) : U ⊃ Wi. На пересечениях всё
согласовано из единственности.

1.12 Геодезические в римановых многообразиях

Далее везде на гладком многообразии M определён гладкий метрический тензор, и ∇ — связность
Леви-Чивиты.

Пусть γ : [a, b] →M — гладкая кривая.
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Определение 1.12.1 (γ — геодезическая). Такая кривая γ, что ковариантная производная её век-
тора скорости вдоль неё самой нулевая: ∇

dtγ
′ = 0.

Пусть кривая натурально параметризована: |γ′| ≡ 1. Тогда кривизна Kγ
def
=
∣∣∇
dtγ

′
∣∣.

Утверждение 1.12.1. Кривая геодезическая ⇐⇒ Kγ ≡ 0.

Свойства.

• Если γ — геодезическая, то |γ′| = const: d
dt ⟨γ

′, γ′⟩ =
〈∇
dtγ

′, γ′
〉
+
〈
γ′, ∇

dtγ
′〉 = 0 (позже

докажем, почему имеет место равенство: (утверждение 1.12.2))

• Если γ — геодезическая, то γ̃(t) := γ(at+ b) — тоже.

Доказательство. γ̃′ = a · γ′, откуда ∇γ̃

dt γ̃
′ = a2

∇γ

dt γ
′ = 0.

1.12.1 Уравнение геодезической

Пусть в карте γ̃ = ϕ ◦ γ = (a1(t), . . . , an(t)), тогда γ̃′(t) = (a′1(t), · · · , a′n(t)). Запишем (∗∗):

∇
dt
γ̃′ =

∑
i

a′′i · Ei +
∑
i,j,k

a′ia
′
j · Γki,j · Ek

Фиксируя Ek, получаем n уравнений, проиндексированных при помощи k: a′′k +
∑
i,j

a′ia
′
jΓ
k
i,j = 0.

Теорема 1.12.1. Пусть (M, ⟨_, _⟩) — гладкое риманово многообразие, ∇ — связность Леви-Чивиты,
p ∈M,v ∈ TpM .

Тогда ∃ε > 0, γ : (−ε, ε) →M — такая геодезическая. что γ(0) = p, γ′(0) = v.

Доказательство. Решаем систему дифференциальных уравнений второго порядка при заданном
начальном условии.

1.12.2 Параллельный перенос вдоль пути

Пусть γ : [a, b] →M — гладкая кривая, V — гладкое векторное поле вдоль γ.

Определение 1.12.2 (V параллельно вдоль γ). ∇
dtV ≡ 0.

В частности, вектор скорости геодезической параллелен вдоль неё.

Теорема 1.12.2. Пусть p ∈ M,v0 ∈ TpM . γ(0) = p. Утверждается, что ∃!V (t) — векторное поле
вдоль γ, параллельное вдоль γ, такое, что V (0) = v0.

Доказательство. Опять запишем (∗∗):

0 =
∇
dt
V =

∑
i

V ′
i · Ei +

∑
i,j,k

VjakΓ
i
j,k · Ei

Получили n уравнений первого порядка с необходимым количеством начальных данных. Значит,
∃! решение на всей области определения.

Определение 1.12.3 (Параллельный перенос вектора v0 вдоль γ в точку γ(t∗)). Значение вектор-
ного поля вдоль γ, параллельного γ, в точке t∗.

Обозначим за P t2t1 : Tγ(t1)M → Tγ(t2)M отображение переноса вектора.

Замечание. Параллельный перенос — линейное отображение, так как свойство быть параллельным
вдоль пути сохраняется при взятии линейных комбинаций.

Предложение 1.12.1. Пусть X,Y — векторные поля, параллельные вдоль γ. Тогда ⟨X(t), Y (t)⟩ =
const.
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Доказательство. Опять воспользуемся пока ещё не доказанным (утверждение 1.12.2):

0 =
d

dt
⟨X(t), Y (t)⟩ =

〈
∇
dt
X, Y

〉
+

〈
X,

∇Y
dt

〉

Следствие 1.12.1. Вдоль пути наблюдается изоморфизм векторных пространств TpM и TqM .

Предложение 1.12.2. Пусть t0 ∈ [a, b] Тогда (∇dtX)(t0) =
d
dt

∣∣
t=t0

(P t0t X(t))

Доказательство. Выберем базис (Bi)i в какой-то точке пути, и и разнесём его параллельными
переносами. Получили на всей кривой базис из параллельных векторных полей.

Запишем X =
∑
i

XiBi. Тогда

∇X
dt

=
∑
i

X ′
i ·Bi +

∑
i

Xi ·
∇
dt
Bi︸ ︷︷ ︸
0

Зафиксируем p ∈M,v ∈ TpM .

Определение 1.12.4 (Экспоненциальное отображение). Частично определённое отображение expp :
(⊂ TpM) → M , такое, что expp(v) — это γv(1), где γv — геодезическая с начальными данными
γv(0) = p, γ′v(0) = v. expp(v) определено если и только если геодезическая с такими параметрами
определена в 1.

Также определяют exp : (⊂ TM) →M , определённое поточечно. В курсе дифференциальных урав-
нений доказывались соответствующие теоремы, из которых видно, что exp — гладкое отображение,
однозначно определённое на некотором открытом подмножестве TM .

Лекция X
17 апреля 2024 г.

Докажем утверждение, уже использовавшееся не раз.

Утверждение 1.12.2. Пусть γ : [0, 1] → M — кривая на римановом многообразии, ∇ — связ-
ность Леви-Чивиты, X,Y — гладкие векторные поля вдоль γ. Тогда

d

dt
⟨X,Y ⟩ =

〈
∇
dt
X, Y

〉
+

〈
X,

∇
dt
Y

〉
Доказательство. Пусть (U, ϕ) — карта, и Ei — координатные векторные поля. Разложим X =∑
i

xiEi и Y =
∑
i

yjEj . Преобразуем левую часть (γ̃ = ϕ ◦ γ):

d

dt
⟨xiEi, yjEj⟩ = (xi · yj)′ · gi,j + xiyj ·

dgi,j
dt

, где
dgi,j
dt

=
∑
k

γ̃′k︸︷︷︸
ak

·(gi,j)′xk
=
∑
k

ak · (Γi,k;j + Γj,k;i)

Теперь преобразуем правую часть, воспользовавшись (∗∗):〈∑
i

x′iEi +
∑
i,k

akxiΓi,k,
∑
j

yjEj

〉
+

〈∑
i

xiEi,
∑
j

y′jEj +
∑
j,k

akyjΓj,k

〉

Несложно видеть, что выражения равны.

