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1 Дивизоры
Лекция 1, 15 февраля 2025 г.

1.1 Группа классов и нормальные кольца
Пусть X — неприводимое многообразие, у которого «мало» особых точек. Формально, предполо-
жим, что коразмерность множества неособых точек — хотя бы 2. Из этого условия следует, что для
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всякого подмногообразия Y ⊂ X коразмерности 1 его локальное кольцо OY — дискретно нормиро-
ванное кольцо; в этом мы убедились в предыдущем семестре.

Сама группа дивизоров
Div(X) =

⊕
Y :codimX Y=1

Z

не особенно интересна, так как она очень велика: подмногообразий коразмерности 1 очень много.
Чтобы побороться с этой проблемой, можно отфакторизовать группу дивизоров Div(X) по подгруп-

пе главных дивизоров PDiv(X) =

{
div(f) =

∑
Y

υY (f) · Y
∣∣∣∣ f ∈ k(X)

}
, то есть дивизоров функций.

Перефразируем это на язык коммутативной алгебры. Пусть X — неприводимое аффинное мно-
гообразие, A = k[X]. В этом случае замкнутые неприводимые многообразия соответствуют про-
стым идеалам высоты 1. Группа дивизоров естественно отождествляется с

⊕
p:ht(p)=1

Z. Регулярные

функции на многообразии соответствуют элементам его аффинной k-алгебры A, рациональные —
элементам поля частных A. При этом дивизор функции f ∈ A — это сумма

∑
p:ht(p)=1

υp(f) · p, где υp

— дискретное нормирование на Ap.

Определение 1.1. Нормальным называется целостное кольцо A, целозамкнутое в своём поле част-
ных K. Иными словами, ∀x ∈ K: если xn + an−1x

n−1 + . . .+ a0 = 0 для ai ∈ A, то x ∈ A.

Пример 1.2. Всякое факториальное кольцо нормально: доказательство абсолютно аналогично до-
казательству для Z.

Теорема 1.3. Пусть A — нётерова область целостности. A факториальна ровно тогда, когда A
нормальна, и Cl(A) = 0.

Группа классов корректно определена в случае нормального кольца: ∀p ⊴ A : Ap — нормаль-
ное нётерово кольцо размерности 1, то есть кольцо дискретного нормирования. Таким образом,
утверждение из правой части равносильности имеет смысл.

Доказательство.

Лемма 1.4. Пусть A — нётерова область целостности. A факториальна тогда и только тогда, когда
любой простой идеал высоты 1 — главный.

Доказательство. Если A факториально, а ht(p) = 1, то мы прошлом семестре мы уже доказывали,
что p — главный.

Пусть теперь кольцо нётерово. Для доказательства факториальности проверим, что всякий
неприводимый элемент прост. А именно, пусть π ∈ A — неприводимый элемент. Мы будем про-
верять, что (π) — простой идеал.

Рассмотрим минимальный простой идеал p ∋ π, по теореме Крулля его высота 1. Посылка
леммы утверждает, что p = (a) для некоторого a ∈ A. Но так как π ∈ (a), то ∃b ∈ A : ab = π. В силу
неприводимости π, один из множителей обратим. Но a обратимым являться не может, так как (a)
— простой, а не единичный идеал. Тем самым, b обратим, и (π) = (ab) = (a).

⇒ Нормальность факториального кольца, как уже говорилось, проверяется тривиально. Прове-
рим, что группа классов нормального кольца нулевая. Достаточно проверить, что все порож-
дающие дивизоры {p} — главные. Это следует из леммы: в факториальном кольце ∃f ∈ A :
p = (f).

Давайте убедимся, что div(f) = {p}. В самом деле, единственный простой идеал, содержащий
f — это p, так как простые идеалы высоты 1 не могут содержаться один в другом. Более того,
p = (f), откуда f будет образующей и в соответствующем локальном кольце, то есть υp(f) = 1.

