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1 Аффинные многообразия

1.1 Введение. Аффинные алгебраические многообразия. Идеалы, неприво-
димые многообразия.

Прежде всего отметим, что в данном курсе будет изучаться (квази)аффинная и (квази)проективная
алгебраическая геометрия и речь пойдет о (квази)аффинных и (квази)проективных многооб-
разиях.

Пусть k — алгебраически замкнутое поле, через Ank = An мы будем обозначать kn, рассмат-
риваемое как множество, и будем называть это множество n-мерным аффинным простран-
ством над k. Определим на нём топологию.

Определение 1. Рассмотрим T ⊂ k[x1, . . . , xn] и определим

Z(T )
def
= {(a1, . . . , an) ∈ Ank |f(a1, . . . , an) = 0 ∀f ∈ T} .

Замечание 1. В случае T = ∅ естественно полагать Z(T ) = Ank . Кроме того, сразу заметим,
что Z((1)) = ∅.

Замечание 2. Пусть I = (T ) — идеал, порождённый множеством T . В этом случае Z(T ) = Z(I),
так как если (a1, . . . , an) является нулём для всех элементов идеала, то для T ⊂ I уж тем более,
и, кроме того, если (a1, . . . , an) является общим нулём многочленов из T , то многочлен f ∈ I
мы можем представить в виде

f =
∑

gihi, hi ∈ T, gi ∈ k[x1, . . . , xn]

откуда ясно, что f(a1, . . . , an) = 0.
Отсюда ясно, что достаточно рассматривать не произвольные подмножества k[x1, . . . , xn],

а идеалы этого кольца.

Определение 2. Введём на Ank топологию Зарисского следующим образом: объявим замкну-
тыми все множества вида Z(T ) для некоторого T .

Покажем, что это действительно топология.

1. Ясно, что Z(T1) ∪ Z(T2) = Z(T1T2), где T1T2 = {f1f2 |f1 ∈ T1, f2 ∈ T2}.
Совсем очевидно, что левая часть лежит в правой. Обратно, пусть f1f2(a1, . . . , an) =
0 ∀f1 ∈ T1, f2 ∈ T2. Раз f1f2(a1, . . . , an) = 0, то хотя бы один многочлен из произведения
зануляется.

2. Кроме того, ясно, что
⋂
i∈I Z(Ti) = Z

(⋃
i∈I Ti

)
.

Пример 1. Рассмотрим A1
k. Какими могут быть замкнутые множества? Пусть I = (T ). Так

как k[x] — область главных идеалов, то и идеал I — главный.

• Если I = 0 то Z(I) = A1 — замкнутое.

• Если I = (1), то Z(T ) = ∅.

• Если, наконец, I = (f), f необратим, то в силу алгебраической замкнутости k : f(x) =
(x− a1) · . . . · (x− an), откуда Z(T ) = {a1, . . . , an} — конечный набор точек.
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С другой стороны, если у нас есть конечное множество {a1, . . . , an} ⊂ A1
k, то оно является

множеством нулей многочлена

f(x) =
n∏
i=1

(x− ai).

Таким образом, замкнутые подмножества аффинной прямой — в точности все конечные под-
множества A1

k, пустое и сама прямая A1
k. Отсюда сразу видно, что любые два открытых под-

множества пересекаются и топология Зарисского не хаусдорфова. Хаусдорфовости не будет и
в общем случае, что показывает, что интуицию из топологии, скажем, на Rn, надо перенимать
с осторожностью.

Определение 3. Пусть X — топологическое пространство, Y ⊂ X, Y ̸= ∅. Y называется
неприводимым, если из равенства Y = Y1 ∪ Y2, где Yi замкнуты в Y , следует, что Y1 = Y или
Y2 = Y .

То есть, неприводимые множества — в точности те, которые нельзя представить в виде
объединения двух меньших замкнутых подмножеств.

Пример 2. Аффинная прямая A1
k неприводима (просто из соображений мощности).

Теперь докажем такой общетопологический факт:

Предложение 1. Непустое открытое подмножество неприводимого — неприводимо и плот-
но. Замыкание неприводимого множества неприводимо.

Доказательство. Пусть U ⊂ Y — открытое подмножество. Покажем, что оно неприводимо.
Пусть

U = (U ∩ F1) ∪ (U ∩ F2), F1, F2 замкнуты в Y.

Тогда Y = F1 ∪ F2 ∪ (Y \ U), а так как Y — неприводимо, Y совпадает с каким-то из этих
множеств. С Y \ U оно совпасть не может, так как U ̸= ∅. Значит, Y = Fi =⇒ U ∩ Fi =
U ∩ Y = U , что мы и хотели.

Теперь докажем, что U = Y . Действительно, Y = (Y \ U) ∪ U и из неприводимости Y и
непустоты U следует, что U = Y .

Определение 4. Замкнутые непустые подмножества в Ank мы будем называть аффинными
алгебраическими многообразиями1.

Пример 3. Рассмотрим A1 \ {0}. Это множество не является замкнутым в нашей топологии.
С другой стороны, есть взаимно-однозначное соответствие между этим множеством и множе-
ством {(x, y) ∈ A2 | xy − 1 = 0}, которое является аффинным многообразием.

В одну сторону нам надо сделать проекцию графика гиперболы на горизонтальную ось:
(x, y) 7→ x ∈ A1 \ {0}, а в обратную сторону, мы можем отобразить A1 \ {0} ∋ x 7→ (x, x−1).

Замечание 3. Пример выше наводит на мысль о том, что наше определение не достаточно
общее. Довольно скоро мы его обобщим. Вообще говоря, в данном конспекте под словом мно-
гообразие будет пониматься самое общее, что введено к данному моменту курса.

1Отметим, что в книге Хартсхорна все аффинные алгебраические многообразия предполагаются неприво-
димыми.
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Определение 5. Рассмотрим произвольное подмножество Y ⊂ Ank , положим

I(Y )
def
= {f ∈ k[x1, . . . , xn] | f(y) = 0 ∀y ∈ Y } .

Совершенно ясно, что I(Y ) — идеал. Кроме того, отметим, что для Y = Ank : I(Y ) = 0, а
для Y = ∅ : I(Y ) = (1). Таким образом, у нас есть отображения

k[x1, . . . , xn] ⊃ T 7→ Z(T ), Ank ⊃ Y 7→ I(Y ).

Предложение 2. Определённые выше отображения имеют следующие свойства:

1. Если T1 ⊂ T2, где T1, T2 ⊂ k[x1, . . . , xn], то Z(T1) ⊃ Z(T2).

2. Если Y1 ⊂ Y2 ⊂ Ank , то I(Y1) ⊃ I(Y2).

3. I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2).

4. Пусть Y ⊂ Ank , тогда Z(I(Y )) = Y .

5. Пусть I ⊴ k[x1, . . . , xn], тогда I(Z(I)) =
√
I.

Доказательство. Первые три пункта очевидны.
Четвёртый пункт следует просто из определений. С одной стороны, ясно, что Y ⊂ Z(I(Y )).

С другой стороны, пусть T = Z(a) — произвольное замкнутое множество, содержащее Y . Раз
Y ⊂ T , то легко проверить, что a ⊂ I(Y )2. Пункт 1 влечёт T = Z(a) ⊃ Z(I(Y )), что по
произвольности T даёт искомое.

Пятый пункт — в точности (сильная) теорема Гильберта о нулях 33.

Предложение 3. Отображения Y 7→ I(Y ) устанавливает взаимно-однозначное соответ-
ствие между аффинными многообразиями в Ank и радикальными идеалами кольца многочленов
k[x1, . . . , xn].

При этом, неприводимым аффинным многообразиям соответствуют простые идеалы и
наоборот.

Доказательство. Четвёртый и пятый пункты предыдущего предложения 2 как раз означают
то, что отображения Z и I взаимно обратные

Пусть теперь Y неприводимо. Покажем, что I(Y ) — простой идеал. Рассмотрим f, g ∈
k[x1, . . . , xn], пусть fg ∈ I(Y ). Заметим, что

Y = (Y ∩ Z(f)) ∪ (Y ∩ Z(g)),

значит, одно из этих множеств совпадает с Y . Пусть, например, Y = Y ∩ Z(f) =⇒ Y ⊂
Z(f) =⇒ f ∈ I(Y ).

Наоборот, предположим, что I(Y ) — простой идеал. Пусть Y = Y1 ∪ Y2, тогда

I(Y ) = I(Y1) ∩ I(Y2) ⊃ I(Y1)I(Y2).

Так как идеал простой, не умаляя общности, I(Y1) ⊂ I(Y ) =⇒ Y ⊂ Y1 =⇒ Y = Y1, что мы и
хотели.

2А именно: ∀f ∈ a : f(T ) = f(Z(a)) = 0, откуда f(Y ) = 0, то есть f ∈ I(Y ).
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Посмотрим, куда при этом соответствии переходят точки (одноточечные подмножества Ank).
Пусть P = (a1, . . . , an). Множество {P} замкнуто, так как оно равняется Z((x1 − a1, . . . , xn −
an)).

Из обращения включений в 2 понятно, что точки — минимальные замкнутые множества —
соответствуют максимальным идеалам кольца k[x1, . . . , xn].

Слабая теорема Гильберта о нулях 34 говорит, что все максимальные идеалы k[x1, . . . , xn]
имеют вид (x1− a1, . . . , xn− an), то есть других максимальных идеалов нет, все соответствуют
точкам. Тем самым, имеется биекция

точки Ank ←→ Specm(k[x1, . . . , xn]).

1.2 Разложение в неприводимые компоненты

Определение 6. Топологическое пространство X называется нётеровым, если оно удовле-
творяет DCC для замкнутых множеств. Иными словами, всякая цепочка Z0 ⊃ Z1 ⊃ Z2 ⊃ . . .
стабилизируется: ∃n ∈ N : Zn = Zn+1 = . . . .

Или же, еще более иными словами, в любом семействе замкнутых множеств содержится
минимальный (по включению) элемент.

Пример 4. Ank является нётеровым, так как по теореме Гильберта о базисе k[x1, . . . , xn] —
нётерово кольцо.

В самом деле, если Z0 ⊃ Z1 ⊃ . . ., то I(Z0) ⊂ I(Z1) ⊂ . . .. Так как k[x1, . . . , xn] — нётерово,
∃m : I(Zm) = I(Zm+1) = . . ., и, применяя Z, мы имеем Zm = Zm+1 = . . ..

Теорема 1. Пусть X — нётерово пространство, Y ⊂ X — замкнутое. Тогда существует
единственное разложение Y = Y1∪Y2∪. . .∪Ym, где Yi — замкнутые неприводимые множества
и ∀i, j : Yi ̸⊂ Yj.
Доказательство. Существование. Пусть существуют замкнутые множества Y , не разлага-
ющиеся в объединение неприводимых. В силу нётеровости пространства, мы можем выбрать
минимальное множество с таким свойством и обозначить его за Y .

Совершенно ясно, что оно не может быть неприводимым. Тем самым его можно представить
в виде Y = T1 ∪ T2, где T1, T2 — замкнутые и не совпадают с Y . Так как T1, T2 ⊂ Y , а Y —
минимальное из тех, что не разложить, то Ti мы уже можем представить в виде объединения
неприводимых, а значит, и Y , что даёт нам противоречие.

Единственность. Пусть Y = Y1 ∪ Y2 ∪ . . . ∪ Ym = Y ′
1 ∪ . . . ∪ Y ′

s . Тогда

Y1 =
⋃
i

(Y1 ∩ Y ′
i ) =⇒ Y1 ⊂ Y ′

i .

Проводя аналогичное рассуждение для Y ′
i , мы получаем, что Y ′

i ⊂ Yj для некоторого j. Но, так
как, в силу посылки теоремы, между компонентами не может быть включений, то j = 1 и Y1 =
Y ′
i . Повторяя аналогичный аргумент с остальными индексами, получаем единственность.

Определение 7. Замкнутые неприводимые множества Yi, определённые в теореме выше, на-
зывают неприводимыми компонентами Y .

Пусть теперь Y — аффинное алгебраическое многообразие. Так как оно вложено в некоторое
An, то оно также раскладывается в объединение неприводимых компонент.

Итак, пусть Y = Y1 ∪ . . . ∪ Ym, тогда I(Y ) ⊂ I(Yi), а I(Yi) — простые идеалы (так как Yi
неприводимы).
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Предложение 4. Идеалы I(Yi) — в точности наименьшие простые идеалы, содержащие
I(Y ).

Доказательство. Пусть T ⊂ Y — неприводимое подмножество, тогда

T =
m⋃
i=1

(T ∩ Yi) =⇒ T ⊂ Yi.

Пусть Y = Z(I), а Yi = Z(pi), I ⊂ pi ∈ Spec(k[x1, . . . , xn]).
Предположим, что I ⊂ p ⊊ pi для некоторого p ∈ Spec(k[x1, . . . , xn]). Тогда Z(p) ⊂ Y

— неприводимое подмножество, и как проверено выше, Z(p) ⊂ Z(pj) для некоторого pj . Но
отсюда сразу следует

Z(pj)︸ ︷︷ ︸
=Yj

⊊ Z(pi)︸ ︷︷ ︸
=Yi

,

что даёт нам противоречие.
Теперь, возьмём произвольный минимальный простой идеал p ⊃ I и покажем, что он даст

нам неприводимую компоненту (т.е., что он будет совпадать с одним из pi).
В самом деле, для некоторого i мы имеем Z(p) ⊂ Z(pi) =⇒ pi ⊂ p, откуда по минималь-

ности p мы имеем pi = p.

Дадим теперь следующее определение:

Определение 8. Пусть Y — аффинное многообразие. Его аффинным координатным кольцом
мы будем называть A(Y ) = k[x1, . . . , xn]/I(Y ).

Домашнее задание 1. Задачи:

1. Любое подпространство нётерова пространства нётерово.

2. Нётерово пространство квазикомпактно3.

3. Имеется отображение f : A2 → A2, f(x, y) = (x, xy). Вычислить образ и определить, будет
ли этот образ f(A2) открытым/замкнутым/плотным подмножеством в A2.

4. Пусть f : A3 → A3, f(x, y, z) = (x, xy, xyz). Вычислить образ и определить, будет ли этот
образ f(A2) открытым/замкнутым/плотным подмножеством в A3.

5. Пусть Y ⊂ A3, Y = Z(x2 − yz, xz − x).

6. Найти неприводимые компоненты Y .

7. Вычислить неприводимые компоненты Y = Z(y2 − xz, z2 − y3).

8. Рассмотрим Y = {(t3, t4, t5) ∈ A3
k}.

(a) Y — аффинное многообразие в A3.

(b) Докажите, что I(Y ) порождается тремя элементами и найдите их.
3То есть из всякого открытого покрытия можно выделить конечное подпокрытие. Слово квазикомпактность

выдумали, чтобы не путать с обычной компактностью, которую иногда определяют так, что компакт по опре-
делению хаусдорфов.
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(c) Докажите, что I(Y ) не порождается двумя элементами.

9. Рассмотрим Y = Z(y2−x3) и аффинное координатное кольцо A(Y ) = k[x, y]/I(Y ). Дока-
жите, что поле частных этого кольца изоморфно k[k](t). Выясните, является ли кольцо
A(Y ) целозамкнутым.

1.3 Размерность аффинного многообразия

Пусть X — произвольное топологическое пространство. Тогда его размерность dimX опреде-
ляется аналогично размерности Крулля для кольца в коммутативной алгебре. А именно, рас-
сматривается максимальная длина убывающей цепочки непустых замкнутых неприводимых
множеств:

X0 ⊋ X1 ⊋ X2 . . . ⊋ Xn.

и размерностью X называется такое максимально возможное n.

Предложение 5. Пусть Y — многообразие, а A(Y ) — его координатное кольцо. Тогда

dimY = dimA(Y ).

Доказательство. Замкнутые неприводимые подмножества Y ⊂ An соответствуют простым
идеалам кольца k[x1, . . . , xn], содержащим I(Y ), а они, в свою очередь, соответствуют простым
идеалом координатного кольца A(Y ) = k[x1, . . . , xn]/I(Y ). Значит, dimY равна наибольшей из
длин цепочек отличных друг от друга простых идеалов в A(Y ), то есть размерности Крулля
A(Y ).

Это предложение показывает, что результаты из теории размерности нётеровых колец
весьма-весьма полезны в алгебраической геометрии.

Вычислим теперь размерности каких-то базовых пространств. В An легко найти цепочку за-
мкнутых подмножеств An ⊃ Z(x1) ⊃ Z(x1, x2) ⊃ . . . ⊃ Z(x1, . . . , xn), но доказать, что большей
цепочки нет, сильно сложнее.

Чтобы сделать это, докажем следующую теорему из коммутативной алгебры:

Теорема 2. Пусть B — конечно порождённая k-алгебра. Если B — область целостности,
то dim(B) = trdegk(Frac(B)) (где Frac(B) — поле частных k-алгебры B).

Доказательство. Будем вести индукцию по trdegk(Frac(B)).
Случай trdegk(Frac(B)) = 0 тривиален — в таком случае расширение Frac(B)/k чисто ал-

гебраическое, и из алгебраической замкнутости k: Frac(B) = k. Но раз B — k-алгебра, то B = k,
и, разумеется, dimB = 0.

Теперь пусть trdegk(Frac(B)) > 0. Согласно лемме Нётер о нормализации 31, внутри B со-
держится подкольцо A ⊂ B, изоморфное кольцу многочленов A ∼= k[x1, . . . , xm], и включение
A ⊂ B конечно. Так как при целом (тем более при конечном) расширении размерность не
меняется, то dimA = dimB. С другой стороны, раз A ⊂ B конечно, то расширение полей част-
ных алгебраическое, откуда trdegk(Frac(A)) = trdegk(Frac(B)), значит, достаточно доказать
посылку теоремы лишь для кольца многочленов A = k[x1, . . . , xm].

Выберем цепочку простых идеалов 0 ⊊ p1 ⊊ . . . ⊊ pn ⊂ A, где n = dimA (мы ещё не
доказали, что размерность A равна количеству переменных m, и пока лишь очевидно, что
n ≥ m). Докажем следующую лемму:
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Лемма 1. Пусть A — факториальная область целостности, и p1 ⊂ A — простой идеал высоты
1. Тогда p1 = (p) — главный идеал для некоторого неприводимого p ∈ A.

Доказательство. Так как p1 ̸= 0, то ∃0 ̸= f ∈ p1. Он раскладывается на неприводимые мно-
жители, и из простоты p1, хотя бы один из этих множителей (пусть p) лежит внутри p1. По-
лучается, идеал (p) ⊂ p1 — тоже простой, и из максимальности цепочки p1 = (p).

Отфакторизуем кольцо многочленов A по p1, и посмотрим, что получится.
Идеал p1 — высоты 1 (так как цепочка максимальна), откуда в силу леммы p1 = (p), и

пусть без потери общности x1 входит в p нетривиальным образом. Тогда образы x2, . . . , xm
внутри Frac(A/(p)) образуют базис трансцендентности (очевидно, что они порождают всё поле
частных Frac(A/(p)), а независимость даже и не пригодится). Тем самым, trdegk Frac(A/(p)) ≤
m − 1, откуда по индукции dimA/(p) = m − 1. Но цепочка 0 = p1/(p) ⊊ . . . ⊊ pn/(p) внутри
A/(p) имеет длину n− 1, откуда n− 1 ≤ m− 1, и мы доказали обратное неравенство.

Пример 5. Отсюда мы сразу получаем, что dimAn = dimk[x1, . . . , xn] = n.

Определение 9. Аффинная алгебра — это координатное кольцо некоторого аффинного мно-
гообразия.

Замечание 4. Эквивалентно можно говорить, что аффинная алгебра — это конечно порож-
дённая редуцированная алгебра. В самом деле, координатное кольцо любого аффинного мно-
гообразия — это факторкольцо k[x1, . . . , xn] по радикальному идеалу, оно конечно порождено
над k и редуцировано. Обратно, любое конечно порождённое над k кольцо представимо в ви-
де факторкольца кольца многочленов, а редуцированность означает, что идеал, по которому
происходит факторизация, радикален.

Теорема 3. Пусть B — целостная аффинная алгебра над k (или, что эквивалентно, конечно
порождённая целостная k-алгебра), а p ∈ SpecB. Тогда

ht p+ dimB/p = dimB.

Доказательство. Будем вести индукцию по dimB. База (dimB = 0) очевидна.
Рассмотрим два варианта — сначала равенство B кольцу многочленов, потом общий случай.
I. Пусть B = k[x1, . . . , xn], dimB = n. Возьмём p ∈ SpecB, ht p = m, то есть

0 ⊊ p1 ⊊ p2 ⊊ . . . ⊊ pm = p.

Тогда ht p1 = 1, и идеал p1 = (p) — главный в силу леммы 1
Отфакторизуем по (p): p/(p) ⊴ B/(p), p/(p) ∈ SpecB/(p). Так как (p) — главный идеал, то

по предыдущей теореме 2: dimB/(p) = dimB − 1 (несложно предъявить базис трансцендент-
ности Frac(B/(p))), значит, мы можем применить индукционное предположение:

ht p/(p) + dimB/p = dimB − 1.

Докажем, что ht p/(p) = ht p− 1. Очевидно, что ht p/(p) ≥ ht p− 1. С другой стороны, если
π : B → B/(p), то всякая цепочка для p/(p)

0 ⊊ q1 ⊊ . . . ⊊ qs = p/(p),
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поднимается до цепочки для p:

0 ⊊ (q) ⊊ π−1(0) ⊊ π−1(q1) ⊊ . . . ⊊ π−1(qs) = p.

II. Пусть B — произвольная конечно порождённая целостная k-алгебра. По лемме Нётер о
нормализации B — целое расширение A = k[x1, . . . , xn], dimB = dimA. Дальше по теореме о
спуске для q ∈ SpecB мы имеем ht q ≥ ht(q ∩A). Кроме того, расширение

A/(q ∩A) ↪→ B/q

тоже целое, откуда dimA/(q ∩A) = dimB/q. Получается, мы имеем

dimB/q+ ht q ≥ dim(A/q ∩A) + ht(q ∩A)

По пункту I, правая часть равна dimA = dimB, то есть мы показали, что

dimB/q+ ht q ≥ dimB.

Но неравенство в другую сторону очевидно.

Следствие 1. Пусть B — целостная конечно порождённая алгебра, f ∈ B, f ̸= 0 и f необ-
ратим. Пусть p — минимальный простой идеал, содержащий f . Тогда

dimB/p = dimB − 1.

Доказательство. По теореме 3 мы имеем

ht p+ dimB/p = dimB.

Но, по теореме Крулля о главных идеалах (hauptidealsatz), ht p = 1, откуда мы имеем нужное.

Переформулируем это на алгебро-геометрический язык:

Определение 10. (Необязательно неприводимая) гиперповерхность в An — множество вида
Z(f), где f ∈ k[x1, . . . , xn] необратим, f ̸= 0.

Следствие 2. Пересечение неприводимого многообразия X с гиперповерхностью Z(f) имеет
размерность каждой компоненты хотя бы dimX − 1.