Пусть M2 — риманово многообразие, γ — геодезическая. Вектор γ′ параллелен вдоль γ. Выбе-
рем какой-нибудь вектор v ∈ Tγ(0)M, v ⊥ γ′(0), и разнесём его вдоль γ. Повторив так нужное
количество раз (выбирая вектор в Tγ(0)M , ортогональный всем предыдущим), мы получим орто-
нормированный базис вдоль γ.
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Свойства (Экспонента).

• Прямо по определению получаем exp(tv) = γv(t). Тем самым, для фиксированного v ∈ TM :
отображение t 7→ exp(tv) — геодезическая с вектором скорости v в нуле.

• ∀p ∈ M : d0 expp = id — напрямую следует из предыдущего (дифференциал берётся в нуле
касательного пространства).

Следствие 1.12.2. По теореме об обратной функции expp — локальный диффеоморфизм
окрестностей 0 ∈ TpM и p ∈M .

Рассматриваем риманово многообразие со связностью Леви-Чивиты (M, ⟨_, _⟩ ,∇).

Определение 1.12.5 (Радиус инъективности M в точке p). Число

rinj(p)
def
= sup

{
r ∈ R>0 | expp : (Br(0) ⊂ TpM) →M — диффеоморфизм на образ

}
Бывают различные причины того, что радиус инъективности конечен:

• В неодносвязном многообразии геодезические встречаются: так, в цилиндре S1 × R со стан-
дартной метрикой две геодезические, пущенные по окружности вращения в противоположных
направлениях, встречаются, поэтому ∀p : rinjp ⩽ π.

• В некомпактном они могут уткнуться в «край»: в открытом круге D1 со стандартной метрикой
любая геодезическая, пущенная из нуля, имеет длину не более 1, поэтому rinj0 ⩽ 1.

• Геодезические могут сойтись: на сфере S2 со стандартной метрикой (вообще говоря, на любом
многообразии с положительной кривизной, но об этом будет речь чуть позже) любые две
геодезические, пущенные из одной точки, встречаются в диаметрально противоположной
точке сферы, поэтому ∀p : rinjp ⩽ π.

Определение 1.12.6 (Радиус инъективности многообразия M). Число rinj(M) = inf
p∈M

rinj(p).

Теорема 1.12.3. Радиус инъективности локально отделён от нуля: ∀p ∈ M : ∃ε > 0, U ∋ p :
inf
x∈U

rinj(x) > ε.

Доказательство. Пусть (U, ϕ) — карта, ϕ : U → Rn. ϕ задаёт локальный диффеоморфизм между
M и Rn, а ещё — между TM и R2n. Определим F : TM → M × M, vp︸︷︷︸

∈TpM

, p 7→ (expp vp, p).

Изучим его дифференциал (в смысле отображения R2n → R2n) в точке ξ = (ξ1, . . . , ξn) ∈ TpM , где
p = (x1, . . . , xn). F (0, x) = (x, x) и F (ξp, p) = (expp ξp, p), откуда

∂F

∂(x, ξ)
=

(
E 0
E E

)
— невырожден

Получаем, что F — локальный диффеоморфизм.

Тем самым, имеется открытое подмножество в TM (экспонента от которого — диффеоморфизм на
образ), и в нём есть параллелепипед V ×U , где p ∈ U ⊂M и 0 ∈ V ⊂ TpM . Пусть V ⊃ Bε(0), эти
U, ε подходит.

Пусть D — декартовы координаты в TpM , P — полярные (координаты — отображения TpM → Rn).
U ∋ p — окрестность, на которую expp отображается диффеоморфизм.

Определение 1.12.7 (Нормальные геодезические координаты в окрестности p ∈M). D ◦
(
exp−1

p

)
Определение 1.12.8 (Полярные геодезические координаты в окрестности p ∈M). P ◦

(
exp−1

p

)
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1.13 Лемма Гаусса. Геодезические

Пусть (M, ⟨_, _⟩ ,∇) — риманово многообразие со связностью Леви-Чивиты, γ : [a, b] → M —
гладкая кривая.

Определение 1.13.1 (Гладкая вариация γ). Гладкое отображение Q : [a, b] × [−ε, ε] → M , такое,
что Q(_, 0) ≡ γ. Отображения γτ := Q(_, τ) называют продольными линиями вариациями, а
δt := Q(t, _) — поперечными линиями. Вариация называется геодезической, если все продольные
линии γτ — геодезические.

Определение 1.13.2 (Поле вариации Q). Векторы скорости поперечных линий δ′ (можно рассмат-
ривать его, как гладкое поле вдоль γ, заданное по формуле δ′t(0), можно — как семейство гладких
полей вдоль γτ , заданных по формуле δ′t(τ))

Заметим, что ∂Q
∂t — векторные поля вдоль соответствующих поперечных линий, и ∂Q

∂τ — векторные
поля вдоль продольных линий.

Лемма 1.13.1. ∇
dt
∂Q
∂τ = ∇

dτ
∂Q
∂t . Если бы векторные поля индуцировались из соответствующего

поля на многообразии, то это была бы обычная перестановка производных, но Q необяза-
тельно инъективно.

Доказательство. Разложим в карте ϕ ◦Q = (x1(t, τ), . . . , xn(t, τ))

Посмотрим на векторы скорости поперечных линий ∂Q
∂τ = δ′t(τ) =

∑
j

∂xj

∂τ (t, τ)Ej . Подставим их

в (∗∗) (ai = ∂xi

∂t ), получаем

∇
dt

∂Q

∂t
=
∑
j

∂

∂t

∂xj
∂τ

Ej +
∑
i,j

∂xi
∂t

· ∂xj
∂τ

Γi,j

Выражение симметрично относительно t и τ .

Теорема 1.13.1 (Лемма Гаусса). (M, ⟨_, _⟩ ,∇) — риманово многообразие со связностью Леви-
Чивиты, v ∈ TpM таков, что определена expp(v).

Отождествим TpM = TvTpM . Утверждается, что ∀w ∈ TpM : w ⊥ v ⇒ dv expp(v) ⊥ dv exp(w).

Доказательство. Построим вариацию V (τ) := cos τ · v+sin τ ·w, далее Q(t, τ) := exp(t ·V (τ)). Так
как экспонента expp определена в некоторой окрестности v, то вариация Q определена в некоторой
окрестности (1, 0) (где Q(1, 0) = v).

Заметим, что Q — геодезическая вариация. Обозначим соответствующие векторные поля X := ∂Q
∂t

и Y := ∂Q
∂τ , γ0 — геодезическая t 7→ expp(tv).

Продифференцируем ⟨X,Y ⟩ вдоль γ0:

d

dt
⟨X,Y ⟩ =

〈
∇
dt
X, Y

〉
+

〈
X,

∇
dt
Y

〉
= 0 +

〈
X,

∇
dτ
X

〉
=

1

2

d

dτ
⟨X,X⟩︸ ︷︷ ︸
|V (τ)|2=1

= 0

Тем самым, ⟨X,Y ⟩ = const. Так как |Y | −→
t→0

0, то ⟨X,Y ⟩ ≡ 0.