⇐ Доказательство в другую сторону сложнее.

Для любой области целостности A легко показать равенство A =
⋂
Ap (пересечение берётся в

поле частных A), где p пробегает все простые, или даже только все максимальные идеалы A:

Доказательство. В самом деле, в одну сторону ясно, что A ⊂
⋂
Ap. Обратно, пусть x ∈

⋂
Ap.

Для всякого максимального идеала m элемент x представим в виде am/sm, где am ∈ A и
sm ∈ A \ m. Тем самым, идеал (sm)m∈Specm(A) не лежит ни в одном максимальном идеале,
то есть единичный. Иными словами, можно найти такие cm, почти все нули, что

∑
m
smcm =
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1. Складывая равенства xsm = am с коэффициентами cm, мы выражаем x =
∑
m
amcm, что

показывает x ∈ A.

Можно провести аналогию данного доказательства с доказательством того, что любая регу-
лярная функция на аффинном многообразии — элемент его аффинной алгебры.

Нам понадобится следующее усиление этого факта:

Предложение 1.5. Пусть A — нормальное кольцо. Тогда A =
⋂

p:ht(p)=1

Ap.

Доказательство.
Лемма 1.6. Пусть A — нётерово кольцо, M — A-модуль, 0 ̸= m ∈M . Тогда ∃x ∈M :

Ann(m) ⊂ Ann(x), причём Ann(x) — простой идеал. Здесь, как обычно, Ann(m)
def
=

{a ∈ A|am = 0} — идеал, аннулирующий m.

Доказательство. Рассмотрим всевозможные x ∈ M \ {0} такие, что Ann(m) ⊂
Ann(x). Выберем среди них такой x, что Ann(x) — максимально возможный (хо-
тя бы один есть: x = m). Он существует в силу нётеровости: в множестве идеалов
{Ann(x)} есть максимальные элементы.

Проверим, что Ann(x) — простой идеал. Пусть ab ∈ Ann(x). Если b /∈ Ann(x), то
bx ̸= 0, откуда мы получаем, что Ann(bx) ⊃ Ann(x). Но abx = 0, откуда a ∈ Ann(bx),
и по максимальности Ann(x) : a ∈ Ann(x). Тем самым, Ann(x) прост по определению
(Ann(x) — собственный идеал, так как x ̸= 0).

Лемма 1.7. Пусть A — нётерова область целостности, x ∈ K = Frac(A). Предпо-
ложим, что для любого простого идеала p вида (a : b) (a, b ∈ A) оказывается, что
x ∈ Ap. Тогда x ∈ A. Здесь, как обычно, (a : b)

def
= {c ∈ A|cb ∈ (a)} — частное идеалов

(a) и (b).

Доказательство. Представим x в виде дроби x = c/a, где c, a ∈ A. Если c делится
на a, то доказывать нечего. Иначе c /∈ (a), рассмотрим A-модуль A/(a), и элемент
c в нём. По предыдущей лемме ∃b ∈ A/(a) : Ann(c) ⊂ Ann(b), и Ann(b) прост. По
определению, p = Ann(b) = (a : b).

В силу посылки, x ∈ Ap, то есть ∃s /∈ p : xs ∈ A. Отсюда выходит, что cs ∈ (a), то
есть s ∈ (a : c) ⊂ (a : b) = p, противоречие.

В силу этой леммы, A =
⋂

p:p=(a:b)

Ap. Тем самым, достаточно проверить, что для всякого идеала

p = (a : b) идеал pAp — главный. В самом деле, отсюда по теореме Крулля будет следовать,
что pAp — высоты 1, откуда p — тоже высоты 1.

Итак, пусть p = (a : b). Локализуя, получаем, что pAp = (a : b) в локализации. Тем самым,
можно считать, что A — локальное, с максимальным идеалом p. Рассмотрим дробный идеал
p−1 def

= {x ∈ K|xp ⊂ A}. Это некоторый A-подмодуль K, и их произведение pp−1 (то есть A-
подмодуль K, натянутый на все произведения xy, где x ∈ p, y ∈ p−1) заключено между p и A.
Так как p — максимальный идеал в A = Ap, то либо pp−1 = p, либо pp−1 = A.