Доказательство. Пусть X ⊂ An задаётся идеалом I(X). Его размерность — размерность ко-
ординатного кольца A(X) = k[x1, . . . , xn]/I(X). При этом координатное кольцо пересечения —

это A(X ∩ Z(f)) = k[x1, . . . , xn]/
√
I(X) + (f) = A(X)/

√
(f). Так как X неприводимо, то I(X)

прост, откуда A(X) целостно.
При этом неприводимые компоненты A(X ∩Z(f)) — максимальные неприводимые замкну-

тые подмножества — соответствуют минимальным простым идеалам A(X ∩ Z(f)), которые в
свою очередь отвечают минимальным простым идеалам A(X), содержащим образ f . Если об-
раз f внутри A(X) обратим, то этих идеалов нет (с геометрической точки зрения, пересечение
X ∩ Z(f) пусто). Иначе f необратим, и применимо следствие 1: ясно, что если неприводимая
компонента X ∩Z(f) отвечает простому идеалу p ⊃ (f), то её размерность равна размерности
её координатного кольца A(X)/p.
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Отсюда получаем вот такое следствие:

Предложение 6. Пусть X неприводимо. Тогда все неприводимые компоненты Z(I(X) +
(f1, . . . , fm)) имеют размерность хотя бы dimX −m.

Следствие 3. Пусть f1, . . . , fm ∈ k[x1, . . . , xn], m < n и f1(0) = . . . = fm(0) = 0. Тогда
система 

f1 = 0
...
fm = 0

имеет ненулевое решение.

Доказательство. Пространство переменных — аффинное пространство Ank . Пространство ре-
шений — замкнутое множество Z(f1, . . . , fm). По условию (0, . . . , 0) ∈ Z(f1, . . . , fm).

В силу предыдущего предложения (применённого к X = Ank), размерность компоненты
Z(f1, . . . , fm), содержащей (0, . . . , 0), хотя бы 1, что согласно геометрическому определению
размерности означает, что там есть ещё хотя бы одна точка (из неприводимости их даже бес-
конечно много).

1.4 Регулярные функции

Определение 11. Будем говорить, что X — квазиаффинное многообразие, если X — открытое
подмножество аффинного многообразия.

Определение 12. ПустьX ⊂ Ank — квазиаффинное. Будем говорить, что отображение f : X →
k — регулярное в точке p, если существует окрестность U ⊂ X, U ∋ p и многочлены g, h ∈ A =
k[x1, . . . , xn] такие, что

• h не имеет нулей в U ,

• f |U = g/h.

Функция f : X → k называется регулярной на X, если она регулярна в каждой точке X.

Регулярные функции на X образуют кольцо, которое мы будем обозначать O(X).

Замечание 5. Например, все многочлены — регулярные функции на An.

Теорема 4. Пусть X — аффинное многообразие. Тогда

O(X) ∼= A(X) = k[x1, . . . , xn]/I(X).

Доказательство. Сначала отметим, что каждый многочлен очевидно определяет регулярную
функцию на An, а значит и на X. Так мы строим гомоморфизм

α : k[x1, . . . , xn]→ O(X), f 7→ f.

Но, его ядро — это в точности I(X):

Kerα = {f ∈ k[x1, . . . , xn] : f |X = 0} = I(X).
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Значит, у нас есть инъективный гомоморфизм A(X) ↪→ O(X). Покажем, что он сюръективен.
Рассмотрим f ∈ O(X). По определению, у любой точки x ∈ X существует окрестность Ux и

многочлены px, qx такие, что qxf = px в Ux, причём qx не обращается в 0 на Ux. Так как X \Ux
замкнуто, X \ Ux = Z(a) для некоторого идеала a ⊴ k[x1, . . . , xn] и легко видеть, что

Z(a) ⊂ X = Z(I(X)) =⇒ I(X) ⊂ a.

Значит, если мы возьмём s ∈ a \ I(X), мы получим, что

s · qx · f = s · px на всём X, так как

• s ∈ a = I(X \Ux), что значит, что s|X\Ux
= 0 и и на X \Ux это равенство превращается в

0 = 0.

• А на Ux это равенство получается домножением qxf = px на s.

Причём, выберем s так, чтоб s(x) ̸= 0. Мы можем так сделать, так как если нет, то{
∀s ∈ a \ I(X) s(x) = 0

∀s ∈ I(X) s(x) = 0
=⇒ ∀s ∈ a s(x) = 0,

но отсюда получается, что x ∈ Z(a) = X \ Ux (а это абсурдно).
Итак, выбрав такой s, мы построили для любой точки x многочлены p′x и q′x такие, что

∀y ∈ X q′x(y)f(y) = p′x(y) и q′x(x) ̸= 0.

Теперь рассмотрим идеал
∑

x∈X(q
′
x)+I(X) в кольце k[x1, . . . , xn] и покажем, что он совпада-

ет со всем кольцом. Предположим противное, то есть он содержится в некотором максимальном
идеале m ∈ Spec(k[x1, . . . , xn]). Но в таком случае

Z

(∑
x∈X

(
q′x
)
+ I(X)

)
⊃ Z(m) = pt ∈ An =⇒ ∀x ∈ X : q′x(pt) = 0, ∀h ∈ I(X) : h(pt) = 0.

Это даёт противоречие, так как

• Если pt /∈ X, то не может быть такого, что ∀h ∈ I(X) : h(pt) = 0.

• Если же pt ∈ X, то по построению q′pt(pt) ̸= 0.

Итак, мы показали, что∑
x∈X

(q′x) + I(X) = (1) =⇒
∑
x∈X

(
q′x
)
=
(
1
)

в A(X),

откуда существуют ℓxi ∈ A(X) такие, что
N∑
i=1

ℓxi · q′xi = 1 на X.

Но, ранее мы показали, что q′xf = p′x на X. Домножая сумму выше на f , мы получаем, что
N∑
i=1

ℓxi · p′xi = f ∈ A(X).

Таким образом, мы построили для каждой регулярной функции прообраз в A(X).
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Предложение 7. Регулярная функция f : X → k непрерывна, если отождествить k с A1 с
топологией Зарисского.

Доказательство. Докажем сначала такую лемму из общей топологии:

Лемма 2. Пусть X — топологическое пространство, T ⊂ X, а Ui — открытое покрытие X.
Утверждается, что T замкнуто в X тогда и только тогда, когда ∀i : T ∩ Ui замкнуто в Ui.

Доказательство. В самом деле,

V = X \ T =
⋃
i

(Ui \ T ) =
⋃
i

(Ui \ (T ∩ Ui))︸ ︷︷ ︸
открытое

.

Достаточно показать, что прообраз замкнутого множества замкнут. Как мы видели, за-
мкнутые множества в A1 — конечные наборы точек, поэтому достаточно показать, что

∀a ∈ k f−1(a) = {P ∈ X | f(P ) = a} — замкнуто.

Как мы видели в лемме, это достаточно проверять локально. Пусть U — открытое множе-
ство, на котором f можно представить в виде g/h, где g, h ∈ k[x1, . . . , xn] и h не имеет нулей в
U . Тогда

f−1(a) ∩ U = {P ∈ U | g(P )/h(P ) = a}, но g(P )/h(P ) = a ⇐⇒ (g − ah)(P ) = 0,

откуда f−1(a) ∩ U = Z(g − ah) ∩ U — замкнуто в U .

1.5 Морфизмы алгебраических многообразий

Определение 13. Пусть X,Y — квазиаффинные многообразия; φ : X → Y — морфизм, если

1. φ непрерывно;

2. Для каждого открытого V ⊂ Y и каждой регулярной функции f : V → k её пуллбек
φ∗(f) = f ◦ φ : φ−1(V )→ k — регулярная функция.

Замечание 6. В частности, теперь у нас определено понятие изоморфизма многообразий. От-
метим, что изоморфизм обязательно является биективным и непрерывным в обе стороны мор-
физмом, однако биективный и бинепрерывный морфизм может и не быть изоморфизмом.

Предложение 8. Квазиаффинные многообразия (и морфизмы, определенные как в 13) обра-
зуют категорию, которую мы будем обозначать qAffk.

Предложение 9. Пусть X — квазиаффинное многообразие, Y ⊂ Ank — тоже квазиаффинное
многообразие. В таком случае ψ : X → Y является морфизмом в точности тогда и только
тогда, когда функции

ψ∗(xi) : X
ψ−→ Y

xi−→ k

являются регулярными на X.
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Доказательство. Если ψ — морфизм, то эти функции регулярны просто по определению мор-
физма. Теперь докажем утверждение в обратную сторону.

Покажем непрерывность. Возьмём замкнутое T ⊂ Y и проверим, что ψ−1(T ) замкнуто. До-
статочно проверить это локально, то есть в окрестности любой точки. Возьмём произвольную
точку x ∈ X и докажем, что существует такая окрестность Ux ∋ x, что Ux ∩ ψ−1(T ) замкнуто
в Ux.

Так как функции ψ∗(xi) : X → k регулярны, то в некоторой окрестности4 x мы можем
представить отображение ψ в виде

(x1, . . . , xm) 7→
(
f1(x1, . . . , xm)

g1(x1, . . . , xm)
, . . . ,

fn(x1, . . . , xm)

gn(x1, . . . , xm)

)
Если T задаётся многочленами F1, . . . , Fk, то есть T = {y ∈ Y |F1(y) = . . . = Fk(y) = 0}, то

ψ−1(T ) ∩ Ux =

{
(x1, . . . , xm)

∣∣∣∣F1

(
f1
g1

(x1, . . . , xm), . . . ,
fn
gn

(x1, . . . , xm)

)
= . . . = 0

}
,

откуда ψ−1(T ) ∩ Ux замкнуто в Ux.
Теперь надо проверить второе условие. Его также можно проверять локально. Возьмём

открытое U ⊂ Y и рассмотрим на нём регулярную функцию f . Покажем, что f ◦ ψ регулярна
на ψ−1(U). Мы можем покрыть U окрестностями, на которых f представляется, как отношение
многочленов: пусть U =

⋃
Ui и

f |Ui =
gi
hi
.

Теперь достаточно доказать, что ψ∗(f |Ui) регулярны на ψ−1(Ui), а для этого достаточно до-
казать, что ψ∗(gi) и ψ∗(hi) регулярны. Но, это очевидно, так как по условию ψ∗(xi) регулярны,
а gi и hi — многочлены от xi.

1.6 Антиэкивалентность Affop ∼= k-Alg

Предложение 10. Пусть X,Y — многообразия, причем Y — аффинное. Имеется естествен-
ное биективное отображение (изоморфизм бифункторов)

HomqAff(X,Y )
∼−→ Homk-Alg(A(Y ),O(X)).

Естественность тут понимается в обычном смысле: а именно, если у нас есть морфизм
X1 → X2, то мы получим коммутативную диаграмму:

HomqAff(X2, Y ) Homk-Alg(A(Y ),O(X2))

HomqAff(X1, Y ) Homk-Alg(A(Y ),O(X1))

∼

∼

И, если же у нас есть морфизм Y1 → Y2, то мы получим коммутативную диаграмму:
4Достаточно взять окрестность из определения для каждой из координат и пересечь их.
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HomqAff(X,Y1) Homk-Alg(A(Y1),O(X))

HomqAff(X,Y2) Homk-Alg(A(Y2),O(X))

∼

∼

Доказательство. Пусть задан морфизм φ : X → Y , он переводит регулярные функции на
Y в регулярные функции на X (при помощи пуллбека). Значит, он индуцирует отображение
φ∗ : O(Y )→ O(X):

f ∈ O(Y ), f 7→ φ∗(f) ∈ O(X).

Совершенно ясно, что это отображение является гомоморфизмом k-алгебр. По теореме 4,
O(Y ) ∼= A(Y ), так что мы получаем гомоморфизм A(Y )→ O(X).

Теперь построим обратное отображение. Пусть задан гомоморфизм k-алгебр h : A(Y ) →
O(X). Y — аффинное, так что A(Y ) = k[x1, . . . , xn]/I(Y ). Рассмотрим ξi = h(xi) ∈ O(X). Эти
функции определены на всём X, так что мы можем определить отображение

ψ : X → An, ψ(P ) = (ξ1(P ), . . . , ξn(P )).

Покажем, что на самом деле ψ действует в Y . Так как Y = Z(I(Y )), достаточно показать, что
∀f ∈ I(Y ),∀P ∈ X : f(ψ(P )) = 0. Так как f — многочлен, а h — гомоморфизм k-алгебр,

f(ψ(P )) = f((ξ1(P ), . . . , ξn(P ))) = h(f(x1, . . . , xn))(P ) = 0,

так как f ∈ I(Y ). Так по гомоморфизму k-алгебр h : A(Y )→ O(X) мы построили отображение
ψ : X → Y . То, что ψ — морфизм, напрямую вытекает из предложения 9.

Дальше в качестве упражнения идёт проверка того, что построенные отображения HomqAff(X,Y )
∼−→

Homk-Alg(A(Y ),O(X)) взаимно обратны.
Естественность данного изоморфизма оставляется в качестве упражнения.

Заметим, что если оба многообразия аффинные, то мы получаем соответствие (естествен-
ный изоморфизм)

HomAff(X,Y )
∼−→ Homk-Alg(A(Y ), A(X)).

То есть, мы получаем (контравариантный) функтор Affop
k → k-Alg (где алгебры конечно по-

рождённые и редуцированные5):

A : Affop
k → k-Alg, X 7→ A(X).

Кроме того, мы видели, что есть и обратный функтор: если A ∈ k-Alg, то мы можем рас-
смотреть аффинное многообразие X ′ такое, что A(X ′) ∼= A и сопоставить A→ X ′. Например,
можно представить A ∼= k[x1, . . . , xN ]/I, и тогда X ′ = Z(I) ⊂ ANk .

Этот функтор задан корректно, в частности, если взять другое многообразие X такое, что
A(X) ∼= A(X ′), то изоморфизм алгебр будет индуцировать и изоморфизм многообразийX ∼= X ′

(так как функтор переводит изоморфизмы в изоморфизмы).
Таким образом, мы доказали такую теоремы:

5Других в этом конспекте не встретится.
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Теорема 5. Категория аффинных многообразий Aff антиэквивалентна категории конечно
порождённых редуцированных k-алгебр.

Переводя это на существенно менее изысканный язык, мы получаем такое следствие

Следствие 4. Аффинные многообразия X и Y изоморфны тогда и только тогда, когда их
аффинные координатные кольца A(X) и A(Y ) изоморфны как k-алгебры.

1.7 Рациональные функции

Определение 14. Пусть X — неприводимое аффинное многообразие, U, V — непустые откры-
тые подмножества, а f и g — регулярные функции на U и V соответственно. В таком случае
будем говорить, что (U, f) ∼ (V, g) если f = g на U ∩ V .

Класс эквивалентности по этому отношению мы будем называть рациональной функцией.
Областью определения данной рациональной функции называется объединение всех U та-

ких, что данная функция эквивалентна (U, f) для некоторой f : U → k.

Замечание 7. Множество всех рациональных функций на X образует поле, которое мы будет
обозначать через k(X).

Проверим, что это в самом деле поле. Так как X неприводимо, любые два непустых откры-
тых подмножества X имеют непустое пересечение (по 1), и мы можем определить сложение и
умножение, превратив k(X) в кольцо. Кроме того, если (U, f) ∈ K(X) и f ̸= 0, то мы можем
ограничить f на открытое множество V = U \ (U ∩Z(f)), на котором f не имеет нулей, и тогда
1/f регулярна на V , и пара (V, 1/f) будет обратным элементом к (U, f).

Отметим, что для неприводимого аффинного многообразия X определение поля рацио-
нальных функций k(X) можно дать несколько иначе по сравнению с определением 14.

Так как X неприводимо, то координатное кольцо A(X) целостно, и мы можем рассматри-
вать его поле частных. Кроме того, рассматривая очевидное (инъективное) отображение

A(X)→ k(X).

мы получаем и вложение полей Frac(A(X)) ↪→ k(X). Вложение полей инъективно всегда; сюръ-
ективность следует из определения регулярной функции: на некоторой окрестности U ⊂ X
регулярная функция представима в виде частного многочленов g/h, значит, она эквивалентна
рациональной функции (U, g/h), которая безусловно лежит в образе Frac(A(X)). Тем самым,
это изоморфизм.

1.8 Главные аффинные окрестности

Определение 15. Главным открытыми множествами (или, аффинными окрестнстями) в
An называют множества вида

D(f)
def
= An \ Z(f),

где f — некоторый многочлен из k[x1, . . . , xn].
Пусть X — аффинное многообразие, f ∈ A(X) = k[x1, . . . , xn]/I(X). Определим

D
(
f
) def
= D(f) ∩X = X \ Z

(
f
)
.

Ясно, что определение корректно, так как утверждение f(x) = 0 для точки x ∈ X не зависит
от выбора представителя f класса f .
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Замечание 8. Ясно, что если f = 1, то D(f) = An, откуда D
(
f
)
= X.

Для краткости обозначим A = A(X) и рассмотрим главную локализацию

Af = S−1A, где S =
{
f
n | n ∈ N

}
.

Замечание 9. Отметим, что возможен случай, когда Af = 0, но тогда ∃k : fk = 0, а так как
I(X) — радикальный идеал, это равносильно тому, что f = 0, что равносильно тому, что
f ∈ I(X), то есть

D
(
f
)
= X \ Z

(
f
)
= ∅.

В случае, когда D(f) ̸= ∅, мы получаем гомоморфизм колец

Af → O(D(f)),
a

f
k
7→ функция

a

f
k

• Этот гомоморфизм инъективен:

a

f
k

∣∣∣∣
D(f)

= 0 =⇒ a|D(f) = 0 =⇒ a · f |X = 0 =⇒ af ∈ I(X) =⇒ af = 0 ∈ A(X),

откуда a/fk = 0 в локализации A(X)f .

• Кроме того, он сюръективен. Пусть r ∈ O
(
D
(
f
))

, то есть

∀x ∈ D
(
f
)
∃ окрестность Ux ∋ x, gx, hx ∈ A(X) : rhx = gx на Ux

и hx не имеет нулей в Ux.

Выбирая многочлен sx ∈ A(X), не равный нулю в точке x, но обращающийся в ноль на
дополнении D

(
f
)
, мы можем полагать, что наше равенство выполнено на всём X (см.

доказательство теоремы 4). Не умаляя общности, будем считать так изначально.

• Заметим, что

Z

 ∑
x∈D(f)

(hx) + I(X)

 ⊂ Z(f),
так как если y ∈ Z

(∑
x∈D(f)(hx) + I(X)

)
, то y ∈ X \D(f) = X ∩ Z(f).

• Получается,

√
(f) ⊂

√√√√ ∑
x∈D(f)

(hx) + I(X) =⇒ fm ∈
∑

x∈D(f)

(hx) + I(X) =⇒ f
m ∈

∑
x∈D(f)

(hx)

Значит, мы можем представить fm в виде

f
m

=

N∑
i=1

hxi · ℓi, xi ∈ D
(
f
)
.
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Наконец, домножая это равенство на r мы получаем

f
m
r =

N∑
i=1

gxiℓxi =⇒ r =
a

f
m ∈ Af .

Таким образом, мы доказали такое предложение:

Предложение 11. A(X)f
∼= O(D

(
f
)
).

Полезно также рассмотреть альтернативное доказательство этого факта.

Альтернативное доказательство предложения 11. Рассмотрим отображение

Af
∼−→ A[t]/

(
ft− 1

)
,

a

f
k
7→ atk.

Это изоморфизм, в чём легко убедиться, используя универсальные свойства, определяющие
локализацию и кольцо многочленов. Кроме того,

A = k[x1, . . . , xn]/I(X) =⇒ A[t]/
(
ft− 1

) ∼= k[x1, . . . , xn, t]/
(
I(x) + (ft− 1)

)
,

откуда видно, что Af — это координатное кольцо многообразия

Y = {(x1, . . . , xn, t) ∈ An+1
k | (x1, . . . , xn) ∈ X, f(x1, . . . , xn)t− 1 = 0}.

Рассмотрим коммутативную диаграмму колец:

A(X)f A(X)[t]/(ft− 1)

O(D(f)) O(Y )

∼

∼

∼

Нижняя горизонтальная стрелка получается из того, что Y ∼−→ D
(
f
)

посредством (взаимно
обратных) отображений

(x1, . . . , xn, t) 7→ (x1, . . . , xn), (x1, . . . , xn) 7→ (x1, . . . , xn, 1/f(x1, . . . , xn))

Так как горизонтальные и правая вертикальная стрелка — изоморфизмы, левая вертикаль-
ная стрелка — тоже изоморфизм.

1.9 Эквивалентные определения размерности неприводимого аффинного мно-
гообразия

Предложение 12. Пусть X — неприводимое квазиаффинное многообразие, U ⊂ X — откры-
тое подмножество. В таком случае dimU = dimX.
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Доказательство. I. Пусть X — аффинное. Так как U открытое,

U = X \ Z(f1, . . . , fn) ⊃ X \ Z(f1) = D
(
f1
)

=⇒ D
(
f1
)
⊂ U ⊂ X =⇒

=⇒ dimD
(
f1
)
≤ dimU ≤ dimX.

Но, как мы знаем из предложения 11 и теоремы 2, dimD
(
f1
)
= dimA(X)f1 = tr. degk Frac

(
A(X)f1

)
.

Осталось заметить, что поля частных A(X)f1 и A(X) совпадают, откуда мы заключаем, что
dimU = dimX.

II. Пусть X квазиаффинное. Имеют место включения U ⊂ X ⊂ X, где X — аффинное. Так
как U — открытое подмножество X, по пункту I мы имеем

dimU = dimX.

С другой стороны, dimU ≤ dimX ≤ dimX, откуда мы получили нужное.

Замечание 10. Пусть X — квазиаффинное многообразие. Тогда dimX — наибольшая из раз-
мерностей его неприводимых компонент.

1.10 Прямое произведение многообразий и его первые приложения

ПустьX ⊂ Am, Y ⊂ An — аффинные многообразия. ПустьX = Z(f1, . . . , fk), Y = Z(g1, . . . , gℓ),
тогда

X × Y = {(x1, . . . , xm, y1, . . . , yn)|fi(x1, . . . , xm) = 0, gj(y1, . . . , yn) = 0 ∀i, j}.

То есть, прямое произведение естественно снабжается структурой аффинного многообразия
в Am×n. Позже мы докажем, что это произведение в категорном смысле.

Также видно, что если X и Y — квазиаффинные, то их прямое произведение тоже ква-
зиаффинное.

Предложение 13. Пусть X ⊂ Am, Y ⊂ An — неприводимые аффинные многообразия, тогда
X × Y — неприводимое аффинное многообразие в Am × An.

Доказательство. Предположим противное, то есть, что

X × Y = Z1 ∪ Z2, Zi ̸= X × Y.

Ясно, что ∀x ∈ X : {x} × Y ∼= Y — неприводимое, откуда {x} × Y ⊂ Z1 или {x} × Y ⊂ Z2. Но
отсюда

X = X1 ∪X2, Xj = {x | {x} × Y ⊂ Zj}.
Покажем, что множества X1 и X2 замкнутые. Для этого достаточно заметить, что

X1 =
⋂
y∈X

Xy, где Xy = {x ∈ X | (x, y) ∈ Z1},

а Xy — замкнуты, так как если Z1 = Z(f1(x, y), . . . , fk(x, y)), то

Xỹ = Z(f1(x, ỹ), . . . , fk(x, ỹ)).
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В дальнейшем мы увидим, что вложение X → X × Y, x 7→ (x, ỹ) непрерывно, откуда сразу
будет следовать, что Xỹ замкнуто — это прообраз Z1 при таком вложении.