В точке t = 1, τ = 0 это как раз означает ортогональность соответствующих производных.

Следствие 1.13.1. Применяя экспоненту к сфере с радиусом, получим сферу на многообразии,
которая будет перпендикулярна радиусу, входящему в неё.

Лекция XI
24 апреля 2024 г.

Пусть a, b ∈M , где M — риманово многообразие со связностью Леви-Чивиты ∇.

32



Определение 1.13.3 (Кратчайшая между a и b). Кусочно-гладкая кривая γ : [c, d] → M , реали-
зующая расстояние между точками: L(γ) = dist(a, b) = inf

γ̃
L(γ̃), где γ, γ̃ соединяют a и b. Также

кратчайшие называют отрезками.

Теорема 1.13.2 (Геодезические — локально кратчайшие). Пусть p ∈ M,v ∈ TpM, |v| =: r0 < rinjp.
Тогда кривая γ0 : t 7→ expp(t · v), определённая на [0, 1] — единственная (с точность до перепара-
метризации) кратчайшая между своими концами.

Доказательство. Убедимся, что ∀γ : [0, L] → M : γ(0) = p, γ(L) = γ0(1) ⇒ L(γ) ⩾ L(γ0), и
равенство имеет место лишь тогда, когда γ — перепараметризация γ0.

В полярных координатах, индуцированных экспонентой, γ0 идёт по радиусу, и мы сейчас будем
проецировать γ на этот же радиус.

Итак, пусть γ : [0, L] → M — кривая. Рассмотрим даже более широкий класс кривых, чем
соединяющие p и γ0(1): потребуем только γ(0) = p,

∣∣exp−1
p (γ(L))

∣∣ = r0. Можно считать, что
∀t ∈ (0, L) : 0 < | exp−1(γ(0))| < r0: удовлетворяя этим границам, мы только уменьшаем длину
γ (надо обрезать γ после первого пересечения сферы радиуса r0).

Поднимем γ до γ̃ := exp−1
p ◦γ, и представим γ̃ = ρ(t) · u(t), где ρ(t) = |γ̃|, u(t) = γ̃

|γ̃| . Вычислим
производную: γ̃′ = ρ′ · u+ ρ · u′, и так как ⟨u, u⟩ = 1, то u′ ⊥ u.

Так как γ = expp ◦γ̃, то γ′(t) = dγ̃(t) exp(u)︸ ︷︷ ︸
v1

·ρ′ + dγ̃(t) exp(u
′)︸ ︷︷ ︸

v2

·ρ. По лемме Гаусса (теорема 1.13.1)

v1 ⊥ v2, а дифференциал экспоненты тождественный, откуда |γ′|2 = (ρ′)2 + ρ2 · |u′|2. Тем самым,
|γ′| ⩾ |ρ′|, и равенство на всей области определения достигается только при u ≡ const. Также
понятно, что ρ должен монотонно возрастать, иначе

∫
|ρ′| будет больше минимума.

Определение 1.13.4 (Кривая γ : (0, L) → M — локально кратчайшая). ∀t0 ∈ (0, L) : ∃ε :
γ
∣∣
[−ε−t0;ε+t0]

— кратчайшая.

Контрпример (Локально кратчайшая, но не кратчайшая). Экватор на сфере.

Следствие 1.13.2.

• Геодезические — локально кратчайшие.

• ∀p ∈M : ∃Up : p ∈ Up ⊂M : ∀x, y ∈ Up: между x и y имеется единственная кратчайшая.

Доказательство. Воспользуемся тем, что радиус инъективности локально отделён от ну-
ля (теорема 1.12.3). В таком случае, если в окрестности U ∋ p: rinjU ⩾ ε, то в качестве Up
подойдёт U ∩B ε

2
(p).

В этой окрестности Up : ∀x ∈ Up : Up ⊂ Brinjx(x).

• γ — геодезическая ⇐⇒ γ — локально кратчайшая.

Доказательство. Согласно предыдущему пункту, кратчайшие локально единственны. Геоде-
зические тоже, и согласно (теорема 1.13.2), они локально совпадают.

1.14 Кривизна риманового многообразия

1.14.1 Тензор кривизны

M — риманово многообразие со связностью Леви-Чивиты ∇.

Пусть X,Y, Z,W ∈ X(M).

Определение 1.14.1 (Преобразование кривизны). R(X,Y )Z
def
= ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

Лемма 1.14.1. Преобразование кривизны — тензор типа (3, 1).
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Доказательство. R-полилинейность очевидна из формулы, надо проверитьF(M)-полилинейность.

Пусть f ∈ F(M), проверим линейность по Z:

R(X,Y )(f ·Z) = ∇X(Y (f) ·Z+f ·∇Y Z)−∇Y (X(f)Z+f ·∇XZ)− (([X,Y ](f)) ·Z+f ·∇[X,Y ]Z) =

=

(
((((((X(Y (f)) · Z +((((((Y (f) · ∇XZ +((((((X(f) · ∇Y Z + f · ∇X∇Y Z

)
−

−
(
((((((Y (X(f)) · Z +((((((X(f) · ∇Y Z +((((((Y (f) · ∇XZ + f · ∇Y∇XZ

)
−
(
f · ∇[X,Y ] +�����[X,Y ](f)

)
Z

Теперь убедимся в линейности по Y :

R(X, f · Y )Z = ∇X(f · ∇Y Z)− f · ∇Y∇XZ −∇[X,f ·Y ]Z =

=((((((X(f) · ∇Y Z + f · ∇X∇Y Z − f∇Y∇XZ − f∇[X,Y ]Z −((((((X(f) · ∇Y Z

Линейность по X следует из кососимметричности по X и Y .

Определение 1.14.2 (Тензор кривизны). Тензор типа (4, 0), определённый формулой ⟨R(X,Y )Z,W ⟩.

Теперь пусть p ∈M , и зафиксирована двумерная плоскость σ ⩽ TpM с базисом (u, v). Преобразо-
вание и тензор кривизны — вещи, с которыми просто работать, а геометрический смысл кривизны
заключается в секционной кривизне (определена ниже).

Интересный факт. Тензор кривизны восстанавливается из секционной кривизны.

Определение 1.14.3 (Секционная кривизна). Kσ(u, v)
def
= ⟨R(u,v)v,u⟩

|u∧v|2 , где u∧v — смешанное произ-

ведение, то есть |u∧v| =
∣∣∣∣ u1 u2
v1 v2

∣∣∣∣, если u =

(
u1
u2

)
и v =

(
v1
v2

)
в некотором ортонормированном

базисе. По-другому можно сказать, что |u ∧ v|2 = |u|2|v|2 − ⟨u, v⟩2.