– Предположим, что pp−1 = p. Пусть ω1, . . . , ωn — образующие p, как идеала, и x ∈ p−1 —
произвольный элемент. Произведение xωi лежит в p, и, следовательно, раскладывается

по системе образующих: xωi =
m∑
j=1

aijωj . Иными словами,


a11 − x a12 . . . a1n

a21 a22 − x
...

...
. . .

...
an1 . . . . . . ann − x



ω1

ω2

...
ωn

 = 0
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Получается, матрица слева вырождена, то есть её определитель нулевой. Это равенство
показывает, что x цел над A, а из нормальности (здесь мы ей пользуемся первый и по-
следний раз) x ∈ A, и по произвольности x: p−1 ⊂ A. Ясно, что p−1 = A

Теперь применим, что p = (a : b). bp ⊂ (a) ⇒ b
ap ⊂ A ⇒ b

a ∈ p−1 = A ⇒ (a : b) = (1). Но p
— простой идеал, противоречие.

– Теперь предположим, что pp−1 = (1). В частности, ∃r ∈ p−1 : rp ⊈ p, и по максимальности
p : rp = (1). Деля на r, мы получаем p = r−1A, то есть и правда, p — главный идеал,
порождённый элементом r−1.

Воспользуемся тем, что всякий простой дивизор — главный, то есть ∀p : ht(p) = 1 ⇒ {p} =
div(f), где f ∈ K×. В силу (1.4), достаточно показать, что всякий такой идеал p — главный,
будем доказывать, что p = (f).

Можно считать, что f лежит не в поле частных, а именно в кольце: условия υq(f) ≥ 0 для
всех q высоты 1 вместе с (1.5) означают, что f ∈ A. Более того, так как υp(f) > 0, то f ∈ p.
Аналогично проверим, что f — образующая: пусть g ∈ p, рассмотрим дробь g/f . Тут тоже
получается, что ∀q : ht(q) = 1 ⇒ υq(g/f) ≥ 0 (надо отдельно рассмотреть два случая q = p и
q ̸= p).

Данная теорема позволяет понимать, в каком случае нормальное кольцо факториально. Для
вычисления группы классов кольца можно записывать точные последовательности. В прошлом
семестре мы записывали для пары (U,X) (где U — открытое подмножество X) точную последова-
тельность ⊕

Zi

Z → ClX → ClU → 0,

где Zi — неприводимые компоненты X \ U коразмерности 1.
Аналогичные последовательности можно записывать и непосредственно для колец, или же поль-

зоваться техникой алгебраической геометрии, отождествляя группы классов кольца и многообра-
зия.

Пример 1.8. Можно рассмотреть кольцо k[x0, . . . , xn]/(x20+ . . .+x2n). При маленьких n это кольцо
не факториально:

0. При n = 0 оно даже не является редуцированным: x0 лежит в нильрадикале, и о факториаль-
ности кольца, не являющегося целостным, говорить не приходится.

1. При n = 1 это кольцо — не область целостности: (x0 + ix1)(x0 − ix1) = 0.

2. При n = 2 кольцо уже целостно, но идеал задаёт соотношение x20 + x21 = −x22. Раскладывая
части на множители, получаем (x0+ix1)(x0−ix1) = −x2 ·x2, и можно доказать, что множители
из левой части неприводимы, и не ассоциированы с множителями из правой части.

3. При n = 3 соотношение x20 + x21 = −x22 − x23 подсказывает два различных разложения на
простые множители: (x0 + ix1)(x0 − ix1) = −(x2 + ix3)(x2 − ix3). Тут тоже можно доказать,
что это напрямую противоречит факториальности.