Так или иначе, мы приходим к противоречию, так как из неприводимости X следует, что
X ⊂ X1 или X ⊂ X2, откуда X × Y = Z1 или X × Y = Z2 (что противоречит нашему
предположению).

Предложение 14. Пусть X,Y — неприводимые аффинные многообразия. Тогда dim (X × Y ) =
dimX + dimY .

Доказательство. Пусть dimX = r, dimY = s. Поле функций k(X) порождается ровно r алгеб-
раически независимыми координатными функциями u1, . . . , ur. Аналогично, k(Y ) порождается
координатными функциями v1, . . . , vs и они алгебраически независимы. Совершенно ясно, что

dim (X × Y ) = trdeg(k(X × Y )) ≤ r + s.

Остаётся показать, что система (u1, . . . , ur, v1, . . . , vs) будет алгебраически независимой в
k(X × Y ).

Предположим, что ∑
fi1i2...ir(v1, . . . , vs)u

i1
1 · . . . · uirr = 0.

Подставляя ai ∈ k, мы получаем полиномиальное соотношение на ui :∑
fi1i2...ir(a1, . . . , as)u

i1
1 · . . . · uirr = 0,

а так как ui алгебраически независимы, отсюда следует, что fi1...ir(a1, . . . , as) = 0. По произ-
вольности набора a1, . . . , as, мы получаем, что fi1i2...ir(v1, . . . vs) = 0, но так как vi алгебраически
независимы, отсюда следует, что fi1...ir = 0, что и требовалось.

Замечание 11. Здесь мы по существу использовали, что для аффинных k(X) = Frac(A(X)).

Обсудим, что происходит в случае приводимых многообразий. Если

X =
⋃
i

Xi, Y =
⋃
j

Yj Xi, Yj — неприводимые,

то dimX = maxdimXi, а dimY = maxdimYj . Несложно предъявить разложение X × Y в
неприводимые:

X × Y =
⋃
Xi × Yj

Таким образом, мы получили, что

Предложение 15. Пусть X,Y — многообразия, тогда dim(X × Y ) = dimX + dimY .

Теорема 6. Пусть Y, Z ⊂ Ank — неприводимые аффинные многообразия, dimY = r, dimZ = s.
Тогда любая компонента Y ∩ Z имеет размерность ≥ r + s− n.

Доказательство. Рассмотрим диагональное вложение

∆: An → An × An = A2n, x 7→ (x, x).
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Образ ∆(An) замкнут в A2n, так как он задаётся вот такой системой уравнений:
y1 = yn+1

y2 = yn+2

...
yn = y2n

(1)

Заметим, что имеет место изоморфизм

Y ∩ Z ∼−→ ∆(An) ∩ (Y × Z).

Так как при изоморфизме неприводимые компоненты переходят в неприводимые компоненты,
размерности неприводимых компонент левой и правой частей равны. Заметим, что ∆(An) —
пересечение n гиперповерхностей (как видно из 1). Пользуясь теоремой 6 (и тем фактом, что
dimY × Z = r + s), мы получаем нужное.

Заметим, что в процессе доказательства мы установили, что D(f) изоморфно аффинному
подмногообразию в An+1.

Упражнение 1. Если X,Y — аффинные, то A(X × Y ) ∼= A(X)⊗k A(Y ).

Замечание 12. Из упражнения выше следует, что над алгебраически замкнутым полем тензор-
ное произведение целостных конечно порождённых алгебр — целостная конечно порождённая
алгебра. Если поле не алгебраически замкнутое, то это не обязательно так.

1.11 О количестве порождающих идеала

Для алгебраического многообразия X ⊂ Ank разумно задать вопрос о минимальном количестве
образующих, задающих идеал I(X) ⊴ k[x1, . . . , xn]. Будем считать, что X неприводимо, то есть
I(X) ⊴ k[x1, . . . , xn] прост.

• Если X ⊂ A1, то любой идеал в k[x] главный, откуда достаточно одной образующей.

• В A2 есть идеалы высоты 0, 1, 2. Высоты 0 — только нулевой идеал, все идеалы высоты
1 — главные 1, а идеалы высоты 2 — максимальные, то есть (x1−a1, x2−a2), отвечающие
точкам.

• В A3 для высоты 2 уже всё сложно: ∀n ∈ N : ∃p ∈ k[x, y, z]: число образующих p хотя бы
n.

Сейчас мы докажем, однако, что любое многообразие в n-мерном аффинном пространстве
можно задать n уравнениями, или как пересечение n гиперповерхностей. Это не противоре-
чит написанному выше, так как данные n образующих будут задавать не сам идеал I(X), а
некоторый J , такой, что

√
J = I(X).

Лемма 3. Пусть R — нётерово кольцо. Следующие условия верны:

1. Любой минимальный простой идеал состоит из делителей нуля.
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2. Множество всех делителей нуля нётерова кольца R представляет собой объединение ко-
нечного числа простых идеалов pi, а pi = Ann(ai) для некоторого ai ∈ R.

3. Пусть R — нётерово кольцо, причем любой его элемент либо обратим, либо делитель
нуля и вдобавок R редуцировано (т.е. NRad(R) = 0). Тогда dimR = 0 (т.е. R — артиново
кольцо).

Доказательство. Докажем сначала первый пункт. Пусть p — минимальный простой идеал.
Так как в кольце Rp идеал pRp максимальный, то

NRad(Rp) = pRp.

Так Rp нётерово (локализация нётерова кольца нётерова), значит идеал конечно порождён:
pRp = (e1, . . . , en). Если ∀j : emj = 0, то

NRad(Rp)
nm = 0.

Значит, ∀a ∈ p : anm = 0 в кольце Rp. Тогда ∃s ∈ p : aNs = 0 в R, значит a — делитель нуля.
Второй пункт был в курсе коммутативной алгебры — это факт про примарное разложение

идеала 0 ⊴ R.
Теперь докажем третий пункт. Возьмём m ∈ SpecmR, он полностью состоит из делителей

нуля. По пункту 2:

m ⊂
m⋃
i=1

pi =⇒ m ⊂ pi =⇒ m = pi.

Тем самым, m = Ann(a) для некоторого a ∈ R. Предположим, что существует p ⊊ m. Рассмот-
рим два случая:

1. a ∈ m. Значит, a ∈ Ann(a), то есть a2 = 0, но это противоречит тому, что NRad(R) = 0.

2. a /∈ m. Возьмём b ∈ m\p. Заметим, что ab = 0, причём a /∈ p, b /∈ p. Получили противоречие
с тем, что идеал p простой.

Теорема 7. Пусть R — нётерово кольцо, а S = R[x]. Пусть dimR = d − 1, d ≥ 1, а I ⊴ S.
Тогда ∃f1, . . . , fd ∈ I : √

I =
√
(f1, . . . , fd).

Доказательство. Пусть d = 1, тогда dimR = 0 и R/NRad(R) — редуцированное артиново
кольцо, то есть прямая сумма конечного числа полей

R/NRad(R) = K1 ⊕K2 ⊕ . . .Kn.

С другой стороны, легко проверить, что NRad(R[x]) = NRad(R)[x]. Но тогда мы получаем,
что

S/NRad(S) ∼= K1[x]⊕ . . .Kn[x],

а справа написано кольцо главных идеалов. В частности, идеал (I +NRad(S))/NRad(S) глав-
ный, пусть он порождается f ∈ I. То есть в кольце S:

I +NRad(S) = (f) + NRad(S) =⇒
√
I =

√
I +NRad(S) =

√
(f) + NRad(S) =

√
(f).
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Поясним равенство
√
I =

√
I +NRad(S). Включение (⊂) очевидно, докажем включение

(⊃). Пусть x ∈
√
I +NRad(S), тогда xm = a + b, где a ∈ I, b ∈ NRad(S). Так как bN = 0 для

некоторого N , а (xm)N ∈ I, то x ∈
√
I.

Тем самым, база индукции доказана,
√
I =

√
(f).

Сделаем теперь переход d − 1 7→ d. Так как при факторизации по NRad(R) размерность
не меняется, а

√
I =

√
I +NRad(S), то не умаляя общности мы можем полагать, что с самого

начала кольцо редуцированное.
Рассмотрим U — множество всех не делителей нуля в R. Это мультипликативная систе-

ма, можно рассмотреть локализацию U−1R = R[U−1]. Заметим, что в R[U−1] любой элемент
либо обратим, либо является делителем нуля. По лемме 3 это кольцо будет редуцированным
нётеровым кольцом размерности 0, то есть произведением конечного числа полей. Тогда

S[U−1] =
∏

Ki[x],

в частности, это кольцо главных идеалов. Пусть I · S[U−1] = (f1), где f1 ∈ I.
В силу конечной порождённости I ⊴ S, ∃r ∈ U : rI ⊂ (f1) ⊴ S6. Так как r — не делитель

нуля, то он не лежит в объединении всех минимальных простых идеалов кольца R (тут мы
вновь пользуемся леммой 3). Перейдём к фактору и покажем, что

dimR/(r) ≤ d− 2

Пойдём от противного: пусть dimR/(r) ≥ d− 1, то есть имеется цепочка

p0/(r) ⊊ p1/(r) ⊊ . . . ⊊ pd−1/(r).

Поднимаясь к исходному кольцу, мы получаем такую цепочку:

(r) ⊂ p0 ⊊ p1 ⊊ . . . ⊊ pd−1.

Теперь видно, что идеал p0 не может быть минимальным (так как r не лежит ни в каком
минимальном), а значит, мы можем увеличить цепочку и получить противоречие.

Теперь мы можем применить к кольцу R/(r) индукционное предположение: ∃f2, . . . , fd ∈
I + (r)/(r) : √

I + (r)/(r) =

√
(f1, . . . , fd).

Можно считать, что f2, . . . , fd ∈ I. Теперь остается проверить только, что
√
I =

√
(f1, . . . , fd).

По построению f1, f2, . . . , fd ∈ I, проверим включение в обратную сторону. Действительно,

если x ∈
√
I, то xk ∈ I, а кроме того, xm ∈

√
(f2, . . . , fd) · S/(r), то есть xm ∈ (r, f2, . . . , fd).

Перемножая, получаем xk+m ∈ xmI ∈ (r, f2, . . . , fd)I, но так как rI ⊂ (f1), то xk+m ∈
(f1, . . . , fd).

6Надо выразить образующие I в виде ai
ri

·f1, где ri ∈ U , и тогда в качестве r подойдёт произведение ri. Стоит
заметить, что локализация по U инъективна, так как в U нет делителей нуля.
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Применим эту теорему.
Пусть X ⊂ An — аффинное многообразие, тогда I(X) ⊂ S = k[x1, . . . , xn−1][xn] = R[x],

dimR = n− 1. По предыдущей теореме мы можем найти f1, . . . , fd такие, что√
I(X) = I(X) =

√
(f1, . . . , fd).

Ясно, что X = Z(I) = Z(
√
f1, . . . , fn) = Z(f1, . . . , fn), чего мы и хотели.

Следствие 5. В An любое аффинное многообразие задаётся не более чем n уравнениями.

2 Проективные многообразия

2.1 Проективные многообразия

Пусть k — наше базовое алгебраически замкнутое поле, определим проективное пространство
Pn = Pnk . Как множество, это, разумеется, (kn+1 \ {0})/ ∼ — кортежи, в которых хотя бы один
элемент ненулевой, отфакторизованные по гомотетиям с коэффициентами из k.

В этом контексте кольцо многочленов S = k[x0, x1, . . . , xn] мы будем рассматривать, как
градуированное кольцо. Для этого вкратце напомним терминологию:

Определение 16. Кольцо S называется градуированным7, если оно обладает разложением в
прямую сумму

S =
⊕
d≥0

Sd

абелевых групп Sd таких, что Sd · Se ⊂ Sde, индекс d пробегает N0. Элементы из Sd мы будем
называть однородными степени d.

Идеал a ⊂ S мы будем называть однородным, если он представляется в виде

a =
⊕
d≥0

(a ∩ Sd).

Приведём несколько полезных фактов про однородные идеалы:

• Идеал однородный тогда и только тогда, когда он может быть порождён однородными
элементами.

• Сумма, произведение, пересечение однородных идеалов, а также радикал однородного
идеала однородны.

• Однородный идеал a простой тогда и только тогда, когда для любых двух однородных
f, g из условия fg следует, что либо f ∈ a, либо g ∈ a.

Кольцо S = k[x0, x1, . . . , xn] мы превратим в градуированное так: обозначим за Sd множе-
ство всех линейных комбинаций с коэффициентами из k одночленов полной степени d (одно-
членов вида xd00 · . . . · xdnn , где d0 + . . .+ dn = d).

7Если точнее, N≥0-градуированным.
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Кроме того, многочлены мы уже не можем рассматривать как функции на Pn ввиду неод-
нозначности координатных представлений точек Pn. Тем не менее, если f — однородный мно-
гочлен, то свойство f обращаться в 0 зависит только от класса эквивалентности (a0, . . . , an).
Тем, самым, для однородного многочлена f имеет смысл говорить о множестве

Z(f)
def
= {P ∈ Pn | f(P ) = 0}.

Соответственно, для любого множества T однородных элементов мы определяем

Z(T )
def
= {P ∈ Pn | f(P ) = 0 ∀f ∈ T}.

Если a — однородный идеал в S, то определим Z(a), как Z(a) = Z(T ), где T — множество
всех однородных элементов из a. В силу нётеровости кольца S любое множество однородных
элементов T содержит такое конечное подмножество f1, . . . , fr, что (T ) = (f1, . . . , fr).

Определение 17. Подмножество проективного пространства Y ⊂ Pn называется проектив-
ным алгебраическим многообразием, если существует такое множество T ⊂ S однородных эле-
ментов, что Y = Z(T ).

Таким образом, мы можем задать на Pn топологию Зарисского, объявив замкнутыми ал-
гебраические многообразия.

Определение 18. Также, для любого Y ⊂ Pn определим его однородный идеал I(Y ) ⊂ S, как
идеал, порождённый множеством однородных элементов f ∈ S таких, что f(P ) = 0 для всех
P ∈ Y . Однородное координатное кольцо S(Y ) проективного многообразия Y определим как
факторкольцо S(Y ) = S/I(Y ).

Упражнение 2. Пусть S = k[x1, . . . , xn], обозначим за Sh множество однородных многочле-
нов. Докажите, что

1. Если T1 ⊂ T2 ⊂ Sh, то Z(T2) ⊂ Z(T1).

2. Если Y1 ⊂ Y2 ⊂ Pn, то I(Y2) ⊂ I(Y1).

3. I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2).

4. Пусть I ⊂ S — однородный идеал, Z(I) ̸= ∅. Тогда I(Z(I)) =
√
I.

5. Пусть I ⊂ S — однородный идеал. Тогда следующие условия равносильны:

(a) Z(I) = ∅
(b)
√
I = (1) или

√
I = S+ =

⊕
d>0 Sd

(c) Sd ⊂ I для некоторого d.

Теорема 8 (Однородный Nullstelensatz). Пусть I ⊂ k[x0, . . . , xn] — однородный идеал, а f ∈
k[x0, . . . , xn] — однородный элемент положительной степени. Если ∀P ∈ Z(I) ⊂ Pn : f(P ) = 0,
то ∃m : fm ∈ I.

Это теорема легко сводится к аффинному случаю.
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Определение 19. Квазипроективным многообразием мы будем называть открытое подмно-
жество проективного многообразия.

Наша дальнейшая цель состоит в том, чтоб показать, что n-мерное проективное простран-
ство обладает открытым покрытием, состоящим из n-мерных аффинных пространств. И, как
весьма полезное следствие, что всякое проективное/квазипроективное многообразие) облада-
ет открытым покрытием состоящие из аффинных многообразий (это очень удобно, если мы
доказываем что-то локально).

Пусть Hi = Z(xi) — координатные гиперплоскости. Рассмотрим множества

Ui = Pn \Hi = {(x0 : . . . : xn) ∈ Pn | xi ̸= 0}.

Совершенно ясно, что Pn покрывается квазиаффинными Ui (так как у любой точки хотя
бы одна из однородных координат отлична от нуля). Рассмотрим отображение

φi : Ui → An, (a0 : . . . : an) 7→
(
a0
ai

: . . . :
an
ai

)
.

Отметим, что это отображение определено корректно, так как частное aj/ai не зависит от
выбора однородных координат.

Предложение 16. Отображение φi осуществляет гомеоморфизм Ui
∼−→ An.

Доказательство. Очевидно, что оно биективно. Достаточно показать, что замкнутые множе-
ства в Ui соответствуют замкнутым множествам в An. Не умаляя общности, i = 0, U0 = U, φ0 =
φ.

Пусть A = k[y1, . . . , yn]. Рассмотрим отображения

α : Sh → A, α(f) = f(1, y1, . . . , yn), β : A→ Sh, β(g) = xdeg g0 · g
(
x1
x0
, . . . ,

xn
x0

)
.

Пусть Y ⊂ U — замкнутое подмножество. Тогда Y (тут замыкание берётся в Pn) — проек-
тивное многообразие, то есть Y = Z(T ) для некоторого T ⊂ Sh. Положим T ′ = α(T ). Непо-
средственно проверяется, что φ(Y ) = Z(T ′). И обратно, если W — замкнутое подмножество в
An, то W = Z(T ′) для некоторого T ′ ⊂ A и легко проверить, что

φ−1(W ) = Z(β(T ′)) ∩ U.

Значит и φ и φ−1 замкнутые, что и требовалось.

Следствие 6. Пусть Y — проективное (квазипроективное) многообразие. Тогда Y покрыва-
ется открытыми множествами Y ∩ Ui, гомеоморфными аффинным (квазиаффинным) мно-
гообразиям, причем гомеоморфизм осуществляется определённым выше отображением φi.

Замечание 13. На самом деле, даже квазипроективное многообразие покрывается аффинны-
ми картами. Для доказательства этого утверждения надо вспомнить, что у каждой точки
квазиаффинного многообразия имеется главная аффинная окрестность. В случае, если надо,
из квазикомпактности этих окрестностей можно выбрать конечное количество.
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Определение 20. ПустьX — квазипроективное многообразие. Функция f : X → k называется
регулярной в точке P ∈ Y , если существует такая открытая окрестность U ⊂ X точки P и
такие однородные многочлены g, h ∈ k[x0, . . . , xn] одной и той же степени, что

• h не имеет нулей в U .

• f = g/h в U .

Функция f регулярна на Y , если она регулярна в каждой точке Y .

Замечание 14. Отметим, что в этом случае сами g и h не являются функциями на Pn, но
вот их отношение (при h ̸= 0) определено корректно, так как они имеют одинаковую степень
однородности.

Пример 6. Например, если X = U0, то функция f(x0, . . . , xn) = x1/x0 регулярна на X.

Определение морфизма на квазипроективные многообразия переносится без изменений:

Определение 21. Пусть X,Y — квазипроективные многообразия, φ : X → Y — морфизм,
если

1. φ непрерывно.

2. Для каждого открытого V ⊂ Y и каждой регулярной функции f : V → k её пуллбек
φ∗(f) = f ◦ φ : φ−1(V )→ k — регулярная функция.

Предложение 17. Пусть Ui ⊂ Pn — определённое выше открытое множество. Отображе-
ние φi : Ui → An определённое выше является изоморфизмом.

Доказательство. Выше мы уже показали, что это отображение — гомеоморфизм. Теперь нуж-
но показать, что на каждом открытом множестве регулярные функции этих многообразий сов-
падают. Регулярные функции на Ui локально представляются в виде отношений однородных
многочленов от x0, . . . , xn одинаковой степени, а на An — в виде отношений многочленов от
y1, . . . , yn. Легко видеть, что они отождествляются с помощью отображений α и β, определён-
ных в доказательстве 16.

Пусть f — регулярная функция на всём Pn. Тогда f |Ui — регулярная функция на Ui, а
так как Ui (по утверждению выше) отождествляется с An, f |Ui отождествляется с регулярной
функции на An (причем, при помощи определённых нами выше отображений). Тем самым,
f |Ui — многочлен от переменных xj

xj
, j ̸= i. Значит, мы можем представить её в виде

f =
ri(x0, . . . , xm)

xmi
,

где ri — многочлен.
Посмотрим, что происходит на пересечениях. Например,

на U0 ∩ U1 :
r0(x0, . . . , xn)

xm0
=
r1(x0, . . . , xn)

xk1

Это равенство имеет вид везде, где x0, x1 ̸= 0, легко видеть, что это означает равенство
элементов k(x0, . . . , xn). Используя единственность разложения на множители, получаем, что
m = k = 0, значит, и степень числителя тоже нулевая. Тем самым, функция равна какой-то
константе, а на пересечениях константы согласованы. Получаем, что функция f постоянна.
Итак, мы доказали такое утверждение:
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Предложение 18. Всякая регулярная функция f : Pn → k постоянна.

Можно провести аналогию между этим утверждением и теоремой Лиувилля из комплекс-
ного анализа.

Предложение 19. Любое квазиаффинное многообразие изоморфно некоторому квазипроек-
тивному.

Доказательство. Как мы видели, у нас есть изоморфизм An ∼−→ U0. Причём, при отображении
в эту сторону многочлены гомогенизировались:

f(y1, . . . , yn) 7→ fh(x0, . . . , xn) = xdeg f0 f

(
x0
x1
, . . . ,

xn
x0

)
.

Получаем следующую коммутативную диаграмму:

An U0

Z(f) Z(fh)

∼

Значит и соответствующие открытые куски будут изоморфны.

Это предложение говорит, что все определённые нами многообразия — (квази)аффинные
и (квази)проективные — на деле являются квазипроективными, и в дальнейшем мы будем
использовать квазипроективные многообразия, как наиболее общий вид алгебраического мно-
гообразия.

Пример 7. Рассмотрим кривую в C ⊂ P2, C = Z(y2 − xz). Рассмотрим отображения

P1 → C, (s : t) 7→ (s2 : st : t2), C → P1, (x : y : z) 7→
{
(x : y), x ̸= 0

(y : z), z ̸= 0
.

Видно, что эти отображения — взаимно обратные морфизмы, то есть задают изоморфизм C
и P1. Однако однородные координатные кольца у этих многообразий — это S(P1) = k[x, y] и
S(C) = k[x, y, z]/(y2− xz), а они неизоморфны. Например, можно доказать, что первое факто-
риально, а второе — нет.

Это наводит нас на мысль о том, что для проективных многообразий нам нужен другой
структурный инвариант.

В качестве такого инварианта подойдут локальные кольца точек многообразия — их правда
будет не по одному на каждое многообразие, а по одному на каждую точку многообразия.
Локальные кольца будут обсуждаться чуть позже 3.

2.2 Проективное замыкание аффинного многообразия

Пусть T ⊂ An — замкнутое подмножество, попробуем найти T ⊂ Pn.
Первое, что приходит в голову — это просто взять гомогенизацию многочленов, которыми

задаётся T . Оказывается, это не всегда даст T ⊂ Pn, что иллюстрируется следующим приме-
ром:
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Пример 8. Пусть T = Z(y − x2, z − xy) ⊂ A3. Гомогенизируя эти многочлены, получаем

P3 ⊃ Z(yw − x2, zw − xy) ⊋ Z(yw − x2, zw − xy, y2 − xz) = {(st2 : s2t : s3 : t3) | (s : t) ∈ P1}T.