Замечание. Тензор кривизны — F(M)-линейное отображение, значит, согласно (теорема 1.9.1),
ему соответствует некоторое тензорное поле. При определении секционной кривизны векторы u и
v, конечно, подставляются не в само определение тензора кривизны через ∇, а в тензор данного
поля в соответствующей точке.

Можно вспомнить выражение для гауссовой кривизны из предыдущего семестра

K =
⟨∇X∇Y Y −∇Y∇XY,X⟩

det I

в котором не было скобки Ли, но для координатных полей скобка Ли равна нулю, так что аналогия
получается полная. Тем самым, можно сразу сказать, что Kσ(S

n) = 1, и вскоре мы покажем, что
Kσ(Hn) = −1.

Согласно теореме, которую окажем позже (теорема 1.17.3), кривизна показывает, насколько быстро
сходятся или расходятся геодезические. Так, если выпустить на сфере (положительной кривизны)
геодезические из одной точки, то расстояние между ними будет расти медленнее, чем на плоскости,
и через некоторое время они встретятся на противоположном полюсе. На гиперболической же
плоскости геодезические расходятся быстрее, чем на плоскости.

Лемма 1.14.2. Тензор кривизны антисимметричен по 1-му и 2-му аргументам; также он
антисимметричен по 3-му и 4-му аргументам:

Доказательство. Антисимметричность по 1-му и 2-му аргументам очевидна из определения.

Для проверки кососимметричности билинейной формы Z,W 7→ ⟨R(X,Y )Z,W ⟩ достаточно прове-
рить, что ⟨R(X,Y )Z,Z⟩ = 0. Запишем

X ⟨Z,Z⟩ = 2 ⟨∇XZ,Z⟩ ⇒ Y (X ⟨Z,Z⟩) = 2(⟨∇Y∇XZ,Z⟩+ ⟨∇XZ,∇Y Z⟩)

[X,Y ] ⟨Z,Z⟩ =

{
2 ⟨∇X∇Y Z −∇Y∇XZ,Z⟩
2
〈
∇[X,Y ]Z,Z

〉
Сравнивая два значения для [X,Y ] ⟨Z,Z⟩, получаем искомое тождество.
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Теорема 1.14.1 (Независимость секционной кривизны от выбора базиса). Секционная кривизна
Kσ не зависит от выбора базиса (u, v).

Доказательство. R(u, v) можно рассматривать, как линейный оператор TpM → TpM .

Пусть ũ, ṽ — базис плоскости, натянутой на u и v, то есть
(
ũ
ṽ

)
=

(
α β
γ δ

)(
u
v

)
, где матрица

невырождена. Из линейности и кососимметричности

R(ũ, ṽ) = R(αu+ βv, γu+ δv) = αδR(u, v) + βγR(v, u) =

∣∣∣∣ α β
γ δ

∣∣∣∣R(u, v)
Далее, согласно (лемма 1.14.2), ⟨R(u, v)ṽ, ũ⟩ = ⟨R(u, v)γu+ δv, αu+ βv⟩ =

∣∣∣∣ α β
γ δ

∣∣∣∣ ⟨R(u, v)v, u⟩.
С другой стороны, из определения понятно, что |ũ ∧ ṽ| =

∣∣∣∣ α β
γ δ

∣∣∣∣ |u ∧ v|.

1.15 Полугеодезические координаты

Пусть M2 — двумерное многообразие, X,Y ∈ F(M) — координаты (координатные векторные
поля).

Определение 1.15.1 (Полугеодезические координаты). Такие координаты, что |X| = 1 и X ⊥ Y .

Метрический тензор в этом базисе имеет вид
(
1 0
0 G

)
, где G = ⟨Y, Y ⟩.

Пример (Полугеодезические координаты). Полярные координаты вне нуля (то есть координаты
(ρ, ϕ) на R2 \ {0}).

Задача 1.15.1. Общий вид полугеодезических координат — эквидистанты от некоторой глад-
кой регулярной кривой.

Лекция XII
8 мая 2024 г.

Теорема 1.15.1. В полугеодезических координатах первая координатная линия — геодезическая:
∇XX = 0, причём ∇XY = ∇YX =

G′
X

2G Y .

Доказательство.

1. Для координатных векторных полей [X,Y ] = 0 = ∇XY −∇YX, так что ∇XY = ∇YX.

2. 0 = X ⟨X,X⟩ = 2 ⟨∇XX,X⟩, откуда ∇XX ⊥ X.

3. 0 = Y ⟨X,X⟩ = 2 ⟨∇YX,X⟩, откуда ∇XY ⊥ X.

4. 0 = X ⟨X,Y ⟩ = ⟨∇XX,Y ⟩+ ⟨X,∇XY ⟩︸ ︷︷ ︸
0

, откуда ∇XX ⊥ Y .

5. Так как X и Y — базис, а ∇XX ⊥ X,Y , то ∇XX = 0.

6. ⟨Y, Y ⟩ = G ⇒ G′
X = 2 ⟨∇XY, Y ⟩. Из (3) получаем ⟨∇XY,X⟩ = 0 ⇒ ∇XY ∥ Y . Тем самым,

∇XY = ⟨∇XY,Y ⟩·Y
⟨Y,Y ⟩ =

G′
X

2G Y .

Теорема 1.15.2 (О выражении секционной кривизны в полугеодезических координатах). В полу-

геодезических координатах K = −
√
G

′′
X,X√
G

= − |Y |′′X,X

|Y | .
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Доказательство. Посчитаем по определению гауссову кривизну K = KX∧Y = − ⟨R(X,Y )X,Y ⟩
|X∧Y |2 . Во-

первых, |X ∧ Y |2 = G. Далее скобка Ли отсутствует, так как поля координатные:

R(X,Y )X = ∇X∇YX −∇Y ∇XX︸ ︷︷ ︸
0

= ∇X

(
G′
X

2G
Y

)
=

=
1

2

(
G′′
X,XG−G′2

X

G2
· Y +

G′
X

G
∇XY

)
=

1

2

(
G′′
X,XG− 1

2G
′2
X

G2

)
Y

Сравним с выражением
√
f
′′

√
f

= 1
2

(
f ′′

f − (f ′)2

2f2

)
.

Утверждение 1.15.1. K(H2) = −1.

Доказательство. Возьмём модель в верхней полуплоскости. Введём полугеодезические коор-
динаты, запараметризовав r(u, v) = (v, eu). Это действительно полугеодезические координаты:
X = r′u = (0, eu), Y = r′v = (1, 0), и X ⊥ Y, |X|2H2 = e2u

e2u = 1.

Посчитаем G = |Y |2H2 = 1
e2u . Воспользуемся формулой: K = −

d2

du2 (e−u)

e−u = −1.