Включение строгое, так как в левой части ещё лежит точка (x : y : z : w) = (0 : 1 : 0 : 0), то
есть

Z(yw − x2, zw − xy) = {(st2 : s2t : s3 : t3) | (s : t) ∈ P1} ∪ {(0 : 1 : 0 : 0)}.
Однако оказывается, что если гомогенизировать не только образующие идеала, а все содержа-
щиеся в нём многочлены, то гомогенизация всё-таки получится.

Упражнение 3. Пусть T ⊂ An. Тогда T = Z(⟨fh⟩f∈I(T )). При этом, если T неприводимо, то
T — (однозначно определённое) замкнутое неприводимое множество R ⊂ Pn : R ∩ A = T .

Упражнение 4. Пусть X — квазипроективное многообразие, а Y — аффинное. Упражнение
состоит в том, чтобы проследить, что доказательство предложения 10 работает и в этом случае,
то есть по-прежнему HomqProj(X,Y )

∼−→ Homk-Alg(A(Y ),OX).

2.3 Прямое произведение проективных многообразий

В этом параграфе мы построим произведение квазипроективных многообразий, как квазипро-
ективное подмногообразие в PN для некоторого N8

Рассмотрим сначала X = Pn, Y = Pm. Построим вложение

ψ : Pn × Pm → P(n+1)(m+1)−1

следующим образом. Пусть x = (u0 : . . . : un) ∈ Pn, y = (v0 : . . . : vm), положим

ψ(x× y) = (. . . : wij : . . .), где wij = uivj .

Обозначим T = ψ(Pn×Pm). Во-первых, покажем, что T — замкнутое множество в P(n+1)(m+1)−1,
для этого выпишем его уравнения:

wijwkℓ = wkjwiℓ, i, k = 0, . . . , n, j, ℓ = 0, . . . ,m. (2)

Действительно, подставим:
(uivj)(ukvℓ) = (ukvj)(uivℓ),

что выполнено. С другой же стороны, если wij удовлетворяют уравнениям (2) и, к примеру,
w00 ̸= 0, то, полагая k = ℓ = 0, мы получаем, что

(. . . : wij : . . .) = ψ(x, y),

где x = (w00, . . . , wn0), y = (w00, . . . , w0m) (так мы заодно проверили, что отображение биек-
тивно). Строгая проверка того, что ψ — изоморфизм на образ, задаваемый уравнениями (2),
остаётся в качестве упражнения. Это вложение называется вложением Сегре. Итак, T — про-
ективное многообразие. Построим теперь проекции:

8Тут можно дописать всякой идеологии, я это позже сделаю возможно.
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T

Pn Pm

pr1 pr2

Если ∃i : uij ̸= 0:

pr1(. . . : wij : . . .) = (w0j : w1j : . . . : wnj) = (u0vj : u1vj : . . . : unvj) = (u0 : . . . : un).

И, если ∃j : uij ̸= 0:

pr2(. . . : wij : . . .) = (wi0 : wi1 : . . . : wim) = (uiv0 : uiv1 : . . . uivm) = (v0 : . . . : vm).

Независимость определения этих отображений от выбора индекса ненулевого элемента обеспе-
чивается уравнениями (2).
Замечание 15. Отметим, что pr1, pr2 — морфизмы проективных многообразий.

Итак, у нас есть композиция

Pm × Pn ψ−→ T
pr1 × pr2−−−−−→ Pm × Pn.

Посмотрим, что произойдёт, если мы рассмотрим T
pr1 × pr2−−−−−→ Pm × Pn ψ−→ P(n+1)(m+1)−1:

(. . . : wij : . . .) 7→ (w0j : w1j : . . . : wnj : wi0 : wi1 : . . . : wim) 7→ (wj0wi0 : w0jwi1 : . . . w0jwim : w1jwi0 : . . .),

И, нетрудно показать, что полученный объект снова удовлетворяет уравнениям для T .

Определение 22. Пусть X ⊂ Pn, Y ⊂ Pm — квазипроективные многообразия, а ψ : Pn×Pm →
P(n+1)(m+1)−1 — вложение Сегре.

Определим прямое произведение X и Y следующим образом:

X × Y def
= ψ(X × Y ),

где в правой части равенства подразумевается теоретико-множественное декартово произведе-
ние.

Предложение 20. Определение выше корректно, то есть X × Y является квазипроектив-
ным подмногообразием в P(n+1)(m+1)−1.

Доказательство. I. Пусть сначала X ⊂ Pm и Y ⊂ Pn — проективные. Пусть X задаётся
семейством уравнений {Fi(x0 : . . . : xm)}i, а Y — семейством уравнений {Gj(y0 : . . . vn)}j .
Пусть xk00 . . . xkmm — какой-то моном из Fi, k0 + . . .+ km = N , тогда

xk00 . . . xkmm · yN0 = (x0y0)
k0 · . . . (xmy0)km = wk000 · . . . · wkmm0.

Аналогично мы можем сделать с любым мономом. Значит, Fi · yN0 —- однородный многочлен
от wij . Также мы можем рассмотреть и GjxMi . Так мы получаем систему из уравнений

Fi(x0 : . . . : xm)y
N
k = 0

...
Gj(y0 : . . . : yn)x

N
r = 0

, 0 ≤ k ≤ n, 0 ≤ r ≤ m.
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При желании, N тут можно полагать одним и тем же, выбирая максимальное.
Далее проверка, что эта система задаёт ψ(X × Y ), как проективное подмногообразие в

P(n+1)(m+1)−1.
II. Теперь пусть X,Y — квазипроективные. Пусть Y ⊂ Y ′, X ⊂ X ′, где X ′, Y ′ — проектив-

ные. По определению X = X ′∩U, Y = Y ′∩V , где U ⊂ Pm, V ⊂ Pn — открытые подмножества.
Так как ψ инъективно (это мы видели в начала параграфа), то

ψ(X × Y ) = ψ(X ′ × Y ′) \
(
ψ(X ′ × (Y ′ \ V )) ∪ ψ((X ′ \ U)× Y ′)

)
.

Заметим, что каждое из множеств в правой части замкнуто, откуда видно, что ψ(X × Y ) —
открытое подмножество ψ(X ′×Y ′), то есть квазипроективное подмногообразие в P(n+1)(m+1)−1.

Предложение 21. Построенное нами выше произведение является произведением в кате-
горном смысле.

Доказательство. Мы хотим построить стрелку γ : Z → T , замыкающую диаграмму и показать
её единственность:

Z

T

X Y

γ
α β

pr1 pr2

Единственность очевидна сразу, так как T также будет произведением в категории Set (от-
куда ясно, что на уровне множеств таких стрелок не более одной). Так вот, в качестве стрелки
γ возьмём стрелку, замыкающую диаграмму в категории Set и покажем, что она годится. Про-
верять, что это морфизм квазипроективных многообразий, мы будем локально.

Рассмотрим z ∈ Z, не умаляя общности α(z) и β(z) лежат в таких аффинных картах, что
первая координата у них ненулевая. В окрестности U ∋ z:

α(z′) = (1 : f1(z
′) : . . . : fm(z′)), где fi регулярны в U ;

β(z′) = (1 : g1(z
′) : . . . : gn(z′)), где gj регулярны в U.

Получается,

γ(z′) = (1 : g1(z
′) : . . . : gn(z′) : f1(z′) : f1(z′) · g1(z′) : . . . : fi(z′)gj(z′) : . . .)

будем морфизмом (так как произведение регулярных функций регулярно);.

Замечание 16. В дальнейшем, мы будем писать Pn × Pm вместо ψ(Pn × Pm), и вообще X × Y
вместо ψ(X × Y ).
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Изучим теперь, как устроены подмногообразия X ⊂ Pm × Pn.
Пусть X задаётся уравнениями Fi(w00 : . . . : wnm) = 0, где Fi — однородные многочлены.

После подстановки wij = ui · vj мы получим систему

Gi(u0 : . . . un; v0 : . . . : vm) = 0,

где Gi однородны как по ui, так и по vj , причём степени однородности обеих систем переменных
совпадают. В то же время ясно, что многочлен с таким свойством однородности всегда может
быть представлен, как многочлен от произведений uivj . Однако, если уравнения однородны
как по ui, так и по uj , то они всегда определяют в Pn × Pm алгебраическое подмногообразие,
даже если степени однородности были разными. Действительно, если G(u0 : . . . un; v0 : . . . vm)
имеет степень однородности r по ui и s по vj (и, например, r > s), то

G = 0←→


vr−s0 G = 0
...
vr−sm G = 0

.

Давайте также разберёмся с этим вопросом для Pn × Am. Пусть Am ↪→ U0 ⊂ Pm, тут оно
задаётся v0 ̸= 0. Уравнения замкнутого подмножества в Pn × Am имеют вид

Gi(u0 : . . . un; v0 : . . . : vm) = 0.

Пусть степень однородности Gi по v0, . . . , vm равна ri. Поделив уравнение на vri0 и положив
yi = vi/v0 мы получим набор уравнений

gi(u0 : . . . : un; y1 : . . . : ym) = 0,

где gi однородны по u0, . . . , un и, вообще говоря, неоднородны по y1, . . . , ym. Таким образом,
мы доказали такую теорему:

Теорема 9. Подмножество X ⊂ Pn×Pm тогда и только тогда замкнуто, когда оно задаётся
системой уравнений

Gi(u0 : . . . un; v0 : . . . : vm) = 0

однородных по каждой системе переменных ui и vj в отдельности.
Каждое замкнутое подмножество в Pn × Am задаётся системой уравнений

gi(u0 : . . . : un; y1 : . . . : ym) = 0,

однородных по переменным u0, . . . un.

Аналогично дело обстоит с Pn1 × . . .× Pnk .

2.4 Замкнутость образа проективного многообразия

В этом параграфе мы докажем следующее замечательное утверждение:

Теорема 10. Пусть X ∈ Proj, Y ∈ qProj, а f : X → Y — регулярное отображение. Тогда f(X)
замкнут в Y .
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Прежде чем приступать к доказательству, убедимся в необычайной полезности этого утвер-
ждения. Например, из него мы сразу получаем вот такое следствие:

Следствие 7. Пусть X — неприводимое проективное многообразие. Тогда O(X) ∼= k.

Доказательство. Пусть f : X → A1 — регулярная функция. Так как f(X) замкнут (по тео-
реме 10) и неприводим, либо f(X) = A1, либо f(X) = pt (в этом случае мы всё доказали).
Предположим, что f(X) = A1. Рассмотрим сквозное отображение

X
f−→ A1 ↪→ P1

и назовём его g. Получается, что если f(X) = A1, то g(X) = P1 \ pt, но оно не замкнуто в P1

(что приводит нас к противоречию с теоремой 10).

Замечание 17. Можно думать, что эта теорема является алгебраизацией утверждения о том,
что голоморфная на всей римановой поверхности функция без полюсов постоянна.

Замечание 18. Также видно, что в 7 можно требовать от X только связности (разбив на непри-
водимые компоненты).

Доказательство теоремы 10. Отображение f мы можем разложить в композицию двух:

X
Γf−→ X × Y pr2−−→ Y, x 7→ (x, f(x)) 7→ f(x).

Достаточно доказать, что

1. Γf (X) замкнут в X × Y ,

2. pr2 переводит замкнутые множества в замкнутые.

Докажем сначала первое. Выделим это в отдельную лемму:

Лемма 4 (О замкнутом графике). Для всякого морфизма f : X → Y его график Γf (X) за-
мкнут в X × Y .

Доказательство леммы. Рассмотрим диагональный морфизм ∆: Y → Y ×Y . Достаточно про-
верить, что ∆(Y ) замкнут в Y × Y , так как если мы это докажем, то можно рассмотреть

X × Y (f,id)−−−→ Y × Y

и так как Γf (X) = (f, id)−1(∆(Y )), то из замкнутости ∆(Y ) будет следовать замкнутость
графика (просто по непрерывности).

Предположим сначала, что Y аффинное. В этом случае всё просто: ∆(Y ) = ∆(An)∩(Y ×Y )
и оба пересекаемых множества очевидно замкнуты.

Если же Y произвольное, покроем его аффинными: Y ⊂ ⋃Ui, тогда ∆(Y ×Y ) ⊂ ⋃Ui×Ui и
чтобы показать, что ∆(Y ) замкнуто, нам достаточно убедиться, что ∆(Y )∩ (Ui×Ui) замкнуто
для всех i. Но это очевидно, так как

∆(Y ) ∩ (Ui × Ui) = ∆(Ui),

а ∆(Ui) замкнуто по первому шагу доказательства.
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Теперь покажем второе.
Прежде всего, можно считать, что X = Pn, так как для произвольного X можно рассмат-

ривать композицию
X × Y ↪→ Pn × Y → Y,

применить теорему для неё и из этого всё будет следовать.
Покрывая Y аффинными, мы понимаем, что достаточно доказать теорему для случая

Pn × Am → Am.

А в этом случае работать существенно проще, так как (из теоремы 9) мы знаем полное
описание замкнутых множеств. Все они имеют вид

T = {(u, y) | gi(u, y) = 0, 1 ≤ i ≤ t}⇝ pr(T ) = {y ∈ Am | ∃u ∈ Pn gi(u, y) = 0, 1 ≤ i ≤ t},
где gi — однородный многочлен по u.

Пусть y ∈ Am. Равенство gi(u, y) = 0 для всех 1 ≤ i ≤ t выполнено на некотором замкнутом
множестве в Pn, и y ∈ pr2(T ) если и только если оно непусто. Согласно однородной теореме
Гильберта о нулях (пусть Is = (u0, . . . , un)

s ⊴ k[u0, . . . , us]),

y ∈ pr2(T ) ⇐⇒ ∀s : (g1(u, y), . . . , gt(u, y)) ̸⊃ Is,
Тем самым, проекцию можно задать в виде

pr(T ) =
⋂
s

{y ∈ Am | Is ̸⊂ (g1(u, y), . . . , gt(u, y))}. (3)

Получается, достаточно доказать, что каждое пересекаемое множество замкнуто. По этому
поводу зафиксируем s. Пусть ki = degu(gi), {M (α)}(α∈Nn+1,

∑
αj=s) — все мономы степени s9.

Посмотрим, что означает условие, противоположное к условию (3):

Is ⊂ (g1(u, y), . . . , gt(u, y))⇔ ∀α : M (α) =
∑

gi(u, y)Fi,α(u) (∗)

а Fi однородные по переменным ui. Можно считать, что для всех i, α: degFi,α = s− ki, или же
Fi,α = 0 (в частности, если s < ki, то Fi,α = 0)10. Теперь рассмотрим {N (β)

i }β — все мономы (от
переменных ui) степени s − ki. Условие (∗) означает, что все M (α) — всевозможные линейные
комбинации gi(u, y)N

(β)
i . Иными словами (пусть S — пространство однородных многочленов

от u степени s),
S = span{gi(u, y)N (β)

i },
Теперь ясно, что

Is ̸⊂ (g1(u, y), . . . , gt(u, y)) ⇐⇒ S ̸= span{gi(u, y)N (β)
i } ⇐⇒ rankA < dimk S,

где A — матрица, состоящая из коэффициентов gi(u, y)Ni(β). Ясно, что при фиксированном
y это полиномиальное условие (обнуление всех определителей подматриц размера dimk S ×
dimk S), так что мы показали замкнутость.

Следствие 8. Пусть X ∈ Proj, Y ∈ qProj, а f : X → Y — морфизм. Пусть Z ⊂ X —
замкнутое подмножество. Тогда f(Z) замкнуто в Y .

9Например, при n = 2 есть такой моном: M (2,3,1) = u2
0u

3
1u2

10Если равенство имеет место, и от всех Fi,α оставить только однородные компоненты данной степени, то
равенство сохранится.
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2.5 Рациональные отображения многообразий

Лемма 5. Пусть X,Y — многообразия, причём X неприводимо, а φ,ψ — морфизмы из X в
Y . Предположим, что существует такое непустое открытое множество U ⊂ X, что φ|U = ψ|U .
Тогда φ = ψ.

Доказательство. Пусть Y ⊂ Pn для некоторого n. Беря композиции морфизмов φ и ψ с вло-
жением Y → Pn, мы сводим всё к случаю Y = Pn. Рассмотрим Pn × Pn со структурой проек-
тивного многообразия, определяемой вложением Сегре (см. 2.3). Морфизмы φ и ψ определяют
морфизм

X
φ×ψ−−−→ Pn × Pn.

Рассмотрим диагональ ∆ ⊂ Pn × Pn. Она (как и в аффинном случае) замкнуто, так как пред-
ставляется уравнениями

xiyj = xjyi, i, j = 0, . . . , n.

По предположению (φ×ψ)(U) ⊂ ∆, но U плотно в X (так как X неприводимо), а ∆ замкнуто,
откуда мы имеем (φ× ψ)(X) ⊂ ∆, то есть φ = ψ.

Определение 23. Пусть X,Y — многообразия, X неприводимо. Рассмотрим множество пар
(U, f), где U ⊂ X — открытое, а f : U → Y — морфизм. На этом множестве мы можем ввести
такое отношение эквивалентности:

(U1, f1) ∼ (U2, f2)⇔ f1|U1∩U2 = f2|U1∩U2 .

Класс эквивалентности по этому отношению называется рациональным отображением и
обозначается f : X 99K Y .

Из всех пар (U, f) мы можем выбрать такую, для которой открытое множество U макси-
мально. Это множество U мы будем называть областью регулярности рационального отобра-
жения.

Замечание 19. То, что описанное выше отношение — отношение эквивалентности, следует из
леммы 5. В частности, любые два U1, U2 ⊂ X имеют непустое пересечение, так как X непри-
водимо.

Замечание 20. Область регулярности определена корректно: пара (U, f) с максимальным U
единственна (она же будет парой с наибольшей U). Это верно, так как два эквивалентных
рациональных отображения (U1, f1) и (U2, f2) можно «объединить» — они же совпадают на
пересечении. Строгая проверка остаётся в качестве упражнения.

Определение 24. Рациональное отображение f : X 99K Y называется доминантным, если
для некоторой пары (U, f): f(U) плотно в Y .

Замечание 21. Если образ плотен для какой-то пары, то это так и для всех (тоже по лемме 5).

Композицию рациональных отображений определить не всегда возможно (по понятным
причинам), а вот с доминантными рациональными отображениями дело обстоит лучше.

Пусть у нас есть доминантные рациональные отображения X 99K Y 99K Z и они представ-
ляются морфизмами f : U → Y и g : V → Z. Так как f доминантно, f(U) ∩ V ̸= ∅, откуда
W = f−1(V )∩U ̸= ∅. Определим g ◦ f : X 99K Z как класс эквивалентности пары (W, g ◦ f |W ).
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Отметим также, что композиция доминантных отображений является доминантной. Дей-
ствительно, предположим противное, а именно, что образ W под действием композиции попа-
дает в некоторое замкнутое T ⊊ Z. Но f(W ) ⊊ g−1(T ) ⊊ Y , а это противоречит доминантности.

Значит, квазипроективные многообразия с доминантными рациональными морфизмами об-
разуют категорию.

Кроме того, доминантное рациональное отображение φ : X 99K Y индуцирует гомоморфизм
полей рациональных функций

φ∗ : k(Y )→ k(X)

Действительно, пусть φ представлено парой (U,φU ) и пусть f ∈ k(Y ) — рациональная функ-
ция, представленная парой (V, f), где f регулярна на V . Поскольку φU (U) плотно в Y , оно
пересекается с V и φ−1

U (V ) — непустое открытое подмножество X, так что f ◦φU — регулярная
функция на φ−1

U (V ) (а регулярна она, так как φU — морфизм). Она представляет некоторую
рациональную функцию на X.

φ−1
U (V )

φU−−→ V
f−→ k.

Таким образом, мы построили отображение

k(Y )→ k(X), f 7→ φ∗(f).

Пусть C — категория неприводимых многообразий с доминантными рациональными отоб-
ражениями, а D — категория конечно порождённых расширений поля k.

Теорема 11. Для любых неприводимых многообразий X, Y приведённая выше конструкция
осуществляет биективное соответствие между

• множеством доминантных рациональных отображений X → Y

• множеством гомоморфизмов k-алгебр k(Y )→ k(X).

Более этого, это соответствие осуществляет антиэквивалентность категорий C и D:

F : C→ D, X 7→ k(X).

Доказательство. Построим отображение обратное тому, что было приведено ранее.
Пусть θ : k(Y ) → k(X) — гомоморфизм k-алгебр. Надо построить соответствующее ему

доминантное рациональное отображение X 99K Y .
Выберем внутри Y аффинное открытое подмножество, без потери общности Y можно заме-

нить на него (не поменяются ни поле функций на Y , ни множество доминантных рациональных
отображений X 99K Y ). Итак, Y — аффинное, пусть A(Y ) — его аффинное координатное коль-
цо, а y1, . . . , yn — его образующие, как k-алгебры. Тогда θ(y1), . . . , θ(yn) являются рациональ-
ными функциями на X. Выберем открытое множество U ⊂ X так, чтобы все функции θ(yi)
были регулярными на U . В таком случае θ определяет инъективный гомоморфизм k-алгебр

A(Y )→ O(U).

По теореме 10 ему соответствует морфизм φ : U → Y , который определяет доминантное11

рациональное отображение X → Y .
11Оно будет доминантным, так как инчае отображение A(Y ) → O(U) не инъективно.
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Теперь убедимся, что мы действительно построили антиэквивалентность категорий. На-
до проверить, что для любого неприводимого многообразия Y поле рациональных функций
k(Y ) конечно порождено над k и обратно, что всякое конечно порождённое расширение K/k
является полем рациональных функций K = k(Y ) некоторого неприводимого многообразия Y .

Пусть Y — неприводимое многообразие, тогда k(Y ) = k(U) для любого открытого подмно-
жества U ⊂ Y , так что опять же можно полагать Y аффинным. В этом случае k(Y ) ∼= FracA(Y )
и, как следствие, оно является конечно порождённым расширением поля k степени трансцен-
дентности dimY .

С другой стороны, пусть K — конечно порождённое расширение поля k, а y1, . . . , yn ∈ K
— система образующих. Пусть B — подалгебра в K, порождённая y1, . . . , yn над k. B является
фактором кольца многочленов k[x1, . . . , xn] по некоторому идеалу I, так что B ∼= A(Y ) для
Y = Z(I) ⊂ An. Y будет неприводимым, так как A(Y ) целостное. Значит, K ∼= k(Y ) и теорема
доказана.

Переводя это на существенно менее изысканный язык, мы получаем такое следствие:

Следствие 9. Неприводимые многообразия X и Y бирационально эквивалентны тогда и
только тогда, когда их поля рациональных функций k(X) и k(Y ) изоморфны как k-алгебры.

2.6 Бирациональная эквивалентность

Определение 25. Бирациональным отображением φ : X → Y называется (доминантное)
рациональное отображение, которое обладает обратным, т.е. таким (доминантным) рациональ-
ным отображением ψ : Y → X, что ψ ◦ φ = idX , φ ◦ ψ = idY . Многообразия X и Y называются
бирационально эквивалентными, если существует хотя бы одно бирациональное отображение
X → Y .

Следствие 10. Для любых двух неприводимых многообразий X и Y следующие условия эк-
вивалентны:

1. X и Y бирационально эквивалентны,

2. существуют открытые подмножества U ⊂ X и V ⊂ Y такие, что U изоморфно V ,

3. k(X) ∼= k(Y ) в категории k-алгебр.

Доказательство. Сначала докажем (1) =⇒ (2). Пусть φ : X → Y и ψ : Y → X – бирациональ-
ные отображения. Пусть φ представлено парой (U,φ), а ψ — парой (V, ψ). Тогда отображение
ψ ◦φ представляется парой (φ−1(V ), ψ ◦φ), а так как ψ ◦φ = idX как рациональное отображе-
ние, ψ ◦ φ тождественно на φ−1(V ). Аналогично, φ ◦ ψ тождественно на ψ−1(U). Получается,
φ−1(ψ−1(U)) ⊂ X и ψ−1(φ−1(U)) ⊂ Y — изоморфные открытые подмножества (изоморфизм
осуществляется посредством отображений φ и ψ).

Утверждение (2) =⇒ (3) следует из определения полей функций:

k(U) ∼= k(X), k(V ) ∼= k(Y ), k(U) ∼= k(V ) =⇒ k(X) ∼= k(Y ).

Утверждение (3) =⇒ (1) напрямую следует из теоремы 11.

Теперь докажем какой-нибудь результат про бирациональную эквивалентность. Напомним
несколько фактов из алгебры:
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Теорема 12 (О примитивном элементе). Пусть L — конечное сепарабельное расширение поля
K. Тогда существует элемент α ∈ L, порождающий поле L, как расширение над K. Более
того, если β1, . . . , βn — произвольная система образующих L/K и поле K бесконечно, то α
можно выбрать α в виде линейной комбинации α = c1β1 + . . .+ cnβn элементов βi с коэффи-
циентами ci ∈ K.

Определение 26. Расширение K/k называется сепарабельно порождённым, если существует
такой базис трансцендентности {xi} в K/k, что поле K является сепарабельным алгебраи-
ческим расширением поля k({xi}). В таком случае {xi} называется сепарабельным базисом
трансцендентности.

Теорема 13. Пусть K/k — конечно порождённое и сепарабельно порождённое расширение
поля k. Тогда всякое множество образующих расширения K/k содержит подмножество, яв-
ляющееся сепарабельным базисом трансцендентности.

Теорема 14. Пусть k — алгебраически замкнутое поле. Тогда любое конечно порождённое
расширение K/k является сепарабельно порождённым.

Предложение 22. Всякие неприводимое многообразие X размерности r бирационально эк-
вивалентно гиперповерхности Y ⊂ Pr+1.

Доказательство. Начнём с того, что поле функций k(X) является конечно порождённым рас-
ширением поля k. По теореме 14 оно сепарабельно порождено над k. Значит, существует базис
трансцендентности x1, . . . , xr ∈ k(X) такой, что k(X) — конечное сепарабельное расширение
k(x1, . . . , xr). Теперь по теореме о примитивном элементе 12 существует y ∈ k(X) такой, что
K = k(y, x1, . . . , xr). Элемент y алгебраичен над k, то есть удовлетворяет некоторому поли-
номиальному уравнению с коэффициентами из поля рациональных функций от переменных
k(x1, . . . , xr). Домножая на знаменатели, мы получим

f(y, x1, . . . , xr) = 0,

где f — некоторый неприводимый многочлен. Теперь легко видеть, что он определяет гиперпо-
верхность в Ar+1 с полем функций k(X), а отсюда, по теореме 11, она бирационально эквива-
лентна X. Проективное замыкание этой гиперповерхности и есть требуема гиперповерхность
Y ⊂ Pr+1.

2.7 Рациональные многообразия

Определение 27. Рациональным многообразием мы будем называть многообразие, бираци-
онально изоморфное проективному пространству. Эквивалентно (по теореме 11), можно гово-
рить, что это многообразие, поле функций которого изоморфно k(t1, . . . , tn).

Пример 9. Например, окружность x2 + y2 = 1 является рациональным многообразием. Дей-
ствительно, так как поле алгебраически замкнуто,

x2 + y2 = (x+ iy)(x− iy) = st

и окружность задаётся как st = 1. Её аффинная алгебра — это k[s, t]/(st−1) = k(s, s−1). Видно,
что k(X) ∼= k(t).
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А знаем ли мы многообразия, которые не являются рациональными? Рассмотрим эллип-
тическую кривую

y2 = x3 + ax+ b,

с условием, что x3+ax+b не имеет кратных корней и char k ̸= 2, 3. Условие про кратные корни
гарантированно, например, тем, что 4a3 + 27b2 ̸= 0.

Линейной заменой переменной x, уравнение сводится к виду

y2 = x(x− 1)(x− α), α ̸= 0.

Покажем, что эта кривая не является рациональной. Посмотрим на проективное замыкание
этой кривой, для этого нужно взять гомогенизацию этого многочлена:

y2z = x3 + axz2 + bz3.

Несложно видеть, что проективное замыкание отличается от самой кривой лишь одной
бесконечно удалённой точкой: в карте z ̸= 0 лежат все аффинные точки, а z = 0 даёт одну
бесконечно удалённую точку (0 : 1 : 0).

Так как аффинная кривая содержится в проективной, как открытое подмножество, то поля
функций у них совпадают. Отсюда в частности следует, что если мы докажем, что аффинная
кривая не рациональна, то мы получим, что её проективизация не изоморфна P1.

То, что аффинная кривая не рациональна, будем доказывать от противного. Предположим,
что k(X) ∼= k(t), и

y ↔ p1(t)

p2(t)
, x↔ q1(t)

q2(t)
.

Не умаляя общности, (p1, p2) = (q1, q2) = 1. Должно быть выполнено соотношение

p21
p22

=
q1
q2

(
q1
q2
− 1

)(
q1
q2
− α

)
⇝ p21 · q32 = p22q1(q1 − q2)(q1 − αq2).

Отсюда p22
... q32 и q32

... p22, то есть они пропорциональны, а именно q32/p22 = c ∈ k. Получаем

cp21 = q1(q1 − q2)(q1 − αq2)

и подправляя p1 и p2 правильным образом на константный множитель, можно считать c = 1.
В силу взаимной простоты множителей, мы получаем, что q1, q1 − q2, q1 − αq2 — квадраты.
При этом q2 — тоже квадрат, так как q32 = p22.

Получается, в некотором двумерном k-подпространстве k[t] нашлось четыре различных (не
совпадающих даже с точностью до ассоциированности) квадрата. Несложно придумать три
квадрата, лежащих в двумерном пространстве — скажем, подойдут (x2 − y2)2, (x2 + y2)2, x2y2,
но, предложение ниже говорит, что, оказывается, четырёх таких квадратов найти не получится.

Предложение 23. Пусть Q1, Q2 — два взаимно простых многочлена. В пространстве spank(Q1, Q2)
нет четырёх ненулевых квадратов (разумеется, различных с точностью до ассоциированно-
сти).
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Доказательство. Пусть R1, R2 ∈ spank(Q1, Q2) непропорциональные квадраты. Так как они
непропорциональны, spank(R1, R2) = spank(Q1, Q2). Оставшиеся два квадрата можно записать
в виде α1R1 − α2R2 и β1R1 − β2R2. Пусть R1 = S2

1 , R2 = S2
2 и

α1R1 − α2R2 = (
√
α1S1 +

√
α2S2)(

√
α1S1 −

√
α2S2)

β1R1 − β2R2 = (
√
β1S1 +

√
β2S2)(

√
β1S1 −

√
β2S2)

Так как (S1, S2) = 1, значит взаимно просты и правые части равенств, а отсюда
√
α1S1 +√

α2S2,
√
α1S1 −

√
α2S2,

√
β1S1 +

√
β2S2,

√
β1S1 −

√
β2S2 — квадраты.

Выберем изначально Q1, Q2 с наименьшим максимумом степеней; выкладка выше показы-
вает возможность бесконечного спуска, то есть противоречие.

Следствие 11. Эллиптическая кривая (кривая вида {y2 = x3 + ax + b} при 4a3 + 27b2 ̸=
0, char k ̸= 2, 3) не рациональна.

Замечание 22. Альтернативное доказательство этого факта использует то, что бирациональ-
ные морфизмы между неособыми проективными кривыми продолжаются до регулярных, а
отсутствие изоморфизма на уровне Proj доказывать проще. Об этом написано в 3.6.

3 Локальные кольца

3.1 Локальное кольцо в точке

Определение 28. Пусть X — квазипроективное многообразие, P ∋ X, а O(X) — его кольцо
регулярных функций. Для точки P определим её локальное кольцо OP , как

OP = lim−→
U∋P
O(U).

Говоря более изысканно, это кольцо ростков регулярных функций на X в окрестности P . Или,
иными словами, элемент OP — это пара (U, f), где U — открытая окрестность P в X, а f —
регулярная функция на U , причём пары (U, f) и (V, g) отождествляются, если f = g на U ∩ V .

Отметим, что кольцо OP на самом деле является локальным кольцом: его единственный
максимальный идеал mP состоит из всех ростков регулярных функций, обращающихся в нуль
в точке P . В самом деле, если f(P ) ̸= 0, то 1/f регулярна в некоторой окрестности P и f
обратима в OP . Раз всё вне mP обратимо, то mP — единственный максимальный идеал. Также
несложно видеть, что поле вычетов OP /mP

∼= k.
Пусть A — локальное кольцо, m — его максимальный идеал. Тогда m/m2 — векторное

пространство над A/m.
Доказательство следующей леммы предоставляется читателю как упражнение, она будет

использоваться в дальнейшем.

Лемма 6. Пусть A — коммутативное кольцо, I1, . . . , In — набор идеалов (n ≥ 2), причем среди
них есть не более двух не простых. И пусть

J ⊴ A, J ⊂ I1 ∪ . . . ∪ In.

Тогда J ⊂ Ik для некоторого k.
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Упражнение 5. Локальное кольцо точки P = (0, 0) для кривой X = Z(y2 − x3) не является
дискретно нормированным.

Пример 10. Нетрудно заметить,что в случае упражнения выше у нас всё устроено так:

dimX = 1, m = (x, y), dimkmP /m
2
P = 2.

Возводя в степень максимальный идеал это кольца можно заметить интересную вещь:

m3 = (x3, x2y, xy2, y3) = (y2, x2y) ⊂ (y) =⇒ m3 ⊂ (y) ⊂ m

Это явление имеет такое коммутативно алгебраическое происхождение:

Теорема 15. Пусть A — нётерово локальное кольцо. Тогда dimA < ∞ и она равна такому
минимальному d, для которого ∃k ∈ N, x1, x2 . . . , xd ∈ m такие, что

mk ⊂ (x1, . . . , xd) ⊂ m.

Доказательство. Мы будем доказывать эту теорему для колец геометрического происхожде-
ния, то есть колец вида OP . Зафиксируем d и предположим, что для некоторого k ∈ N мы
имеем

mk
P ⊂ (x1, . . . , xd) ⊂ m.

Шаг 1. Покажем сначала, что в таком случае dimOP ≤ d.
Для начала обоснуем, почему можно считать, что X неприводимо, и, следовательно, OP

целостно. Как копредел, локальное кольцо зависит только от окрестности точки P , так что
без потери общности можно считать, что X аффинно. В аффинном случае OP — локализация
A(X) в максимальном идеале mP . Любая максимальная цепочка идеалов в OP длины dimOP
начинается в каком-то минимальном простом идеале OP , он же — минимальный простой идеал
A(X), содержащийся в mP . Такие идеалы отвечают неприводимым компонентам X, содержа-
щим точку P , откуда видно, что при замене X на ту неприводимую компоненту, содержащую
точку P , которая имеет максимальную размерность, dimOP не поменяется.

Итак, можно считать, что X = SpecmA аффинно и неприводимо, следовательно, локальное
кольцо OP = AmP целостно.

Далее представим максимальную локализацию, как копредел главных: OP = lim−→
a(P ) ̸=0

Aa, и в

соответствии с этим докажем вот такую лемму:

Лемма 7. Пусть I, J — идеалы в целостном нётеровом кольце A, m ∈ SpecmA и Im ⊂ Jm.
Тогда существует a ∈ A \m такой, что Ia ⊂ Ja.

Доказательство леммы. Рассмотрим короткую точную последовательность

0→ J → I + J → (I + J)/J → 0.

Так как локализация — это точный функтор, точной будет и последовательность

0→ Jm
∼−→ (I + J)m → ((I + J)/J)m → 0.
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Тогда, так как Im ⊂ Jm, вторая слева стрелка — изоморфизм, откуда ((I + J)/J)m = 0.
Рассмотрим конечно порождённый A-модуль M = (I + J)/J . Так как Mm = 0, существует
a ∈ A \m такой, что Ma = 0, то есть ((I + J)/J)a = 0. Но последовательность

0→ Ja
∼−→ (I + J)a → ((I + J)/J)a → 0 ⇐⇒ 0→ Ja

∼−→ (I + J)a → 0

также точна, откуда Ia ⊂ Ja.

Применяя эту лемму к OP = AmP мы получаем, что ∃b ∈ A \mP : в кольце B = Ab имеется
включение идеалов

mk
P ⊂ (x1, . . . , xd) ⊂ mP .

Беря радикалы, получаем
mP ⊂

√
(x1, . . . , xd) ⊂ mP ,

откуда по теореме Гильберта о нулях {P} = Z(x1, . . . , xd)∩SpecmB. Предполагая dimOP > d,
мы приходим к противоречию, так как Z(x1, . . . , xd) — это пересечение d гиперповерхностей, а
оно либо пустое, либо размерности dimOP − d > 0.
Шаг 2. Покажем, что для d = dimOP существует натуральное k такое, что

mk
P ⊂ (x1, . . . , xd).

Будем доказывать это индукцией по d.
База. Случай d = 0 очевиден, так как кольцо OP локальное, откуда Rad(OP ) = mP , но в
артиновом кольце радикал Джекобсона нильпотентен, то есть для некоторого б N : mN

P = 0 и
условие будет выполнено.
Переход. Рассмотрим элемент x1, не лежащий в объединении минимальных простых идеалов.
Как мы видели при доказательстве теоремы 7,

dimOP /(x1) ≤ dimOP − 1,

так как если у нас есть максимальная цепочка вложенных простых p0 ⊂ . . . ⊂ pn ⊴ OP /(x1),
то цепочка p0 ⊂ . . . ⊂ pn ⊴ OP уже не будет максимальной, так как идеал p0 не минимальный.
По индукционному предположению существует k такое, что

mk
P /(x1) ⊂ (x2, . . . , xd) ⊂ mP /(x1) =⇒ mk

P ⊂ (x1, x2, . . . , xd) ⊂ mP .

Тот факт, что не лежащий в объединении минимальных простых идеалов x найдётся, остаётся
в качестве упражнения; подсказка — использовать 6. Заметим, что при факторизации по (x1)
кольцо остаётся максимальной локализацией аффинной k-алгебры, то есть кольцом вида OP .

Замечание 23. Комментарий про dimA < ∞ тут по существу, так как произвольное нётерово
кольцо, вообще говоря, не обязано быть конечномерным. Однако в нашем случае колец OP
сразу очевидно, что dimOP < ∞, как размерность максимальной неприводимой компоненты,
содержащей точку P .

Следствие 12 (Из теоремы 15). Пусть A — нётерово локальное кольцо с максимальным
идеалом m. Тогда

dimA ≤ dimA/mm/m2.
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Доказательство. Пусть x1, . . . , xn — базис m/m2. Тогда по предложению 31 мы имеем (x1, . . . , xn) =
m, а тогда m ⊂ (x1, . . . , xn) ⊂ m. Но тогда по теореме 15 мы имеем dimA ≤ n.

Применяя это к кольцу OP , мы получаем, что

dimOP ≤ dimkmP /m
2
P .

Это наводит на мысль, что полезно рассматривать следующие объекты:

Определение 29. Пусть A — локальное кольцо с максимальным идеалом m. Оно называется
регулярным, если dimA = dimkm/m

2.

Нам понадобятся следующие факты о регулярных локальных кольцах:

1. Регулярное локальное кольцо целостное — будет доказано здесь 16.

2. Регулярное локальное кольцо факториально — доказано не будет, вариант идеи возмож-
ного доказательства приводится после теоремы 18. Там же приведён альтернативный
аргумент, о целостности локального кольца.

3. Любая локализация регулярного локального кольца относительно простого идеала — то-
же регулярное локальное кольцо ??.

Перед тем, как доказывать эти факты, введём объект, который в принципе мотивирует изу-
чение регулярных колец (то есть поймём, что условие регулярности означает геометрически).

3.2 Касательное пространство

Определение 30. Пусть X ⊂ An — аффинное многообразие, I(X) = (f1, . . . , fm), P ∈ X.
Пространство решений системы линейных уравнений относительно (t1, . . . , tn)

∂f1

∂x1
(P )t1 + . . .+

∂f1

∂xn
(P )tn = 0

...
∂fm

∂x1
(P )t1 + . . .+

∂fm

∂xn
(P )tn = 0

(4)

называется касательным пространством к многообразию X в точке P . Будем его обозначать
TPX.

Данное определение понятным образом соотносится с определением касательного простран-
ства в анализе. Однако у него есть некоторые недостатки — зависимость определения от выбора
образующих идеала и зависимость от выбора объемлющего пространства. Сейчас с этим сейчас
поборемся.

Замечание 24. Определение корректно, то есть оно не зависит от выбора образующих в идеале
I(X).
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Доказательство. Возьмём f ∈ I(X) и разложим его по образующим

f = f1g1 + . . .+ fmgm.

Теперь продифференцируем:

∂f

∂x1
(P ) =

m∑
j=1

 ∂fj
∂x1

(P ) · gj(P ) + fj(P )︸ ︷︷ ︸
=0, т.к. fj∈I(X)

· ∂gj
∂x1

(P )

 =

m∑
j=1

∂fj
∂x1

(P ) · gj(P ).

Тогда отсюда мы заключаем, что

∑
i

∂f

∂xi
ti =

∑
i,j

∂fj
∂xi

(P )gj(P )ti =
∑
j

gj(P ) ·
(∑

i

∂fj
∂x1

(P ) · ti
)

Теперь заметим, что если (t1, . . . , tn) удовлетворяют системе 4, то каждое слагаемое будет
равно нулю. Значит, можно определять касательное пространство более инвариантно: записать
бесконечную систему таких уравнений по всем элементам f ∈ I(X), и результат не поменяется.

Проверим независимость определения касательного пространства от объемлющего про-
странства, дав эквивалентное функториальное определение. Для этого рассмотрим билинейное
спаривание

mP /m
2
P × TPX → k, (g, (t1, . . . , tn)) 7→

∑
i

∂g

∂xi
(P )ti ∈ k.

С производными многочленов выше по тексту проблем не было, а в данном месте придётся
пояснить, что означают производные элементов локального кольца.

• Для начала поднимемся в объемлющее пространство — для функции g ∈ A(X) = k[x1, . . . , xn]/I(X)
можно рассмотреть прообраз g ∈ k[x1, . . . , xn]. Заметим, что ∂g

∂xi
(P ) зависит от выбора

представителя g, но — удивительное дело — если (t1, . . . , tn) ∈ TPX, то сумма
∑

i
∂g
∂xi

(P )ti
от выбора представителя g уже не зависит — для всякого g ∈ I(X) эта сумма равна нулю
по определению касательного пространства.

• Пусть g ∈ OP , то есть в окрестности точки P функция g равна отношению регулярных

на X функций: g = r/s. Определим ∂g
∂xi

(P ) :=
∂r
∂xi

(P )·s(P )−r(P )· ∂s
∂xi

(P )

s(P )2
в соответствии с фор-

мулой g′ = r′s−rs′
s2

. В анализе данная формула означала предел приращения функции
по отношению к приращению аргумента, но тут такие инфинитезимальные разговоры
обосновать сложнее, поэтому предлагается поверить (или проверить), что определение
корректно (не зависит от выбора представления g = r/s, и удовлетворяет тем же свой-
ствам, что и удовлетворяла обычная производная — скажем, (fg)′ = f ′g + fg′).

• Наконец, если g1 = g2 ∈ mP /m
2
P , то g1 − g2 = h ∈ m2

P . Тогда

h =
∑
j

ℓjℓ
′
j , где ℓj , ℓ′j ∈ mP =⇒ ∂h

∂xi
(P ) =

∑
j

(
ℓj(P )

∂ℓ′j
∂xi

(P ) +
∂ℓj
∂xi

(P ) · ℓ′j(P )
)

= 0.
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Теперь наконец покажем, что оно невырождено.

• Зафиксируем (t1, . . . , tn) ∈ TPX. Предположим, что

∀g ∈ mP :
∑
i

∂g

∂xi
(P )ti = 0.

Пусть P = (p1, . . . , pn). Принимая g = xi − pi ∈ mP , получаем из равенства выше, что
ti = 0 ∀i.

• Теперь зафиксируем g ∈ mP ⊂ OP ⊂ k(x1, . . . , xn). Предположим, что∑
i

∂g

∂xi
(P ) · ti = 0 ∀(t1, . . . , tn) ∈ TPX.

Это уравнение является следствием уравнений для касательного пространства, откуда

∑
i

∂g

∂xi
(P )ti = α1ℓ1 + . . .+ αmℓm, где ℓj =

∑
i

∂fj
∂xi

(P )ti.

Приравнивая коэффициенты при ti слева и справа мы получаем, что

∂g

∂xi
(P ) = α1

∂f1
∂xi

(P ) + . . .+ αm
∂fm
∂xi

(P ) ∀i =⇒ ∂(g −∑αjfj)

∂xi
(P ) = 0.

Положим g̃ = g −∑αjfj и разложим g̃ по формуле Тейлора в точке P :

g̃(x1, . . . , xn) = g̃(p1, . . . , pn)︸ ︷︷ ︸
=0

+
∑
i

∂g̃

∂xi
(P )︸ ︷︷ ︸

=0

·(xi − pi) + ε, ε ∈ m2
P ,

(такое разложение очевидно для многочленов, и его можно проверить для рациональных
функций), откуда g̃ = 0 в mP /m

2
P . С другой стороны,

∑
αjfj ≡ 0 на X, откуда g ∈ m2

P ,
то есть g = 0 в mP /m

2
P , что и требовалось доказать.

Значит, мы только что доказали, что имеет место изоморфизм

TPX ∼=
(
mP /m

2
P

)∗
.

Это замечательное наблюдение позволяет нам распространить понятие касательного про-
странства с аффинного многообразия на произвольное квазипроективное:

Определение 31. Пусть X ∈ qProj а P ∈ X. Касательным пространством к X в точке P
мы будем называть векторное пространство

TPX
def
=
(
mP /m

2
P

)∗
.

Замечание 25. Так как идеал mP конечно порождён, то это пространство всегда конечномерное.

Теорема 16. Регулярное локальное кольцо геометрического происхождения является обла-
стью целостности.
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Доказательство. Будем вести индукцию по dimR.
База. Пусть dimR = 0. Тогда, так как R регулярно,

dimR = dimkmP /m
2
P = 0 ⇐⇒ mP = m2

P .