Итак, K(S2) = 1,K(H2) = −1.

1.16 Формула Гаусса — Бонне

1.16.1 Ориентация

Пусть V — n-мерное пространство над R, и B(V ) — множество всевозможных базисов. Напомним
следующие определения:

Определение 1.16.1 (B1, B2 ∈ B(V ) одинаково ориентированы). det(B1 ⇝ B2) > 0.

Определение 1.16.2 (B1, B2 ∈ B(V ) противоположно ориентированы). det(B1 ⇝ B2) < 0.

Определение 1.16.3 (Ориентация V ). Отображение τ : B(V ) → {−1, 1}, такое, что τ(B1) ·τ(B2) =
sign(det(B1 ⇝ B2)).

Пусть Mn — гладкое многообразие. Обозначим за B(TM) =
⋃
x∈M

B(TxM) все базисы во всех каса-

тельных пространствах. Введём на нём топологию подмножества, индуцированную с TM × · · · × TM︸ ︷︷ ︸
n

.

Определение 1.16.4 (Ориентация M). Непрерывное отображение τ : B(TM) → {−1, 1}, такое,
что ∀x ∈ M : τ

∣∣
B(TxM)

— ориентация на TxM . Если ориентация существует, то многообразие
ориентируемо.

1.16.2 Вращение векторного поля вдоль кривой. Поворот кривой

Пусть (M2, ⟨_, _⟩) — ориентированное (в частности, имеются понятия лево, право, по часовой
стрелке, против часовой стрелки) двумерное риманово многообразие, и γ : [a, b] →M — кусочно-
гладкая кривая, W — векторное поле вдоль γ.

Определение 1.16.5 (W — кусочно-гладкое и кусочно-непрерывное). ∃a = t0 ⩽ . . . ⩽ tn = b :
W
∣∣
[ti,ti+1]

— гладкое. Данное разбиение может никак не соотноситься с разбиением кусочной
гладкости для самой кривой γ.

При этом для точки ti (1 ⩽ i < n) из разбиения гладкости для W обозначим W (ti−) := lim
ε→0−

W (ti+

ε) и W (ti+) := lim
ε→0+

W (ti + ε). По техническим причинам потребуем W (ti−) ̸= −W (ti+). Пусть в
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ti имеется излом векторного поля W , обозначим за θi ∈ (−π, π) ориентированный угол между W−
и W+:

θi =

{
∠(W−,W+), W− ↷W+ поворачивается против часовой стрелки

−∠(W−,W+), W− ↷W+ поворачивается по часовой стрелке

Теперь W — кусочно гладкое векторное поле вдоль γ, |W | = 1. Пусть W̃ — другое векторное поле

вдоль γ такое, что
(
W, W̃

)
— ортонормированный положительно ориентированный базис вдоль γ.

Определение 1.16.6 (Вращение W вдоль γ). rotγW
def
=

b∫
a

〈
∇
dtW, W̃

〉
dt+ θ1 + · · ·+ θn.

Пусть γ — кусочно-гладкая, |γ′| = 1,W = γ′. Тогда m := W̃ — ориентированная нормаль к γ.

Определение 1.16.7 (Геодезическая кривизна). Kγ
def
=
〈

∇γ′

dt ,m
〉
. Ещё её называют кривизной

кривой со знаком.

Определение 1.16.8 (Полная кривизна γ со знаком). ψ(γ)
def
= rotγ γ

′. Ещё говорят поворот кри-
вой.

Теорема 1.16.1. Пусть γ : [0, L] → M — кусочно-гладкая петля, γ′(0) = γ′(L), W — кусочно-
непрерывное кусочно-гладкое векторное поле вдоль γ (|W | = 1, и тоже W (0) =W (L)).

Тогда параллельный перенос PL0 : Tγ(0)M → Tγ(L)M — поворот против часовой стрелки на угол
− rotγW (или на rotγW по часовой стрелке).

Доказательство. Пусть E — векторное поле вдоль γ, параллельное вдоль γ, такое, что E(0) =
W (0), |E| = 1.

Сопоставим E ⇝ Ẽ, так что (E, Ẽ) — положительно ориентированный ортонормированный базис.

Положим

{
W = cosα · E + sinα · Ẽ
W̃ := − sinα · E + cosα · Ẽ

. Можно выбрать α (единственным образом с точностью

до глобального сдвига на 2πk) так, что это — кусочно-гладкий аргумент с разрывами в точках
излома меньше π.
∇W
dt = − sinα · α′E + cosα · α′Ẽ, откуда

〈
∇W
dt , W̃

〉
= α′.

Так как многообразие ориентировано, а базис
(
E, Ẽ

)
параллелен вдоль γ, то PL0 (ξE(0)+ ζẼ(0)) =

ξE(L)+ζẼ(L). Так как базис
(
E, Ẽ

)
положительно ориентирован, то PL0 — линейное отображение

двумерной плоскости в себя, сохраняющее ориентацию. Тем самым, это поворот, и для выяснения
угла поворота посмотреть, на какой угол повернулся какой-то данный конкретный вектор.

Сначала пустьW — гладкое. rotγW =
L∫
0

〈
∇W
dt , W̃

〉
dt =

L∫
0

α′ = α(L)−α(0) = α(L). Получается, что

в начале W (0) = E(0), а в конце W (L) — это E(L), повёрнутое на α(L). Но так как W (0) =W (L),
а E параллельно вдоль γ, то E(L) получено из E(0) поворотом на угол −α(L).

Теперь если W лишь кусочно-гладкое — имеются изломы в точках a = t0 ⩽ . . . ⩽ ts = b — тогда

rotγW =

s−1∑
i=0

ti+1∫
ti

〈
∇W
dt

, W̃

〉
dt+

s∑
i=1

θi =

=

s−1∑
i=0

[α(ti+1−)− α(ti+)] +

s−1∑
i=1

[α(ti+)− α(ti−)] = α(L−)− α(0+) = α(L)

сумма телескопируется.

Следствие 1.16.1. Если W1, W2 — как в условии теоремы, то rotγW1 ≡ rotγW2 (mod 2π).
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Лекция XIII
15 мая 2024 г.

1.16.3 Формулировка и доказательство теоремы

Напомним, что для клеточного пространстваM , состоящего из конечного числа клеток, определена
эйлерова характеристика χ(M). Если M составлено из nk клеток размерности k, то χ(M) =
n0−n1+n2− . . . . В частности, для двумерного M : χ(M) = В−Р+Г, где В — количество вершин,
Р — рёбер, а Г — граней графа замощения.

Теорема 1.16.2 (Формула Гаусса — Бонне).