Так как R — нётерово кольцо размерности 0, оно артиново, а отсюда (и из того факта, что оно
локальное) mP = Rad(R) = NRad(R), откуда существует такое n, что mn

P = 0, но тогда mP = 0,
то есть R — поле.
Переход. Пусть dimR ≥ 1. Рассмотрим элемент x ∈ m \ m2, не лежащий в объединении
минимальных простых. Такой существует, так как в противном случае

m =
⋃

p — минимальный простой

p ∪m2 6
=⇒ m ⊂ p или m ⊂ m2.

В первом случае dimR = 0. Во втором случае по лемме Накаямы 30: m = 0, откуда R — поле.
Теперь рассмотрим кольцо S = R/(x). Ясно (см. 7), что dimS ≤ dimR−1. Пусть dimS = d.

Тогда согласно 15: ∃x1, . . . , xd ∈ R, k ∈ N:

mk ⊂ (x1, . . . , xd) ⊂ m =⇒ mk ⊂ (x, x1, . . . , xd) ⊂ m,

откуда опять же по 15,dimR ≤ dimS + 1, то есть имеет место равенство dimS = dimR −
1. Теперь убедимся, что S — регулярное локальное кольцо. Оно локальное с единственным
идеалом m, откуда

dimS ≤ dimkm/m
2.

С другой стороны, мы имеем

dimkm/m
2 ≤ dimkm/m

2 − 1 = dimR− 1 = dimS,

так как отображение m/m2 ↪→ m/(m2 + (x)) имеет нетривиальное ядро. Значит, кольцо S регу-
лярно. По индукционному предположению S — область целостности, откуда (x) ⊂ R — простой
идеал. Так как x не лежит ни в одном минимальном простом идеале, существует p ∈ SpecR
такой, что p ⊆ (x). Рассмотрим y ∈ p, тогда y = ax для некоторого a ∈ R. Но, так как x /∈ p,
отсюда a ∈ p. То есть p = (x)p, откуда по лемме Накаямы 30: p = 0, то есть R — область
целостности.

Определение 32. Пусть X — многообразие, P ∈ X. Точка P называется неособой, если OP
регулярно. Многообразие X называется неособым, если каждая его точка неособая. Точка, в
которой локальное кольцо нерегулярно, называется особой точкой.

В случае k = kalg также есть следующие синонимичные понятия: точки гладкости (си-
ноним неособой точки), многообразие — гладкое, если все его точки — точки гладкости, а в
противном случае многообразие содержит точки негладкости.

3.3 Разложение в ряд Тейлора

ПустьX — многообразие, P ∈ X. Возьмём f ∈ OP , тогда ясно, что f−f(P ) ∈ mP . Так как идеал
mP конечно порождён, мы можем выбрать какую-то систему образующих mP = (u1, . . . , un).
Тогда

f − f(P ) = g1u1 + . . .+ gnun, gi ∈ OP .
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Аналогично, gi ∈ gi(P ) +mP , тогда

f − f(P )−
n∑
i=1

gi(P )ui ∈ m2
P =⇒ f − f(P )−

n∑
i=1

gi(P )ui =
n∑

i,j=1

hijuiuj , hi,j ∈ OP .

Продолжая в том же духе мы получаем, что

∀g ∈ OP : ∃F0 + F1 + . . . ∈ k[[x1, . . . , xn]] : f −
s∑
i=0

Fi(u1, . . . , un) ∈ ms+1
P ∀s ∈ N,

где Fi — однородный многочлен степени i от переменных x1, . . . , xn.

Определение 33. Полученное выше представление и называется рядом Тейлора для функции
f относительно системы локальных параметров u1, . . . , un.

Ответим сразу на естественный вопрос о единственности такого представления.

Теорема 17. Пусть X — многообразие, P ∈ X — неособая точка, а dimOP = n. Выберем
систему образующих m = (u1, . . . , un) и рассмотрим функцию f ∈ OP . Тогда существует
единственный ряд Тейлора для функции f относительно системы (u1, . . . , un).

Доказательство. Докажем сначала вот такую лемму:

Лемма 8. Пусть F — s-форма от x1, . . . , xn с коэффициентами из поля k. Предположим, что
F (u1, . . . , un) ∈ ms+1

P . Тогда F ≡ 0.

Доказательство леммы. 1) Предположим сначала, что F (0, . . . , 0, 1) = [usn]F ̸= 0. Так как
anu

s
n + . . . ∈ ms+1

P , anusn + . . . = G(u1, . . . , un), где G — форма степени s с коэффициентами из
mP .

G(u1, . . . , un) = H0u
s
n +H1u

s−1
n + . . .+Hs, где

Hi — форма от x1, . . . , xn−1 степени i. Тогда

( an︸︷︷︸
∈k×
−H0(u1, . . . , un−1)︸ ︷︷ ︸

∈mP

)usn ∈ (u1, . . . , un−1) =⇒ usn ∈ (u1, . . . , un−1),

так как ( an︸︷︷︸
∈k×
−H0(u1, . . . , un−1︸ ︷︷ ︸

∈mP

) ∈ O∗
P . Значит, мы получаем

ms
P ⊂ (u1, . . . , un−1) ⊂ mP ,

но тогда по лемме 15 мы имеем dimOP = n− 1, что приводит к противоречию.
2) В общем случае сделаем замену переменных: возьмём

G(u1, . . . , un) = F (α11u1 + . . .+ α1nun, . . . , αn1u1 + . . .+ αnnun)

где (αij) ∈ GLn(k) и
G(0, . . . , 0, 1) = F (α1n, . . . , αnn) ̸= 0

и таким образом сведём ситуацию к 1).
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Теперь докажем теорему. Так как нас интересует лишь вопрос единственности, достаточно
показать, что у нулевой функции ряд Тейлора также будет нулевым. Пусть F0 + F1 + . . . —
ряд Тейлора для нуля. Так как функция 0 (очевидно) обнуляется в точке P , из определения и
леммы мы имеем

F0(u1, . . . , un) ∈ mP , =⇒ F0 ≡ 0.

Пусть теперь s = 1. Тогда, так как F0 = 0, отсюда

F1(u1, . . . , un) ∈ m2
P =⇒ F1 ≡ 0

по лемме. Продолжая пользоваться леммой мы получаем, что Fj ≡ 0.

Итак, выбор системы образующих mP = (u1, . . . , un) определяет гомоморфизм

τ : OP → k[[x1, . . . , xn]].

Естественно задуматься о том, каково его ядро. Нетрудно видеть, что

τ(f) = 0 ⇐⇒ f ∈
⋂
s∈N

ms,

что мотивирует изучить, как устроен идеал справа. Оказывается, в нашем случае он устроен
не слишком уж сложно.

Теорема 18. Пусть A — локальное нётерово кольцо с максимальным идеалом m. Тогда⋂
s∈N

ms = 0.

Доказательство. Рассмотрим α ∈ ⋂s∈Nms. Для каждого k ∈ N найдётся такой Fk, что α =
Fk(u1, . . . , un), где Fk — однородный многочлен из A[x1, . . . , xn] степени k.

Так как A[x1, . . . , xn] нётерово, то по теореме Гильберта о базисе: ∃s ∈ N:

(F1, F2, . . . , Fk, . . .) = (F1, . . . , Fs).

Но это в частности значит, что

Fs+1 = G1F1 + . . .+GsFs, Gi ∈ A[x1, . . . , xn],degGi = s+ 1− i

и Gi однородные. Подставляя u1, . . . , un, получаем:

α = Fs+1(u1, . . . , un) = α(G1(u) + . . .+Gs(u)) =⇒ α = αβ, β ∈ m.

Тем самым, α(1−β) = 0, и сокращая на 1−β — обратимый элемент A — мы получаем α = 0.

Таким образом, как мы видим, ядро построенного выше гомоморфизма тривиально и OP ↪→
k[[x1, . . . , xn]], откуда сразу следует целостность кольцаOP . Таким же образом можно пытаться
доказать факториальность OP . Однако, во-первых, надо начать с доказательства факториаль-
ности k[[x1, . . . , xn]], а, во-вторых, подкольцо факториального кольца совсем не обязано быть
факториальным, так что нужны дополнительные слова.
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Отметим также, что из леммы 8 можно извлечь достаточно полезное следствие. А именно,
рассмотрим градуированное кольцо

∞⊕
k=0

mk
P /m

k+1
P .

В случае, если P — неособая точка, мы можем рассмотреть гомоморфизм

k[[x1, . . . , xn]]→
∞⊕
k=0

mk
P /m

k+1
P , xi 7→ ui.

Из леммы следует, что это мономорфизм, а сюръективность очевидна. Значит, мы доказали
такое следствие.

Следствие 13. Пусть P ∈ X — неособая точка. Тогда имеет место следующий изоморфизм
k-алгебр:

∞⊕
k=0

mk
P /m

k+1
P
∼= k[[x1, . . . , xn]]

В частности, отсюда следует, что на неособом многообразии градуированная алгебра

∞⊕
k=0

mk
P /m

k+1
P

не зависит от выбора точки P (что вообще говоря неочевидно).

3.4 Локальное кольцо точки на неособой кривой. Индексы ветвления и сте-
пень инерции.

Рассмотрим неособую проективную кривую X и точку P ∈ X. Мы знаем, что в силу того, что
кривая неособая, dimOP = dimkmP /m

2
P , а из этого условия по лемме Накаямы следует, что

идеал mP главный.
Кольцо OP в этом случае — дискретно нормированное кольцо и с каждой точкой кривой у

нас ассоциировано нормирование υP поля k(X).
Пусть теперь φ : Y → X — морфизм неособых кривых и φ−1(P ) = {Q1, . . . , Qn}. Попробуем

понять, как же связаны нормирования υP и υQi . Ясно, что в этом случае для любой точки
Qi есть расширение колец φ∗ : OP → OQi и mP ⊂ mQi , mP = mQi ∩ OP . И видно, что в
этой ситуации нормирования υQi продолжают нормирование υP . Действительно, мы можем
рассмотреть функцию

ψ : OP → Z, ψ(f) = υQi(φ
∗(f))

для которой легко проверить, что ψ(f ·g) = ψ(f)+ψ(g) и ψ(f+g) ≥ min(ψ(f), ψ(g)). Возможно,
ψ не сюръективна, но так как f(P ) = 0 ⇐⇒ φ∗(f)(P ) = 0, то ψ(f) > 0 ⇐⇒ vP (f) > 0. Отсюда
ясно, что ∃e > 0:

υQi = e · υP .
Число e в этом контексте называют индексом ветвления и обозначают e = e(OQi/OP ).

Сразу видно, что индекс ветвления можно вычислить вот так:

υQi(πP ) = e(OQi/OP ),
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где (πP ) = mP — локальный параметр для кольца OP . Или, иными словами, такой элемент,
что υP (πP ) = 1.

Теорема 19. Оказывается, в такой ситуации e1 + . . .+ en = [k(Y ) : k(X)]12.

3.5 Конечные морфизмы и нормализация многообразия

Теорема 20. Пусть L/K — сепарабельное конечное расширение, кольцо A ⊂ K и K = Frac(A).
Пусть B = IntLA и предположим, что A нётерово и целозамкнуто13 (в своём поле частных).

Тогда B — конечно порождённый A-модуль.

Доказательство. Это доказывается стандартным образом.
Во-первых, из следующей несложной леммы очевидно, что L = Frac(B).

Лемма 9. Для любого x ∈ L существует a ∈ A×: ax ∈ B.

Доказательство. Так как расширение L/K конечно, то x алгебраичен над K. Значит, имеется
зависимость xn + cn−1x

n−1 + . . . + c0 = 0 для некоторых ci ∈ K. Домножая на знаменатели,
получим зависимость вида anxn+an−1x

n−1+ . . .+a0 = 0 для некоторых ai ∈ A, причём an ̸= 0.
Видно, что anxn — целый над A элемент (чтобы явно получить зависимость, надо уравнение
домножить на an−1

n ).

Возьмём {ωi}ni=1 — базис L/K, причём выберем ωi ∈ B (что возможно по лемме 9). Рас-
смотрим билинейную форму следа

L× L→ K, (x, y) 7→ Tr(xy).

Из курса теории полей известно, что так как расширение сепарабельно, то эта форма невы-
рождена. Возьмём двойственный базис к ωi, то есть рассмотрим такой набор {ω∗

i }, что

Tr(ωiω
∗
j ) =

{
1, i = j

0, иначе.

Имеем следующие включения

Aω1 ⊕ . . .⊕Aωn ⊂ B ⊂ Aω∗
1 ⊕ . . .⊕Aω∗

n.

Первое включение очевидно, докажем второе. Пусть b = a1ω
∗
1 + . . . + anω

∗
n, где ai ∈ K, мы

покажем, что ai ∈ A. С одной стороны,

ai = Tr(bωi).

Пусть G = {σ : L → Kalg} — все вложения L в Kalg. Если α цел над A, то σα цел над A (это
тривиальная проверка), а тогда и Tr(α) цел над A, так как

Tr(α) =
∑
σ∈G

σα.

12Об этом написано в книге «Алгебраическая Геометрия» Хартсхорна, Г. 2, §6, предложение 6.9. Это верно,
если φ : Y → X — конечный морфизм, и доказательство этого, насколько понимает редактор, идёт ниже, вплоть
до 22

13также говорят нормально; A — область целостности, так что нормальность и целозамкнутость — синонимы.
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Так как Tr(bωi) ∈ K цело над A, то из целозамкнутости A: ai = Tr(bωi) ∈ A. Мы получили, что
B — подмодуль конечно порождённого модуля над нётеровым кольцом, откуда B — конечно
порождённый A-модуль.

Теперь опустим требование сепарабельности расширения ценой конкретизации ситуации: в
дальнейшем A будет не произвольной нётеровой областью целостности, а целостной аффинной
k-алгеброй.

Теорема 21. Пусть A — целостная аффинная алгебра, K = Frac(A), а L/K — конечное
расширение. Обозначим B = IntLA. Тогда B — конечно порождённый A-модуль.

Доказательство. По лемме Нётер о нормализации, A — конечное расширение кольца много-
членов k[x1, . . . , xn]. Так какB цело наA, оно цело и над k[x1, . . . , xn], откудаB = IntL k[x1, . . . , xn].

Кроме того, расширение L/Frac(k[x1, . . . , xn]) конечное (это следует из такой леммы):

Лемма 10. Пусть φ : A ↪→ B — конечное расширение. Тогда расширение Frac(B)/Frac(A)
конечное.

Доказательство. Рассмотрим мультипликативное подмножество S = A \ {0}. Согласно 29,
Frac(A) = S−1A ↪→ φ(S)−1B конечное. С другой стороны, так как φ(S)−1B — конечная об-
ласть целостности над полем Frac(A), оно является полем 30, в которое вкладывается B. Со-
гласно универсальному свойству поля частных оно совпадает с Frac(B), и мы получили, что
расширение Frac(B)/Frac(A) конечное.

Из этих рассуждений следует, что мы без ограничений общности можем полагать, что A =
k[x1, . . . , xn].

Кроме того, без ограничений общности мы можем полагать, что расширение L/K нормаль-
ное, так как если мы перейдём к нормальному замыканию L̃/K и докажем теорему для него
и для B̃ = Int

L̃
A ⊃ B, то мы докажем теорему и для B.

Пусть G = {σ : L → Kalg}. Так как L/K нормально, то ∀σ ∈ G : σ(L) ⊂ L и мы можем
рассмотреть башню расширений:

L

LG = F

K

где верхний этаж — расширение Галуа, а нижний — чисто несепарабельное расширение14.
14В характеристике 0 все расширения сепарабельны; там окажется F = K.
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Введём соответствующие кольца целых OL = IntLA и OF = IntF A. Они образуют башню
расширений колец

OL = IntLA

OF = IntF A

A

Так как расширение L/F сепарабельно, а OF целозамкнуто, то мы можем применить тео-
рему 20 и получить, что OL — конечно порождённый OF -модуль.

Далее, из общей теории полей следует, что чисто несепарабельное расширение устроено
следующим образом:

F = k
(
y

1
pm1 , . . . , y

1
pms

)
, где yi ∈ A, p = chark.

Возьмём m = maxmi, запишем yi =
∑

I aIx
I (где I — мультииндекс), и извлечём корень

y
1

pm

i =
∑

a
1

pm

I xI/p
m
, (5)

так как в характеристике p: (∑
a

1
pm

I x
I

pm

)pm
=
∑(

a
1

pm

I x
I

pm

)pm

а так как поле k алгебраически замкнуто, то все a
1

pm

I ∈ k. Итак, из (5) следует, что

F ⊂ k
(
x

1
pm

1 , . . . , x
1

pm

n

)
.

Тем самым, если мы докажем теорему для k
(
x

1
pm

1 , . . . , x
1

pm

n

)
, то мы докажем её и для F , так

что далее без ограничений общности можно полагать, что

F = k
(
x

1
pm

1 , . . . , x
1

pm

n

)
.

Теперь убедимся, что OF = k
[
x

1
pm

1 , . . . , x
1

pm

n

]
=: R. Включение R ⊂ OF очевидно. Пусть

α ∈ OF , то есть α цел над A, значит он цел и над R, откуда α ∈ R (так как R целозамкнуто и
расширение R/A конечно15).

Итак, мы показали, что OF /R конечно (а так как R/A конечно и OL/OF конечно), из этого
следует теорема.

Определение 34. Если в предыдущей теореме L = K, то B называется нормализацией A.
15Его базис состоит из мономов вида x

k1/p
m

1 · . . . · xkn/pm

n по 0 ≤ ki ≤ pm − 1
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Пример 11. Пусть A = k[x, y]/(y2 − x3). Это кольцо не целозамкнуто: ( yx)
2 = x, но y

x /∈ A.
Обозначая t := y

x , видим наличие вложения A ↪→ k[t], x 7→ t2, y 7→ t3. При этом k[t] — конечный
A-модуль, и k[t] уже целозамкнуто. Можно показать, что k[t] — нормализация A.

Замечание 26. Отметим, что в этом случае B является аффинной k-алгеброй, так как она
целостна, и к тому же — конечно порождённый модуль над какой-то другой аффинной k-
алгеброй.

Определение 35. ПустьX — аффинное многообразие. ТогдаX называется нормальным, если
X = Specm(A), где A — нормальное.

Таким образом, аффинное многообразие X может быть нормальным, а может — не быть.
Во втором случае теорема 21 говорит, что существует аффинное нормальное многообразие
Y , и конечный морфизм (вложение) A(X) → A(Y ). Он, кстати, порождает Y → X в силу
антиэквивалентности категорий.

Теперь обобщим данную ситуацию на случай произвольных (необязательно аффинных)
многообразий.

Определение 36. Пусть φ : Y → X — морфизм многообразий. Предположим, что у любой
точки x ∈ X есть такая аффинная окрестность Ux, что φ−1(Ux) ∼= Vx, где Vx ⊂ Y — аффинная,
и расширение A(Ux) ↪→ A(Vx) конечно. Тогда φ называется конечным морфизмом.

Определение 37. Неприводимое многообразие X16 называют нормальным, если ∀P ∈ X:
кольцо OP нормально.

Предложение 24. Предыдущие два определения нормальности согласованы.

Доказательство. Нам нужно доказать следующее утверждение: A нормально, если и только
если ∀m ∈ Specm(A) кольцо Am нормально (для целостного кольца A).

Легко убедиться, что любая локализация целозамкнутого кольца целозамкнута.
Обратно, покажем, что A =

⋂
m∈Specm(A)

Am. Включение слева направо очевидно. Пусть x ∈⋂
m∈Specm(A)

Am. Рассмотрим множество I := {a ∈ A|xa ∈ A}, очевидно, что это идеал. При этом

для всякого m ∈ A : x ∈ Am, так что x представим в виде r/s, где s /∈ m, откуда I ⊈ m. Тем
самым, I = (1), то есть x ∈ A.

Так как каждое кольцо в правой части целозамкнуто, и само A целозамкнуто.

Замечание 27. Тем самым, X нормально, если локальное кольцо в каждой точке нормально.
Понятно, что достаточно требовать существования покрытия аффинными картами, такого, что
аффинная алгебра каждой карты нормальна.

Замечание 28. Если X — неособое (гладкое) многообразие, то все его локальные кольца ре-
гулярны. Можно доказать, что регулярное кольцо факториально, а факториальное кольцо
очевидным образом нормально.

Тем самым, все неособые многообразия нормальны.
Обратное неверно: конус {x2+ y2 = z2} ⊂ A3 — нормальное многообразие, но имеет особен-

ность в (0, 0, 0).
16Уже не обязательно аффинное
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3.6 Морфизмы между неособыми кривыми

Предложение 25. Пусть X — неособая неприводимая кривая, пусть у нас есть рациональ-
ное отображение f : X 99K Pn. Тогда оно регулярно во всех точках.

Доказательство. Действительно, рассмотрим открытое U ⊂ X, на котором f — (регулярный)
морфизм. Уменьшая окрестность U , можно считать, что f(U) попадает в аффинную карту:
если рассмотреть f , как отображение U → An0 ⊂ Pn, то f мы можем записать, как

u 7→ (1 : f1(u) : f2(u) : . . . : fn(u)) = (f0(u) : f1(u) : f2(u) : . . . : fn(u)), fi — регулярны на U.

Тогда fi ∈ k(X). Рассмотрим P ∈ X, понятно, что OP ⊂ k(X). Так как кривая X неособая,
то OP — дискретно нормированное кольцо. Обозначим соответствующее дискретное нормиро-
вание за υP , пусть ki = υP (fi), а k = mini{ki}. В силу симметрии, мы можем считать, что
минимум достигается при i = 0. Тогда мы можем записать каждую функцию, как

fi = tkigi,

где t — локальный параметр, то есть образующая mP (или же, такой элемент, что υP (t) = 1), и
υP (gi) = 0. Разделим каждую координату на tk0 . Так мы получим эквивалентное рациональное
отображение X 99K Y , имеющее вид

u 7→ (g0(u) : t
k1−k0g1(u) : . . . : tkn−k0gn(u)).

Заметим, что υP (g0) = 0, то есть g0 ∈ O∗
P , то есть g0 /∈ mP . Это означает, что g0 определе-

на в точке P и не обращается в 0 в ней (и даже в некоторой окрестности этой точки). Для
остальных i мы получаем, что υP (gi) ≥ 0 =⇒ gi ∈ OP , то есть они регулярны в некоторой
окрестности P . Тем самым, отображение определено в некоторой окрестности точки P и точка
P является точкой регулярности (так как в её окрестности не все координаты равны нулю).
По произвольности точки P мы имеем нужное.

При помощи этого утверждения также можно доказать, что эллиптическая кривая не би-
рационально изоморфна P1.

Предположим противное, пусть у нас есть рациональное отображение C 99K P1, и обратное
ему P1 99K C. В силу предыдущего предложения мы можем полагать, что оба эти отображения
— регулярные морфизмы. Получили композицию

C
f−→ P1 g−→ C,

где f, g — регулярные изоморфизмы, причём на некотором открытом множестве g ◦ f = id и
f ◦ f = id.

Лемма 11. Если h1, h2 : X → Y — морфизмы,X неприводимо и h1 совпадает с h2 на некотором
открытом U ⊂ X, то h1 = h2.

Доказательство. Рассмотрим диагональное X h1×h2−−−−→ Y ×Y . По условию (h1×h2)(U) ⊂ ∆(Y ),
а в силу плотности U ⊂ X и замкнутости диагонали, (h1 × h2)(X) ⊂ ∆(Y ).
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Итак, из бирациональной эквивалентности неособых проективных кривых C ∼= P1 получает-
ся обычный изоморфизм C ∼= P1 в категории Proj. Так как группа автоморфизмов P1 действует
на ней транзитивно, то не умаляя общности, можно считать, что∞ 7→ ∞. Выкидывая бесконеч-
но удалённые точки, достаточно доказывать, что аффинная эллиптическая кривая не может
быть изоморфна A1. Чтобы доказать это, можно посмотреть на кольца регулярных функций —
оказывается, кольцо регулярных функций на эллиптической кривой не факториально.

3.7 Морфизмы между неособыми проективными неприводимыми кривыми

Пусть f : Y → X — морфизм между неособыми проективными неприводимыми кривыми.
Образ f(Y ) ⊂ X замкнут, и отбрасывая неинтересный случай одноточечного образа, полу-

чаем f(Y ) = X. Морфизм алгебраических многообразий f индуцирует морфизм полей частных
k(X) → k(Y ). Так как tr. degk k(X) = tr.degk k(Y ) = 1, то расширение алгебраично. В силу
конечной порождённости обоих полей над k (это поля частных аффинных алгебр) получаем,
что расширение полей конечно.

Покроем X аффинными картами: X =
⋃
i SpecmAi.

Теорема 22. Оказывается, f−1(SpecmAi) ∼= Specm Intk(Y )Ai.

Доказательство. Пусть A = Ai, положим B := Intk(Y )A. Мы находимся в ситуации 21, значит,
B — нормальная целостная аффинная алгебра, конечная над A, причём Frac(B) ∼= k(Y ). В силу
антиэквивалентности категорий, существует бирациональный изоморфизм φ : SpecmB 99K Y .

Ещё раз используя, что Frac(B) ∼= k(Y ), получаем в силу 2, dimB = 1, и в силу нормаль-
ности B — дедекиндово кольцо. Значит, SpecmB — неособая кривая17, и φ продолжается до
регулярного морфизма φ : SpecmB → Y .

Следующим шагом покажем, что этот морфизм φ : SpecmB → Y — изоморфизм на образ.

• В силу того, что φ : SpecmB 99K Y — бирациональный изоморфизм, существует раци-
ональный морфизм φ−1 : Y → SpecmB. Пусть SpecmB ⊂ An, в таком случае можно
скомпоновать φ−1 с координатными проекциями πj : An → k, и получить координатное
задание: φ−1(y) = (g1(y), . . . , gn(y)), где gi ∈ k(Y ) — рациональные функции.

• Чтобы проверить наличие обратного регулярного отображения, необходимо убедиться,
что все gi регулярны во всех точках Imφ. Выберем какую-нибудь точку y0 = φ(x0), и
проверим регулярность gi в ней. Предположим противное: υy0(gi) < 0, то есть 1

gi
∈ my0 .

Ясно, что φ∗(my0) ⊂ mx0 , тем самым, получаем, что 1
πi

= φ∗( 1
gi
) ∈ mx0 , то есть υx0(πi) < 0.

Но координатная проекция πi регулярна в точке x0, откуда мы получаем противоречие.

• Итак, φ−1 : Imφ→ SpecmB — обратный к φ регулярный морфизм. То, что они действи-
тельно взаимно обратны, следует, например, из 11.

В дальнейшем можем отождествить SpecmB с Imφ, и рассматривать SpecmB ⊂ Y . Теперь
приступим к доказательству теоремы: проверим, что SpecmB = f−1(SpecmA).

• Зафиксируем точку P ∈ SpecmA, и пусть точки Q1, . . . , Qm ∈ SpecmB — её прообразы
относительно f . Отображение f∗ задаёт морфизмы f∗ : OP → OQi , и мы оказываемся
в ситуации теоремы 19. А именно, определены индексы ветвления ei = e(OQi/OP ), и
теорема говорит, что e1 + . . .+ em = [k(Y ) : k(X)].

17дедекиндовость можно было и не упоминать, это сразу следует из нормальности B.
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• Пойдём от противного: пусть ∃Q /∈ SpecmB : f(Q) = P . Тут тоже есть f∗ : OP → OQ,
и опять же есть индекс ветвления e = e(OQ/cOP ). Получим противоречие, показав, что
s := e+e1+. . .+em ≤ [k(Y ) : k(X)]. Дальше идёт рассуждение, идентичное доказательству
теоремы 25, и так как оно там оформлено более аккуратно, то закончим доказательство
ссылкой.

4 Дивизоры

4.1 Дивизоры Вейля

Начнём с такого примера:

Пример 12. Как мы увидим через секунду, все нормирования на k(t) = k(P1), тривиальные
на k, соответствуют точкам α ∈ k и ∞. Если говорить конкретнее, то любая рациональная
функция на P1 имеет вид

f(t) = C · (t− α1)
k1 · . . . · (t− αm)km

(t− β1)s1 · . . . (t− βn)sn
и тогда мы имеем

υγ(f) =


0, γ ̸= αj , βj

ki γ = αi

sj , γ = βj

, υ∞ = s1 + . . .+ sn − k1 − . . .− km.

В частности мы видим, что
∀f ∈ k

(
P1
) ∑

P∈P1

υP (f) = 0.

Это наблюдение можно обобщить на произвольную неособую проективную кривую X.

Предложение 26. Все нормирования на k(t), тривиальные на k, имеют такой вид.

Доказательство. Пусть υ — нормирование на k(t). Выберем f ∈ k(X) такой, что υ(f) ̸= 0, и
разложим f на неприводимые: f = (t−α1)

n1 · . . . ·(t−αn)nk , где n1, . . . , nk ∈ Z. Так как υ(f) ̸= 0,
то найдётся множитель t − α такой, что υ(t − α) ̸= 0. В силу 28, υ(t − β) = min{υ(t − α), 0}
для β ̸= α. Отсюда мы получаем все нормирования на k(t) — если υ(t − α) > 0, то будет
нормирование в α, иначе нормирование на бесконечности.

Пусть X — неособая проективная кривая (и в дальнейшем всегда так).

Определение 38. Дивизор на X — это формальная целочисленная линейная комбинация∑
P∈X nP · P , где nP ∈ Z, и почти все из них равны нулю.
Иными словами, группа дивизоров Div(X) на кривой X — это свободная абелева группа,

порожденная точками кривой.

Рассмотрим произвольную рациональную функцию f ∈ k(X)∗; в кольце OP она предста-
вима в виде f = z

υP (f)
P · f0, где (zP ) = mP — локальный параметр, а f0 ∈ O∗

P (так как кривая
неособая и локальное кольцо каждой точки регулярно).
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Определение 39. Пусть f ∈ k(X)∗ — ненулевая рациональная функция на кривой X. Её
дивизором называют

div(f) =
∑
p∈X

υp(f) · p

А дивизором нулей и дивизором полюсов называют соответственно

div(f)0 =
∑

p∈X, υp(f)>0

υp(f) · p, div(f)∞ = −
∑

p∈X,υp(f)<0

υp(f) · p.

Замечание 29. Нетрудно видеть, что div(f)∞ = div(1/f)0 и div(f) = div(f)0 − div(f)∞.

Замечание 30. Определение корректно, то есть в суммах конечное число ненулевых слагаемых.
Проверим это: пусть U ⊂ X — область регулярности f . Множество нулей {f = 0} замкнуто
внутри U , значит, оно разбивается на конечное множество неприводимых компонент. Так как
f ̸= 0, то dim{f = 0} < 1, и неприводимые компоненты — точки. Тем самым, сумма в опреде-
лении дивизора нулей действительно конечна. Аналогично поступаем с суммой в определении
дивизора полюсов.

Определение 40. Степенью degD дивизора D называется сумма его кратностей.

Пример 13. Пусть X — неособая неприводимая проективная кривая, f ∈ k(X)∗. Рассмотрим
морфизм полей k(t) → k(X), t 7→ f . Ему соответствует некоторое доминантное рациональное
отображение X → P1. Мы доказывали в 25, что это отображение будет регулярным во всех
точках. Рассмотрим точку P = 0 ∈ P1 и Qi ∈ X такие, что Qi 7→ P (то есть f(Qi) = 0). Тогда
υQi(f) = eiυP (t) = ei. В силу 19, ∑

i

ei = [k(X) : k(f)].

С другой стороны, {Qi} = {Q ∈ X | υQ(f) > 0}, то есть дивизор нулей функции f имеет вид∑
υQi(f) ·Qi,

откуда мы в частности получаем, что deg(div(f)0) = [k(X) : k(f)].

Предложение 27. Пусть X — неособая проективная неприводимая кривая, f ∈ k(X)×. Тогда
div(f) — главный, то есть deg(div(f)0) = deg(div(f)∞).

Доказательство. Согласно примеру выше, deg(div(f)0) = [k(X) : k(f)]. Аналогично deg(div(f)∞) =
deg(div(1/f)0) = [k(X) : k(1/f)] = [k(X) : k(f)].

Доказательство выше использует недоказанную18 теорему 19, опирающуюся на сложную
технику конечных морфизмов, и в связи с этим в следующем семестре лектор приводит другое
доказательство. Его можно найти в приложении 5.

Ясно, что div(fg) = div(f) + div(g), в связи с чём главные дивизоры образуют подгруппу
PDiv(X) в группе всех дивизоров Div(X). Факторгруппу Div(X)/PDiv(X) называют группой
классов дивизоров, и обозначают Cl(X).

18насколько редактор понимает
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Пример 14. Пусть X — проективная неособая неприводимая кривая. Отображение степени
deg : Div(X)→ Z пропускается через фактор, так как все главные дивизоры имеют степень 0.

В случае X = P1 это оказывается изоморфизмом (то есть deg : Cl(X)
∼−→ Z), что ясно из

явного вида нормирований на k(t).

Пусть X — неособое неприводимое многообразие, C ⊂ X — неприводимое подмногообразие
коразмерности 1. Можно определить локальное кольцо по отношению к C (по аналогии с
локальным кольцом точки):

OC ⊂ k(X), OC =

{
f

g

∣∣∣∣ g|C ̸≡ 0

}
.

Тут мы подразумеваем, что g не обращается тождественно в 0 на C. Видно, что в случае
одноточечного C = P это определение совпадает с определением локального кольца точки.

Предположим, что X — аффинное многообразие с аффинной алгеброй A = A(X). В этом
случае подмногообразие C соответствует некоторому простому идеалу p ⊂ A высоты 1. Тогда
OC = Ap (тот факт, что знаменатель не обращается тождественно в 0 на C, означает как раз,
что он не лежит в идеале p).

Теперь возьмём p ⊂ m ⊂ A. Максимальный идеал m соответствует какой-то точке C и
ясно, что Ap получается локализацией кольца Am. X неособое, так что Am регулярно. Идеал
pAm — высоты 1. Регулярное локальное кольцо факториально19, а в факториальном локальном
кольце простой идеал высоты 1 является главным: 1. Значит, pAm — главный идеал, тогда pAp —
главный, а это говорит нам, что кольцо Ap является дискретно нормированным.

Дальше всё некоторое время идёт по аналогии с одномерным случаем кривой.

Определение 41. Пусть X — неособое многообразие. Тогда группа дивизоров Div(X) — сво-
бодная абелева группа, образующими которой являются неособые подмногообразия размерно-
сти 1.

Пусть D ∈ Div(X) — дивизор, D =
∑

Z⊂X nZ · Z. Его носителем мы будем называть

suppD =
⋃

Z⊂X : nZ ̸=0

Z.

Определение 42. Пусть f ∈ k(X)∗. Тогда её дивизором мы будем называть

div(f) =
∑

C⊂X, codimC=1

υC(f) · C

где сумма идёт по всем неприводимым C. Дивизоры такого вида мы будем называть главны-
ми. Нетрудно заметить, что они образуют подгруппу в Div(X), её мы обозначим через PDiv(X).

Замечание 31. Это определение корректно, так как для заданной функции f ∈ k(X) существу-
ет лишь конечное число неособых неприводимых подмногообразий C коразмерности таких, что
υC(f) > 0.

Рассмотрим сначала случай, когда X аффинно и f ∈ A(X). В таком случае, просто по
определению, если C не является компонентой Z(f), то υC(f) = 0. Покажем, что таких C, что
υC(f) > 0 конечное число. Пусть C соответствует идеалу p высоты 1, тогда

υC(f) > 0 ⇐⇒ f ∈ p.

19что мы не доказывали, но обсуждается в 18.
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Рассмотрим p/(f) ⊂ A/(f). Заметим, что если p, q ⊴ A, причём f ∈ q, p и q ̸= p, то p/(f) ̸= q/(f).
Тогда нам достаточно доказать, что в A/(f) конечное число минимальных простых идеалов
(что правда в любом нётеровом кольце).

Если же X всё еще аффинно, но f ∈ k(X), f = g/h, где g, h ∈ A(X), то мы видим, что
υC(f) = υC(g)− υC(h), и всё сводится к случаю f ∈ A(X).

В произвольном случае мы покроем X =
⋃
Ui аффинными (конечным числом) и всякое

C пересекается хоть с одним из Ui. При этом пересечение имеет ту же размерность, что и C,
так как оно — открытое подмножество C. Тем самым, дивизор функции опять же определён
корректно.

Определение 43. Группой классов дивизоров мы будем называть группу Cl(X) = Div(X)/PDiv(X).

Определение 44. Как и в случае кривых, степенью degD дивизора D ∈ Div(X) называется
сумма его кратностей.

Определение 45. Пусть Z — неприводимое неособое подмногообразие в X коразмерности 1.
Тогда ему соответствует дивизор 1 · Z. Простыми мы будем называть дивизоры такого вида.

Пусть U ⊂ X — открытое подмножество, Z = X \ U . Можно определить отображение

Div(X)→ Div(U).

Зададим его на образующих: пусть T ⊂ X — простой дивизор, тогда если T ∩U = ∅, отправим
его в 0, а если T ∩U ̸= ∅, то T ∩U — простой дивизор в U и мы отправим T в T ∩U . Отметим
также, что с главными дивизорами при этом отображении происходит также понятная вещь:

div(f) 7→ div(f |U ).

Значит, мы получили корректно определённое отображение Cl(X) → Cl(U). Заметим теперь,
что так как отображение Div(X) ↠ Div(U) сюръективно, отображение Cl(X) ↠ Cl(U) также
сюръективно. Вычислим его ядро. Предположим, что

∑
niZi ∈ Ker(Cl(X)→ Cl(U)), это озна-

чает, что он перешел в div(f) для некоторой рациональной f ∈ k(U). Эту f можно рассматри-
вать и как элемент k(X), то есть

∑
niZi − div(f) 7→ 0 при отображении Div(X)→ Div(U). Но,

если Z1 ∩ U ̸= ø, Z2 ∩ U ̸= ø, и оказалось, что Z1 ∩ U ̸= Z2 ∩ U , то, конечно, Z1 = Z2. Отсюда
следует, что ядро состоит из тех неприводимых подмногообразий коразмерности 1, которые не
пересекаются с U . А это в точности неприводимые компоненты Z = X \ U коразмерности 1 (в
X).

Таким образом, Ker(Cl(X)↠ Cl(U)) = Zm, где m — количество неприводимых компонент
Z коразмерности 1 в X. В частности, у нас есть точная последовательность

Zm → Cl(X)→ Cl(U)→ 0.

Пример 15. Это наблюдение уже позволяет вычислить группу классов дивизоров для чего-
нибудь.

1. Рассмотрим X = An и простой дивизор T ⊂ X. Подмногообразия в An коразмерности 1
соответствуют простым идеалам высоты 1 в факториальном кольце k[x1, . . . , xn], соглас-
но 1, эти идеалы главные. Таким образом, T задаётся одним уравнением: T = Z(f), но
тогда T = div(f) и T главный. Значит, все простые дивизоры главные, откуда следует,
что Cl(An) = 0.
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2. Теперь рассмотрим X = Pn и U = An, Тогда, так как X \ U = Pn−1, мы получаем

Z ↪→ ClPn → ClAn → 0,

а так как левое отображение инъективно (так как дивизор функции не может состоять
только из Pn \ An: на An регулярная функция без нулей постоянна)

0→ Z→ ClPn → ClAn︸ ︷︷ ︸
=0

→ 0,

мы имеем ClPn ∼= Z.

Определение 46. Дивизор называется эффективным или неотрицательным, если все его
кратности неотрицательны. В таком случае мы пишем D ≥ 0.

Замечание 32. Заметим, что если f регулярна, то div(f) ≥ 0.

Оказывается, верно и обратное.

Теорема 23. Пусть X — неособое многообразие, f ∈ k(X), причём div(f) ≥ 0. Тогда f регу-
лярна на X.

Доказательство. Будем проверять регулярность f в каждой точке X. Без потери общности,
X можно заменить на аффинную окрестность, пусть A — аффинное координатное кольцо X.

Выберем точку P ∈ X, которой соответствует идеал m ⊴ A, и воспользуемся тем, что
OP = Am факториально. В его поле частных f = u · πn1

1 · . . . · πnk
k , где u ∈ O×

P все πi ∈ OP
неприводимы, а ni ∈ Z.

Убедимся, что все nj ≥ 0, зафиксируем некоторый j = 1..k. Так как πj — неприводимый
элемент Am, то (πj) — простой идеал высоты 1 в этом кольце. Он соответствует неприводи-
мой компоненте X, содержащей точку P . Остальные πj′ соответствуют другим неприводимым
компонентам, и при локализации по идеалу (πj) перейдёт в обратимые элементы. Тем самым,
υZ(πj)(f) = nj , и так как div(f) ≥ 0, то nj ≥ 0.

Посчитаем группу классов дивизоров для некоторых произведений. Например, A1 × A1 ⊂
P1 × A1 — открытое подмногообразие. Значит, имеет место точная последовательность Z →
Cl(P1 × A1)→ Cl(A1 × A1)→ 0.

Покажем, что левая стрелка всё-таки инъективна. Пусть Z = (P1×A1)\(A1×A1) = pt×A1,
и пусть Z · n = div(f) для некоторой f ∈ k(P1 × A1), n ≥ 0. Тогда f регулярна (по только что
доказанной теореме) на всём P1 × A1.

Пусть x ∈ A1, положим gx(t) = f(t, x). Это регулярная функция P1 → k, значит, она
постоянна, то есть f(t, x) = h(x). Однако f(t, x)|pt×A1 = 0, откуда h = 0. Тем самым, Cl(P1 ×
A1) = Z.

Аналогично можно вложить открыто A1 × P1 → P1 × P1. На P1 × P1 тоже нет регулярных
функций, значит, Cl(P1 × P1) = Z⊕ Z.

4.2 Дивизоры форм

Пусть X ⊂ PN — многообразие, F — форма (однородный многочлен). Определим дивизор
формы F .
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Рассмотрим неприводимое подмногообразие C ⊂ X коразмерности 1. Выберем форму G
той же степени, что и F так, чтоб G|C ̸= 0 (т.е. не обращается в 0 полностью). Рассмотрим
функцию F/G (так как это частное двух форм, это функция) и положим

υC(F )
def
= υC

(
F

G

)
.

Замечание 33. Покажем, что это определение корректно. Возьмём две формы G1 и G2, удо-
влетворяющие этим условиям, тогда

υC

(
F

G2

)
= υC

(
F

G1

)
+ υC

(
G1

G2

)
, но υC

(
G1

G2

)
= 0,

откуда мы получаем нужное.
Определим дивизор формы F как

div(F ) =
∑
C⊂X

υC(F ) · C,

где сумма, как и ранее, берётся по всем неприводимым подмногообразиям коразмерности 1. В
качестве упражнения читателям остаётся убедиться, что эта сумма финитна, как и раньше.

Пусть теперь X кривая. Тогда мы можем определить степень дивизора формы F следую-
щим образом:

deg div(F ) =
∑
C⊂X

υC(F ).

Рассмотрим две формы F1, F2 такие, что degF1 = degF2. У нас есть очевидное равенство

div(F1) = div(F2) + div

(
F1

F2

)
,

и применяя степень мы получаем, что

deg div(F1) = deg div(F2).

Это позволяет построить отображение Z → Cl(X), отправляющее в n 7→ div(F ), где F —
произвольная форма степени n. Так как отображение стреляет в Cl(X), то есть дивизоры
функций нулевые, это определение корректно.

4.3 Дивизоры на эллиптических кривых.

Для иллюстрации вычислим дивизор линейной формы на эллиптической кривой.
Эллиптическая кривая задаётся уравнением

y2 = x3 + ax+ b, a, b ̸= 0, 4a3 + 27b3 ̸= 0.

Приравнивая обе производные по x и по y к нулю, и решая полученную систему, несложно
убедиться, что эта кривая неособая.

Можно рассмотреть точку P (x1, y1) ∈ C и вычислить локальный параметр для кольца OP
(то есть образующую максимального идеала mP ). Для этого надо рассмотреть следующие два
случая20

20Но вообще данные выкладки нам не пригодятся, будет достаточно лишь то, что локальные кольца регуляр-
ны, в чём мы уже убедились, дифференцируя.
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1. Пусть y1 ̸= 0. Тогда покажем, что x − x1 — локальный параметр для кольца OP . Ясно,
что mP = (x− x1, y − y1). Попробуем получить одну образующую вместо двух.{

y2 = x3 + ax+ b

y21 = x31 + ax1 + b
=⇒ (y − y1)(y + y1) = (x− x1)(x2 + xx1 + x21 + a)

y − y1 =
(x− x1)(x2 + xx1 + x21 + a)

y + y1
.

Тогда достаточно показать, что y + y1 /∈ mP . Действительно, если y + y1 ∈ mP , тогда
y1 ∈ mP , а это возможно тогда и только тогда, когда y1 = 0 (а мы предположили, что это
не так).

2. Пусть y1 = 0, тогда локальным параметром будет y.

x31 + ax1 + b = 0 =⇒ y2 = (x− x1)(x2 + xx1 + x21 + a) =⇒ x− x1 =
y2

x2 + xx1 + x21 + a
.

Покажем, что x2 + xx1 + x21 + a /∈ mP .

x2 + xx1 + x21 + a ≡ 3x21 + a (mod mP ).

То есть 3x21 + a = 0, y1 = 0. Но это противоречит тому, что точка P (x1, y1) неособая,
а именно, тому, что у уравнения x3 + ax + b нет кратных корней. В самом деле, если
3x21 + a = 0 выполняется вместе с x31 + ax1 + b = 0, то есть многочлен зануляется вместе
со своей производной, то корень не простой, а с кратностью.

Вычислим степень дивизора линейной формы. Оказывается, что удобнее всего пересекать
эллиптическую кривую с бесконечно удалённой прямой, так что проективизируем её. Уравне-
ние проективизации

X : {y2z = x3 + axz2 + bz3},
и бесконечно удалённая точка соответствует z = 0. Такая одна — с координатами (0 : 1 : 0).

Через эту точку проходит прямая z = 0, которая и есть та пресловутая бесконечно уда-
лённая прямая. Пересечение с ней всего одно — точка P0, и чтобы найти дивизор бесконечно
удалённой прямой, надо всего лишь посчитать кратность точки P0 в этом пересечении.