1. Пусть двумерная риманова поверхность M2 ориентирована, ∆ ⊂ M — диск, и путь γ := ∂∆
— кусочно-гладкая граница ∆, и ∆ остаётся слева при обходе γ. Тогда ψ(∂∆)+

s

∆

K dA = 2π.

2. Если диски ∆1, . . . ,∆k замостили какую-то область ∆ ⊂M2, и γi — куски ориентированной
границы ∆ (∆ остаётся слева при обходе γi), то ψ(γ1) + · · ·+ ψ(γk) +

s

∆

K = 2πχ(∆).

Доказательство.

• Докажем аддитивность формулы Гаусса — Бонне для дисков. Введём отображение Гаусса —
Бонне GB(∆) := ψ(∂∆) +

s

∆

K dA− 2π, достаточно доказать, что GB(∆) = 0.

Пусть ∆1,∆2 — два диска с ориентированными границами γ1 · γ−3 и γ2 · γ3 соответственно,
пересекающихся по связной части границы, и ∆ = ∆1 ∪∆2 — тоже диск. Пусть α1, β1, α2, β2
— углы между концами разных путей:

γ3γ1 γ2∆1 ∆2

α1 α2

β1 β2

Тогда


ψ(∂∆1) = ψ(γ1)− ψ(γ3) + (π − α1) + (π − β1)

ψ(∂∆1) = ψ(γ2) + ψ(γ3) + (π − α2) + (π − β2)

ψ(∂∆) = ψ(γ1) + ψ(γ2) + (π − (α1 + α2)) + (π − (β1 + β2))

Получаем GB(∆) = GB(∆1) +GB(∆2), что показывает аддитивность формулы.

• Сначала докажем для диска ∆ ⊂ U , где в U есть карта ϕ : U → R2 = ⟨X,Y ⟩ с полугеодези-
ческими координатами. Пусть s = ϕ−1, X = ds(e1), Y = ds(e2).

Лемма 1.16.1 (Формула Грина). Пусть в R2 есть область D, гомеоморфная дис-
ку, с кусочно-гладкой границей γ = (x, y), при обходе вдоль которой D остаётся
слева. Пусть P,Q : R2 → R — гладкие функции, тогда

x

D

Q′
x − P ′

y dx dy =

∫
γ

P dx+Qdy =

b∫
a

(x′P + y′Q) dt

Доказательство леммы.

Сначала докажем для простых областей, проинтегрировав формулу Ньютона —
Лейбница, а затем всё сложим. Подробнее будет на матанализе.
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Лемма 1.16.2. Пусть γ обходит область ∆, в которой введены полугеодезиче-
ские координаты. Тогда rotγ X +

s

∆

K dA = 0.

Доказательство леммы.

Вспомним формулу K = −
(
√
G)

′′
X,X√
G

. Будем считать, что γ натурально параметризо-
вана. Теперь

rotγ X =

∫
γ

〈
∇X
dt

,
Y

|Y |

〉
=

∫ 〈
∇γ′X,

Y

|Y |

〉
=

Пусть в карте ϕ ◦ γ = γ̃ = (x(t), y(t)). Тогда γ′ = x′ ·X + y′ · Y , и

=

∫
x′
〈
∇XX,

Y

|Y |

〉
︸ ︷︷ ︸

0

+y′
〈
∇YX,

Y

|Y |

〉
=

=

∫
y′
〈
G′
X

2G
Y,

Y√
G

〉
=

∫
y′ · G

′
X ·G

2G ·
√
G

=

∫
y′
(√

G
)′
X
dt =

Применяя формулу Грина для P = 0, Q = G′
X , получаем

=
x (√

G
)′′
X,X

dx dy =
x
(√

G
)′′
X,X√
G

·
√
Gdxdy = −

x
K dA

Введём два векторных поля V = γ′ и W = X, и согласно (следствие 1.16.1): ψ(γ′)+
s
K dA =

2πn, n ∈ Z. Теперь осталось доказать, что n = 1.

Введём непрерывное семейство метрик gτi,j = (1−τ)gi,j+τδi,j , и заметим, что так как поворот
плоской кривой равен 2π (мы это доказывали в предыдущем семестре для гладких кривых,
но это верно и для кусочно-гладких — можно сгладить, либо адаптировать доказательство),
то из непрерывности n = 1.

Теперь осталось сказать, что любой диск можно триангулировать так мелко, что каждый
треугольник лежит в какой-то карте. И ещё что-то про то, как ввести полугеодезические
координаты. Кстати, а как? Из аддитивности получаем (1).

• Теперь выведем (2). Примем без доказательства такой факт, что у любой области с кусочно-
гладкими границами существует триангуляция с кусочно-гладкими границами треугольни-
ков.

Разобьём поверхность на треугольники ∆1, . . . ,∆Γ, и будем использовать, что все GB(∆i) =
0.

Складывая, получаем ψ(∂∆1) + · · · + ψ(∂∆Γ) =

(
s

∆1

+ · · ·+
s

∆Γ

)
K dA = 2πΓ. Докажем, что

ψ(γ1) + · · ·+ ψ(γn)− ψ(∂∆1)− · · · − ψ(∂∆Γ)
?
= 2π(χ(∆)− Γ) = 2π(В− Р).

Все интегралы по отрезкам кривых сокращаются, и остаются лишь углы. Посмотрим по
очереди на все вершины треугольников.

– Внутренняя вершина p степени d (соприкасающаяся с d треугольниками) вносит вклад

в сумму −
d∑
i=1

(π − αi) = −πd+
∑
i

αi = π(2− d).

– Граничная вершина p степени d (соприкасающаяся с d− 1 треугольником) вносит вклад

−
d∑
i=1

(π − αi) + α = π(1− d) +
d∑
i=1

αi + α = π(2− d).
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Осталось увидеть, что сумма по всем вершинам p величины π(2 − dp) даёт вклад 2πВ −
В∑
j=1

djπ = 2π(В− Р).

1.17 Пространства постоянной кривизны. Сравнение треуголь-
ников

1.17.1 Построение двумерных многообразий заданной кривизны

Теорема 1.17.1. У любой замкнутой (компактной) поверхности существует метрика постоянной
кривизны, причём знак кривизны равен знаку эйлеровой характеристики.

Доказательство.
s
K = 2πχ, так что утверждение про знак тривиально.

Воспользуемся теоремой о классификации двумерных поверхностей.

• Если поверхность ориентируема, то это сфера с g ручками. При g = 0 это сфера, на ней
есть структура постоянной кривизны (стандартная метрика на S2 ⊂ R3). При g = 1 это тор,
на нём есть плоская метрика (тор можно склеить из квадрата ⊂ R2). При g ⩾ 2 кривизна
отрицательна, об этом позже.

• Если поверхность неориентируема, то (m = 1) проективная плоскость получается, как фак-
тормногообразие сферы, а при m = 2 бутылка Клейна склеивается из квадрата.

• Иначе кривизна отрицательная. Нарисуем каноническую развёртку (после склейки имею-
щую одну вершину, одну грань, n рёбер) в виде правильного n-угольника, и поместим на
гиперболической плоскости так, чтобы все углы были 2π

n . На практиках обсуждалось, что
у правильного n-угольника на гиперболической плоскости могут быть углы любой угловой
меры из

(
0, n−2

n π
)
.

Чтобы это увидеть, надо рассмотреть модель Пуанкаре в круге, а в ней — семейство много-
угольников, инвариантных относительно поворота круга на 2π

n :

Так как кривизна равна −1, то согласно формуле Гаусса — Бонне (теорема 1.16.2), сумма
внешних углов такого многоугольника равна S+2π, где S — его площадь. Из непрерывности
понятно, что найдётся многоугольник с углами (или с площадью) требуемой величины.

Лекция XIV
22 мая 2024 г.

1.17.2 Локальная изометричность поверхностей постоянной кривизны

Пусть M — двумерное многообразие, K = −
(
√
G)

′′
X,X√
G

≡ const. Тогда
(√

G
)′′
X,X

= −K
√
G. Рас-

смотрим это уравнение — уравнение Якоби — как дифференциальное уравнение на
√
G второго

порядка. Поле Y зовётся полем Якоби, и уравнение Якоби можно записать и решать для произ-
вольных размерностей.
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Пусть −→v ⊥ −→w — единичные векторы в TpM . Введём полярные координаты (X,Y ) при помощи
экспоненты:

r : ρ, ϕ 7→ expp(ρ(v cosϕ+ w sinϕ))

Можно посчитать r′ρ(ρ, 0) = d(ρv)(v) и r′ϕ(ρ, 0) = d(ρv)(ρw). Отсюда на луче expp(xv) координаты
имеют вид: Xexpp(xv)

= dxv expp(v), Yexpp(xv)
= dxv expp(xw). Они полугеодезические вне центра

координат p: |X| = 1, так как x 7→ exp(xv) — геодезическая, и её вектор скорости в нуле v —
единичный, а Y ⊥ X по лемме Гаусса.

Покажем, что
√
G −→

x→0
0, и

(√
G
)′
x
−→
x→0

1. Из симметрии достаточно доказать для луча exp(xv).

Пусть f(x) := dxv expp(w). Так как d0 expp = id, то в окрестности 0 функция |f | положительна,
значит, гладкая. При x > 0: |Y |′x = (|f(x)| · x)′ = x · |f(x)|′ + |f(x)| −→

x→0
|d0 expp(w)| = 1.

Получили начальные данные на дифференциальное уравнение
√
G(0) = 0,

(√
G
)′
x
(0) = 1.

При постоянной кривизне решениями являются


√
G = x, K ≡ 0√
G = sinx, K ≡ 1√
G = sinhx, K ≡ −1

Подправляя на положительную константу, получаем

{√
G = 1√

K
sin

√
Kx, K > 0

√
G = 1√

−K sinh
√
−Kx, K < 0

Это доказывает следующую теорему:

Теорема 1.17.2. Пусть (M2, gM ) и (N2, gN ) — два двумерных многообразия, их кривизны равны и
постоянны KN ≡ KM ≡ const, p ∈M, q ∈ N , и r < min

(
rinjp, rinjq

)
. Введём на шарах Br(0) ⊂ TpM

и Br(0) ⊂ TqN полярные координаты, и зафиксируем некоторую изометрию I : TpM → TqN . Тогда
expq ◦I ◦ exp−1

p — изометрия окрестностей p и q. В частности, она сохраняет кривизну.

Глобальной изометрии, конечно, не будет — например, имеется множество не изометричных по-
верхностей с нулевой кривизной (цилиндр, плоскость, тор, бутылка Клейна. . . ).

1.17.3 Теоремы сравнения

Теорема 1.17.3. Пусть p ∈ M, r < rinjp, кривизна на многообразии одного знака, но не факт,
что постоянна. Следующие условия связывают длины кривых в Br(0) и Br(p), между которыми
действует экспонента.

1. Если K ⩾ 0, то expp не увеличивает длины кривых.

2. Если K ⩽ 0, то expp не уменьшает длины кривых.

Доказательство.

1. Запишем уравнение
(√

G
)′′
x,x

= −K
√
G. Пусть G1 — решение на плоскости, а G2 — на

исходном многообразии:
√
G1

′′
x,x = 0,

√
G2

′′
x,x ⩽ 0. В первом случае

√
G1 = x, значит, во

втором случае
√
G2 ⩽ x.

Тем самым, в соответствующих точках
√
G1 ⩾

√
G2. Используя формулу длины кривой

l(γ) =
√
(x′)2 +G(y′)2 dt, получаем, что G1 ⩾ G2 ⇒ длина кривых не увеличивается.

2. Аналогично.

Пусть на многообразии M взяты точки O,A,B — вершины треугольника ∆, рёбра которого —
кратчайшие (отрезки).

Определение 1.17.1 (Треугольник сравнения с углом). Треугольник на плоскости со сторонами
AO,OB, и углом ∠AOB между ними.
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Определение 1.17.2 (Треугольник сравнения). Треугольник на плоскости со сторонами AO,OB,AB
(если он существует).

Будем соответствующий треугольник сравнения (или треугольник сравнения с углом) обозначать
ŌĀB̄.

Определение 1.17.3 (Маленький треугольник OAB). P (OAB) ⩽ min(rinjA, rinjB, rinjO), здесь P
— периметр.

Следствие 1.17.1. Пусть r < rinjO, A,B ∈ Br(O).

1. Если K ⩾ 0, то в треугольнике сравнения с углом |ĀB̄|R2 ⩾ |AB|M .

2. Если K ⩽ 0, то в треугольнике сравнения с углом |ĀB̄|R2 ⩽ |AB|M .

Если же треугольник OAB маленький, то

1. Если K ⩾ 0, то в треугольнике сравнения ∠AOB ⩾ ∠̃ĀŌB̄. (Углы в треугольнике сравне-
ния по традиции принято обозначать волной)

2. Если K ⩽ 0, то в треугольнике сравнения ∠AOB ⩽ ∠̃ĀŌB̄.

Доказательство.

• Пункты про треугольник сравнения с углами сразу вытекают из (теорема 1.17.3).

• Пункты про треугольник сравнения вытекают из предыдущих и теоремы косинусов (скажем,
если в треугольнике сравнения с углом |ĀB̄|R2 ⩾ |AB|M , то при уменьшении стороны ĀB̄ до
длины |AB| угол ĀŌB̄ по теореме косинусов тоже уменьшится).