Будем действовать по определению: чтобы найти дивизор формы, надо превратить эту
форму в функцию, деля на другую форму, ненулевую в рассматриваемой точке. В нашем
случае, конечно, делить будем на y. Для вычисления дивизора функции z

y , поделим уравнение
кривой на y3, получая

z

y
=

(
x

y

)3

+ a
x

y

(
z

y

)2

+ b

(
z

y

)3

.

Обозначим x/y = x1, z/y = z1. В них

z1 = x31 + ax1z
2
1 + bz31 ,

а P0 имеет координаты (0, 0). Производная по z1 в этой точке ненулевая, то есть, точка неособая
(это важно, ведь почти все результаты мы доказывали для неособых кривых).
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Локальный параметр здесь — x1, так как можно выразить

z1 =
x31

1− bz21 − ax1z1
где числитель — единица по модулю mP0 , то есть обратим в OP0 .

Итак, функция z1 имеет кратность 3 в точке P0, что и следовало ожидать — уравнение
эллиптической кривой имеет степень 3.

Тем самым, дивизор любой другой линейной формы F на данной кривой будет тоже равен 3.
В частности, если прямая F = 0 пересекает эллиптическую кривую в трёх точках, то дивизор
соответствующей формы будет просто суммой этих точек — нужно назначить трём точкам
положительные целые кратности так, чтобы сумма была равна трём, и науке известен всего
один способ сделать это.

4.4 Групповой закон для точек эллиптической кривой

Пусть X — неособая проективная кривая. Мы знаем, что в этом случае любой главный дивизор
имеет степень 0, а значит, мы можем рассмотреть отображение

Cl(X)
deg−−→ Z→ 0

и, обозначая его ядро через Cl0(X) написать короткую точную последовательность

0→ Cl0(X)→ Cl(X)
deg−−→ Z→ 0

Пусть X ⊂ P2 — эллиптическая кривая y2z = x3 + axz2 + bz3, рассмотрим отображение

φ : X → Cl0(X), P 7→ [P ]− [P0],

где P0 — это бесконечно удалённая точка21. Посредством этого отображения хочется опреде-
лить сложение точек на эллиптической кривой, перенося структуру абелевой группы с Cl0(X)
на саму кривую X. Для этого надо проверить, что φ — биекция.

Теорема 24. Отображение φ : X → Cl0(X), P 7→ [P ]− [P0] взаимно однозначно.

Доказательство. Докажем сначала вот такую лемму:

Лемма 12. Пусть X — неособая проективная кривая, на которой есть две различные точки
P ̸= Q такие, что (P −Q) — главный дивизор. Тогда X = P1.

Доказательство. Пусть P − Q = div(f). Но тогда P = div(f)0, div(f)∞ = Q. Рассмотрим
отображение X → P1, которое даёт нам расширение полей t 7→ f , k(X)/k(f) и при этом
[k(X) : k(f)] = deg div(f)0 = 1. Оно влечёт k(X) = k(f) = k(t), то есть X — рациональная
кривая.

21Точки в группе классов дивизоров мы вдруг стали брать в квадратные скобки, потому что на самой кривой
появилось сложение, и не хочется их перепутать.
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Так как мы доказывали, что эллиптическая кривая рационально не изоморфна P1, то от-
сюда следует инъективность отображения:
Инъективность. Предположим, что [P ]−[P0] = [Q]−[P0] в Cl0(X). Тогда [P ]−[Q] = 0, то есть
P − Q — главный дивизор. По доказанной лемме имеет место бирациональный изоморфизм
X ∼= P1 и мы пришли к противоречию.
Сюръективность. Рассмотрим

∑
ni[Pi] ∈ Cl0(X). Так как сумма коэффициентов равна

нулю, ∑
ni[Pi] =

∑
ni([Pi]− [P0])

Будем доказывать, что для любых ni ∈ Z∑
ni([Pi]− [P0]) = [S]− [P0] ∈ Cl0(X) (divisor)

для некоторой S ∈ X. Сначала покажем, что можно считать, что все ni > 0. Пусть некоторый
ni < 0, то есть в сумму входит [P0]− [Pi] с положительным коэффициентом. Проведём верти-
кальную прямую x = const через точку Pi на эллиптической кривой. Ей соответствует форма
x−const ·z, которая пересечёт кривую в точке Pi, в бесконечно удалённой точке, и ещё в точке,
симметричной точке Pi относительно оси абсцисс, назовём её P ′

i . Получается, в Cl0(X) имеет
место равенство

[Pi] + [P ′
i ] + [P0] = 3[P0]

из которого следует [P0]− [Pi] = [P ′
i ]− [P0]. Получается, можно привести дивизор (??) к виду,

где все ni > 0, не меняя при этом сумму модулей ni.
Теперь рассмотрим дивизор

[P1]− [P0] + [P2]− [P0] (6)

Проведём прямую через точки P1 и P2
22, то есть найдём форму, обнуляющуюся в этих

точках. Её дивизор имеет степень 3, то есть равен [P1] + [P2] + [P3] для некоторой третьей
точки P3 ∈ X. Получается,

[P1] + [P2] + [P3] = 3[P0] в Cl(X),

и дивизор ([P1]− [P0]) + ([P2]− [P0]) оказался равен дивизору ([P0]− [P3]). С отрицательными
кратностями мы уже поборолись раньше. Таким образом, дивизор в конце концов приводится
к виду [S]− [P0], чем доказывается сюръективность.

Немножко порефлексируем над тем, что мы доказали.
Чтобы сложить две точки P,Q ∈ X на эллиптической кривой, мы пишем дивизор ([P ] −

[P0])+([Q]− [P0]), и, проводя прямую через P и Q, находим точку R, такую, что дивизор равен
[P0]− [R]. Дальше R отражается относительно оси абсцисс, и получается [R′]− [P0].

Тем самым, точки на эллиптической кривой можно складывать так: для точек P1, P2 ∈ X,
рассмотрим прямую, проходящую через них. Эта прямая пересечёт эллиптическую кривую в
третьей точке, её мы симметрично отразим относительно оси абсцисс и объявим результатом
сложения то, что получилось. Однако проверить ассоциативность данного определения весьма
непросто, а наш подход позволяет это увидеть сразу.

22В случае P1 = P2 подойдёт касательная, но нужны дополнительные слова, почему это так.
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Замечание 34. Пусть U ⊂ X — аффинная часть эллиптической кривой. Имеет место точная
последовательность

Z→ ClX → ClU → 0

и как мы только что убедились, card(ClX) = card(X) = card(k). Несложно проверить, что
от выкидывания одной точки ничего не поменяется, то есть card(ClU) = |k|, а аффинное
координатное кольцо A(U) получилось дедекиндовым кольцом со сколь угодно большой по
мощности группой классов. Где вы ещё такое увидите?
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5 Приложение: альтернативное доказательство того, что степень
главного дивизора равна нулю

Данный вариант доказательства был прочитан в следующем семестре, и включён в данный
конспект просто по приколу.

5.1 План доказательства

Пусть X — неособая неприводимая проективная кривая, f ∈ k(X)∗, и предположим, что f /∈ k
(случай f ∈ k неинтересен, там div(f) = 0).

Разложим дивизор f в сумму дивизоров нулей и полюсов:

div(f) =
∑

P∈X, υP (x)>0

υP (f) · P +
∑

P∈X,υP (f)<0

υP (f) · P.

Пусть 0 = Q ∈ P1, заметим, что {P ∈ X|υP (x) > 0} = {P ∈ X|f(x) = 0} = f−1(Q).
Более того, несложно в аналогичных терминах выразить нормирования υP (f). Дело в том,
что нормирования υP на X продолжают нормирование υQ на P1, о чём немножко говорится
здесь 3.4, откуда υP (f) = e(P/Q) · υQ(t)︸ ︷︷ ︸

1

, где t ∈ k(P1) — рациональная функция координаты.

В дальнейшем мы стремимся доказать, что∑
P∈f−1(Q)

e(P/Q) = [k(X) : k(f)].

Как только мы это докажем, станет понятно, что дивизор функции – главный, так как слева
в равенстве стоит deg div(f)0. По той же причине окажется, что deg div(f)∞ = deg div(1/f)0 =
[k(X) : k(1/f)] = [k(X) : k(f)], а то, что степени дивизоров нулей и полюсов совпадают как раз
и является тем, что мы хотим доказать.

5.2 Аппроксимационная теорема. Оценка в одну сторону

Пусть K — поле.

Определение 47. Сюръективный гомоморфизм абелевых групп υ : K× → Z называют нор-
мированием на K, если ∀f, g ∈ K× : υ(f + g) ≥ min{υ(f), υ(g)}.

Если вдруг оказалось, что f + g = 0, то нельзя говорить о υ(f + g); удобно определить
υ(0) =∞, в таком случае формула останется верной.

Предложение 28. Пусть f, g ∈ K, υ(f) ̸= υ(g). Тогда υ(f + g) = min{υ(f), υ(g)}.

Доказательство. Ясно, что υ(−1) = 0, так как −1 имеет конечный порядок в K×, откуда
∀h ∈ K : υ(h) = υ(−h).

Без потери общности υ(f) < υ(g). Предположим противное: υ(f + g) > υ(f). Запишем
υ(f) = υ((f + g)− g) ≥ min{υ(f + g), υ(g)} > υ(f), получая противоречие.

Определение 48. Элемент x ∈ K× имеет нуль в υ, если υ(x) > 0.

Определение 49. Элемент x ∈ K× имеет полюс в υ, если υ(x) < 0.
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Предложение 29. Пусть K — поле, и v1, . . . , vn — различные нормирования на K. Тогда
∃x ∈ K : x имеет нуль в υ1, и полюса в остальных нормированиях.

Доказательство. Пусть сначала n = 2. Так как нормирования различны, то Oυ1 ̸= Oυ2 , тем
самым, ∃y ∈ Oυ1 \ Oυ2 , z ∈ Oυ2 \ Oυ1 . Легко проверить, что x := y

z подходит.
Теперь докажем общий случай по индукции. Согласно индукционному предположению,

∃y, z ∈ K× такие, что y имеет нуль в υ1, и полюса в υ2, . . . , υn−1, а z имеет нуль в υ1, и полюс
в υn.

Пусть m ∈ N, утверждается, что x := y+ zm подойдёт при достаточно больших m. В самом
деле υ1(y+zm) ≥ min{υ1(y),m·υ1(z)} > 0, и υk(y+zm) ≥ min{υk(y),m·υk(z)}, причём равенство
достигается в случае υk(y) ̸= m · υk(z). Понятно, что при достаточно больших m будет именно
этот случай.

Следствие 14. Рассмотрим элемент z := 1
1+xk

. Это такой элемент, что z имеет нуль
порядка хотя бы k в нормированиях υ2, . . . , υn, и z − 1 имеет нуль порядка хотя бы k в υ1.

Следствие 15. Пусть a1, . . . , am ∈ K,N ∈ N. Тогда ∃y ∈ K : υi(y − ai) ≥ N .

Доказательство. Для каждого i = 1..m выберем свой zi так, что υi(zi − 1) ≥ N , и υj(zi) ≥ N .

Теперь y :=
m∑
i=1

aizi подойдёт.

Следствие 16 (Аппроксимационная теорема). Пусть n1, . . . , nm ∈ Z — целые числа, υ1, . . . , υm
— различные нормирования на K. Тогда ∃x ∈ K× : υi(x) = ni.

Доказательство. Выберем ai так, что υi(ai) = ni, и применим предыдущее следствие для
N > n1, . . . , nm. Так как υi(y − ai) > υi(ai), то согласно 28, υi(ai) = υi(y).

Пусть E/K — конечное расширение полей, υ — нормирование на K, w — нормирование на
E.

Определение 50. Говорят, что w продолжает нормирование υ, если существует e ∈ N, назы-
ваемое индексом ветвления, такое, что ∀x ∈ K× : w(x) = e · υ(x).

Теорема 25. Пусть E/K — конечное расширение полей, υ — нормирование на K, нормиро-
вания w1, . . . , wm на E различны и продолжают υ, а соответствующие индексы ветвления
равны e1, . . . , em. Тогда e1 + . . .+ em ≤ [E : K]; в частности, возможных продолжений лишь
конечное число.

Доказательство. Согласно аппроксимационной теореме, для каждого i = 1..m можно выбрать
πi ∈ E так, что wi(πi) = 1, wj(πi) > ej .

Утверждается, что система
m⊔
i=1
{π1i , . . . , πeii } из e1 + . . .+ em элементов линейно независима

над K. Ясно, что для доказательства теоремы достаточно это проверить.

Пойдём от противного: пусть есть линейная зависимость вида
m∑
i=1

ei∑
j=1

aijπ
j
i = 0, где aij ∈ K

не все равны нулю. Так как aij можно одновременно домножать на любой элемент поля, то
можно считать, что все ненулевые aij таковы, что υ(aij) ≥ 0, причём (без потери общности)
w(a1t) = 0, и t выбрано минимально возможным.
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Перенося a1tet1 в правую часть равенства, получаем

m∑
i=2

ei∑
j=1

aijπ
j
i +

∑
j=1..e1
j ̸=t

a1je
j
1 = a1te

t
1

Применяя w1 к данному равенству, получаем противоречие — нормирование правой части
равно w1(e

t
1) = t, а нормирование суммы в левой части не меньше минимума нормирований

слагаемых. Для i > 1 : w1(aijπ
j
i ) ≥ jw1(πi) > e1, а для i = 1 пишется следующая оценка:

w1(a1jπ
j
1) = e1 · υ(a1j) + j · w1(π1)︸ ︷︷ ︸

1

,

что при j < t хотя бы e1 + j > e1 ≥ t, а при j > t — хотя бы j > t.

Следствие 17. В ситуации вложения полей, осуществляемого рациональной функцией f ,
получается ∑

P∈f−1(Q)

e(P/Q) ≤ [k(X) : k(f)],

так как ясно, что нормирования, отвечающие различным точкам X, различны.

5.3 Пространство функций, ассоциированное с дивизором. Оценка в другую
сторону

Пусть D ∈ Div(X) — произвольный дивизор на проективной неособой неприводимой кривой
X.

Определение 51. Говорят, что D неотрицательный, если он имеет вид
∑
P

nP ·P для некото-

рых nP ≥ 0. Пишут D ≥ 0.

Введём пространство функций, ассоциированное с дивизором

L(D)
def
= {f ∈ k(X)×| div(f) +D ≥ 0} ∪ {0}.

Несложно проверить, что L(D) замкнуто относительно сложения и умножения на скаляр из k.
В самом деле, если f, g ∈ L(D), то проверка того, что f + g ∈ L(D), поточечна:

∀P ∈ X :

{
υP (f) + nP ≥ 0

υP (g) + nP ≥ 0
⇒ min{υP (f), υP (g)}+ nP ≥ 0.

Теорема 26. Пространство L(D) конечномерно над k. Обозначим l(D) := dimk L(D) < ∞.
Помимо этого, утверждается, что l(D) ≤ degD + 1, если D ≥ 0.

Доказательство. Без потери общности D ≥ 0 — в противном случае надо доказать лишь
конечномерность, и понятно, что L(D) ⊂ L(D+)

23, так что можно заменить D на D+.

23Пусть D =
∑

nP · P , тогда D+
def
=

∑
max{nP , 0} · P .
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Будем действовать по индукции по degD. База — нулевой дивизор D = 0. В таком случае
L(D) — регулярные везде на X функции. Согласно 7, это только константы, откуда действи-
тельно l(D) = 1 ≤ degD + 1.

Теперь совершим переход. D ̸= 0, значит, существует точка x ∈ suppD
def
= {x ∈ X|nx ̸= 0}.

Можно записать D = r · x + D1, где x /∈ suppD1; обозначим D′ = (r − 1) · x + D1. Пусть t —
локальный параметр в точке x, то есть mx = (t).

Устроим линейное отображение L(D) → k, f 7→ (trf)(x). Не факт, что оно сюръективно,
но определено оно корректно, и его ядро равно L(D′). По индукционному предположению
dimL(D′) ≤ degD, и по теореме о размерности ядра и образа всё получается.

Замечание 35. Предположим, что равенство deg div(f)0 = [k(X) : k(f)] уже доказано. Рассмот-
рим точку x ∈ X, и соответствующий ей дивизор D = x.

Выберем f ∈ L(D) так, что f /∈ k. Если такая f нашлась, то deg div(f)∞ = 1, откуда
[k(X) : k(1/f)] = 1. Иными словами, k(X) = k(1/f), или k(X) — чисто трансцендентное
расширение X, значит, кривая X рациональна.

Но есть и нерациональные кривые, и для них получается, что l(D) = 1 при одноточечном
D = x. Просматривая доказательство, видно, что в случае нерациональной кривой утвержде-
ние можно усилить: l(D) ≤ max{degD, 1}.

Итак, пусть f ∈ k(X), f /∈ k. Обозначим n := [k(X) : k(f)], и выберем базис k(X) над k(f),
пусть он называется z1, . . . , zn. Расширение [k(X) : k(f)] алгебраично, откуда все zi алгебраич-
ны над k(f). Домножая их на подходящий элемент k(f), можем считать, что все zi целы над
k[f ], то есть каждый zi удовлетворяет полиномиальному уравнению вида

zmi + ai · zm−1
i + . . .+ a0 = 0, ai ∈ k[f ].

Пусть в точке P ∈ X: div(zi) имеет отрицательный коэффициент, то есть υP (zi) < 0. Пред-
положение υP (f) ≥ 0 влечёт противоречие, так как в этом случае υP (ai) ≥ 0, и υP выдаёт
разные результаты на левой и правой частях равенства −zmi = ai · zm−1

i + . . .+ a0. Тем самым,
υP (f) < 0, и из финитности дивизора: ∃N ∈ N : ∀M > N : div(zi) +M · div(f)∞ ≥ 0. Эту
константу N можно выбрать универсально одной для всех zi.

Осталось заметить, что
n⊔
i=1
{zi · fs}M−N

s=1 ⊂ L(M · div(f)∞). Все эти функции внутри k(X)

являются k-линейно независимыми, так как степени f s независимы внутри k[f ], а zi — базис
k(f)-векторного пространства.

В силу только что доказанной теоремы 26, (M − N) · n ≤ M · deg div(f)∞. Деля на M , и
устремляя его к бесконечности, мы получаем искомое n ≤ deg div(f)∞.
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6 Приложение: компендиум по коммутативной алгебре

В данном приложении собраны некоторые утверждения из коммутативной алгебры, на которые
опирался курс.
Лемма Накаямы

Теорема 27 (Лемма Накаямы). Пусть M — конечно порождённый R-модуль, I ⊴ R — идеал.
Предположим, что M = IM . Тогда ∃a ∈ I : ∀m ∈M am = m

Доказательство. idM (M) = IM =⇒ , а значит, по теореме Гамильтона-Кэли ∃p(t) = tn +
αn−1t

n−1 + . . .+ α0, αi ∈ I : p(idM ) = 0. Тогда

idM (1 + αn−1 + . . .+ α0) = 0 =⇒ idM (−(αn−1 + . . .+ α0)) = 1.

Тогда a = −(αn−1 + . . .+ α0) подходит. В самом деле,

am = idM (m) = m ∀m ∈M.

Предложение 30. В частности, если A — локальное кольцо, m ⊴ A — максимальный идеал,
а M — конечно порождённый A-модуль, то mM =M ⇐⇒ M = 0.

Доказательство. Помимо того, что это прямое следствие предыдущего (с одной стороны, в
локальном кольце a − 1 обратимо, с другой стороны ∀m ∈ M : (a − 1)m = 0), это можно
доказывать и независимо.

А именно, пусть M = span{m1, . . . ,mk}, где k выбрано наименьшим. Согласно посылке

предложения,m1 ∈ m·span{m1, . . . ,mk}, то естьm1 =
k∑
i=1

miαi, где αi ∈ m. Отсюдаm1(1−α1) =

k∑
i=2

miαi, и сокращая на 1−α1, получаем, что систему образующих модуля можно уменьшить.

Предложение 31. Пусть A — локальное кольцо, m ⊴ A — максимальный идеал, и имеется
набор xi ∈ m таких, что (x1, . . . , xk) = m/m2. Тогда (x1, . . . , xk) = m.

Доказательство. Рассмотрим модуль M = m/(x1, . . . , xk). По лемме Накаямы

M = 0 ⇐⇒ mM =M ⇐⇒ m2 + (x1, . . . , xk) = m,

что как равносильно тому, что (x1, . . . , xk) — система образующих m/m2.

Теорема о подъеме и теорема о спуске

Теорема 28 (О спуске). Пусть A ⊂ B — целостные, включение — целое расширение колец, и
A — целозамкнуто. Пусть qm ∈ SpecB, pm ∈ SpecA — простые, причём qm ∩ A = pm. Тогда
для любой цепочки простых идеалов

p0 ⊂ p1 ⊂ . . . ⊂ pm ⊂ A

существует цепочка простых идеалов

q0 ⊂ q1 ⊂ . . . ⊂ qm ⊂ B : qi ∩A = pi.
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Целые и конечные расширения

Теорема 29. Пусть R ⊂ A — целое (конечное) включение колец, и φ : R→ B — гомоморфизм
колец. Тогда B → A⊗R B — тоже целое (конечное) включение колец.

• В частности, для всякой мультипликативной системы S ⊂ A: S−1R ⊂ S−1A цело
(конечно).

• В частности, для всякого идеала I ⊴ R: гомоморфизм R/I → A/IA цел (конечен)24.

• Как следствие предыдущего, для всякого идеала I ⊴ A: R/(I ∩R) ⊂ A/I цело (конечно).

Теорема 30. Пусть R ⊂ A — целое (конечное) включение областей целостности. Тогда R
поле если и только если A — поле.

Теорема 31 (Лемма Нётер о нормализации). Пусть B — конечно-порожденная k-алгебра.
Тогда B — конечное расширение кольца многочленов k[x1, . . . , xn] для некоторого n.

Теорема 32 (Сохранение размерности при целом расширении). Пусть A ⊂ B — целое вклю-
чение колец. Тогда dimA = dimB.

Теорема Гильберта о нулях

Теорема 33 (Теорема Гильберта о нулях, (strong) nullstallensatz). Пусть k = kalg, I ⊴ F [t1, . . . , tn],
а f ∈ k[x1, . . . , xn]. Тогда f(Z(I)) = 0⇔ f ∈

√
I. Иными словами, I(Z(I)) =

√
I.

Теорема 34 (Слабая теорема Гильберта о нулях, weak nullstallensatz). Пусть k = kalg, m ⊴
F [t1, . . . , tn] — максимальный идеал. Тогда ∃a1, . . . , an ∈ k : m = (x1 − a1, . . . , xn − an).

Теория размерности.

Теорема 35 (Теорема Крулля о главных идеалах, hauptidealsatz). Пусть A — нётерово коль-
цо, а f ∈ A — элемент, не являющийся ни делителем нуля, ни обратимым. Тогда высота
каждого минимального простого идеала p, содержащего f равна 1. Т.е.

∀p ∈ SpecA : (f) ⊂ p ht p = 1.

24В данном случае гомоморфизм R/I → A/IA не обязан быть инъективным, поэтому включение внезапно
поменялось на морфизм. Суть та же — A/IA будет цело (конечно) над образом R/I внутри себя.
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