Интересный факт (Теорема Топоногова). Если Mn — полное многообразие, и K ⩾ 0, то для него
верно заключение теоремы для больших треугольников. Если Mn — полное многообразие, K ⩽ 0,
и M односвязно, то для него верно заключение теоремы для больших треугольников.

Односвязность важна — например, можно рассмотреть цилиндр отрицательной кривизны, скажем,
поверхности вращения графика y = chx относительно оси x. Там есть треугольник с углами,
равными π — любая окружность вращения. Для него заключение теоремы не выполнено.

1.18 Полнота. Теорема Хопфа — Ринова

Пусть (X, dX), (Y, dY ) — два пока просто метрических пространства, которые для удобства будем
считать компактными. Это автоматически влечёт полноту (в первом семестре доказали, что в мет-
рических пространствах компактность эквивалентна полноте вместе с вполне ограниченностью).

Имеется множество C(X,Y ) непрерывных функций, на котором вводится метрика по правилу
d(f, g) = sup

x∈X
dY (f(x), g(x)).

Теорему Арцела — Асколи можно сформулировать в таком виде:

Теорема 1.18.1 (Арцела – Асколи). Если fn — последовательность равностепенно непрерывных
функций, то ∃f∞ ∈ C(X,Y ), {nk}∞k=1 : fnk

⇒
k→∞

f∞.

Далее все пространства с внутренней метрикой: d(x, y) = inf
γ
L(γ).

Определение 1.18.1 (Кратчайшая γ (параметризованная длиной)). ∀t1, t2 : dist(γ(t1), γ(t2)) =
|t1 − t2|.

Определение 1.18.2 (M — собственное пространство). Все замкнутые шары Dr(p) = {x ∈M | dist(x, p) ⩽ r}
компактны.

Теорема 1.18.2. Пусть M — компактное пространство с внутренней метрикой, тогда любые две
точки можно соединить кратчайшей.
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Доказательство. Рассмотрим две точки a, b ∈ M . Пусть расстояние между ними d := d(a, b),
тогда кратчайшая (если есть) лежит внутри компактного шара D2d(a).

Пусть γn : [0, 1] → M — последовательность кривых, минимизирующая расстояние. Можно счи-
тать, что они равномерно параметризованы (|γn|′ = const), так как их длины ограничены, то можно
применить теорему Арцела — Асколи. Далее применяем полунепрерывность длины снизу.

Определение 1.18.3 (Риманово многообразие полное). Оно полное, как метрическое пространство.

Определение 1.18.4 (Риманово многообразие геодезически полное). Любая геодезическая про-
должима на интервал (−∞,+∞).

Следующая теорема, разумеется, формулируется для многообразий без края.

Теорема 1.18.3 (Хопф — Ринов). Многообразие M метрически полное ⇐⇒ многообразие M
геодезически полное.

Если M полное, то M собственное, expp(D
TpM

R (0)) = D
M

R (p) и любые две точки соединены крат-
чайшей.

Доказательство.

Лемма 1.18.1. Пусть (X, d) — локально компактное пространство с внутренней
метрикой, p ∈ X,R > 0, и выполнено следующее условие: ∀ кратчайшей γ : [0, 1) →
BR(p): можно продолжить до кратчайшей γ : [0, 1] → X. Тогда DR(p) компактен.

Доказательство леммы.

• Из локальной компактности r := sup
{
r > 0 | Dr(p) компактен

}
> 0. Докажем, что

супремум достигается: Dr(p) компактен. Будем доказывать, что Dr(p) полный и
вполне ограниченный (∀ε > 0 : ∃ конечная ε-сеть).

– Замечание. Так как метрика внутренняя, то ∀ε > 0 : Dr(p) ⊂ Uε(Br(p)).

Пусть {xn}n∈N — фундаментальная последовательность точек xn ∈ Dr(p). Убе-
димся, что у неё есть предел. Согласно замечанию, можно считать, что xn ∈
Br(p) (можно подвинуть точку xn на 1

n так, чтобы она попала внутрь шара).

Пусть d(p, xn) = r − εn. Можно считать, что εn −→
n→∞

0 (в противном случае

∃δ > 0: бесконечно много xn лежат в компактном шаре радиуса r−δ; но Dr−δ(p)
полон, значит, предел есть). Прорежая последовательность xn, можно считать,
что εn ↘ 0.

Согласно (теорема 1.18.2), внутри Br(p) точки можно соединять кратчайшими.
Для каждого n определим кратчайшую γn : [0, r − εn] → X, соединяющую p и
xn. Считаем, что γn параметризованы длинами.

Рассмотрим
{
γn
∣∣
[0,r−ε1]

}∞

n=1
. Выберем по теореме Арцела — Асколи подпоследо-

вательность {(n1)(j)}∞j=1 так, что γn1(j)

∣∣
[0,r−ε1]

⇒
j→∞

γ1,∞. Повторяя этот процесс

счётное число раз, получим вложенные последовательности n1(j) ⊃ n2(j) ⊃ . . . ,
такие, что γnk(j)

∣∣
[0,r−εk]

⇒
j→∞

γk,∞, и возьмём диагональ. Из вложенности мож-

но построить γ∞,∞ : [0, 1) → X поточечно: ∀x ∈ [0, 1) : γ∞,∞(x) = γk,∞(x)
при достаточно больших k. Она кратчайшая, как предел кратчайших. Согласно
условию теоремы γ∞ можно продолжить в точку 1, и несложно проверить, что
этот конец — lim

n→∞
xn.

– Компактность Dr(p) следует из вполне ограниченности: Dr− ε
2
(p) компактен,

значит, в нём есть ε
2 -сеть.
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• Если r = R, то лемма доказана. Иначе докажем, что ∃ε > 0 : Dr+ε(p) тоже компак-
тен, приходя к противоречию с определением супремума.

Из локальной компактности ∀x ∈ X : ∃r(x) > 0 : Dr(x)(x) компактен.

Устроим покрытие Dr(p) ⊂
⋃

x∈Dr(p)

Br(x)(x), и выберем из него конечное подпокрытие

Br(x1)(x1), . . . , Br(xn)(xn).

Из открытости ∃ε > 0 : Br(x1)(x1) ∪ · · · ∪ Br(xn)(xn) ⊃ Uε
(
Dr(p)

)
, откуда и подавно

Dr(x1)(x1) ∪ · · · ∪Dr(xn)(xn) ⊃ Uε
(
Dr(p)

)
, то есть Dr+ ε

2
компактен.

Пусть γ : [0, L) → X — геодезическая в параметризации длиной. Из полноты ∃x0 := lim
t→L

γ(t).

Так как радиус инъективности отделён от нуля числом 1
2rinjx0, то достаточно близко к x0 геоде-

зическую можно продолжить за x0. Из геодезической полноты выполнено условие леммы, откуда
любой шар компактен.
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