4. При n ≥ 4, аналогичных соотношений не видно. Оказывается, это кольцо факториально, и
для этого можно использовать только что доказанную теорему.

Доказательство пункта 4. Пусть X — квадрика в An+1, задаваемая уравнением x20+x
2
1+. . .+x

2
n =

0. Линейной заменой можно свести дело к уравнению x20+x
2
1+. . .+xn−1xn = 0. Вообще говоря, такая

поверхность особая, но особенность только в начале координат и у неё большая коразмерность.
Рассмотрим U = {xn ̸= 0}; X \ U = {xn = 0}. Заметим, что координатное кольцо X \ U имеет

вид k[x0, . . . , xn]/(x20 + . . . + xn−1xn, xn) = k[x0, . . . , xn−1]/(x
2
0 + . . . + x2n−2), что является областью

целостности при n ≥ 4. Значит, X \ U — простой дивизор в X, то есть точная последовательность
для U имеет вид

Z → Cl(X) → Cl(U) → 0

В свою очередь, координатное кольцо U будет иметь вид

k[x0, . . . , xn]/(x20 + . . . x2n−2 + xn−1xn)(xn)
∼= k[x0, . . . , xn−2, xn, x

−1
n ],
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а это кольцо факториально (как локализация факториального кольца). Отсюда Cl(U) = 0. До-
кажем, что отображение Z → Cl(X) нулевое. Иными словами, надо показать, что дивизор X \ U
главный. Докажем, что C = X \ U = div(xn). Для этого показать, что

υC(xn) = 1, ∀D ̸= C υD(xn) = 0.

Второе равенство очевидно. Первое также понятно, так как идеал (xn) ⊂ k[x0, . . . , xn]/(x20 + . . . +
x2n−2+xn−1xn) простой, в этом убеждались выше. Значит, когда мы переходим к локальному кольцу,
этот идеал остаётся простым и главным, что и требовалось.

Посчитаем Cl(X ×A1). Имеется естественная проекция X ×A1 → X, с которой связан морфизм
Cl(X) → Cl(X×A1). Чтобы его построить, устроим сначала отображение дивизоров: многообразию
Z ⊂ X коразмерности 1 сопоставим его прообраз Z×A1, и продолжим по линейности до морфизма
DivX → Div(X × A1). При нём главные дивизоры переходят в главные: рациональной функции

f : X 99K k соответствует композиция X × A1 → X
f
99K k, корректно определённая, так как X ×

A1 → X сюръективна, и, в частности, доминантна. Тем самым, корректно определён морфизм
Cl(X) → Cl(X × A1), оказывается, он инъективен и сюръективен.

Также можно разбираться с X × Pn. X × An — открытое подмножество X × Pn, и, значит, есть
точная справа последовательность Z → Cl(X × Pn) → Cl(X × An) → 0. Оказывается, она точна и
слева тоже, причём к тому же расщепляется.

Упражнение 1.9. Докажите, что Cl(X) ∼= Cl(X × A1), и что Cl(X × Pn) ∼= Z⊕ Cl(X).

1.2 Дивизоры Картье
Лекция 2, 22 февраля 2025 г.

Пусть X — неособое неприводимое многообразие, DivX — соответствующая группа дивизоров Вей-
ля.

Сейчас мы определим ещё одну группу дивизоров, которая будет иметь смысл для любого мно-
гообразия, необязательно неособого, а на неособых многообразиях будет совпадать с группой диви-
зоров Вейля.

Для этого вспомним, что на неособом многообразии локально всякий дивизор — главный, то
есть для D ∈ Div(X):

∀x ∈ X ∃U ∋ x : D
∣∣∣
U
= div(f) для некоторой f ∈ k(U)×.

Тем самым, имеется некоторое покрытие X =
⋃
Ui, и набор функций {fi} ⊂ k(Ui)

×, для которо-
го D|Ui

= div(fi). Безусловно, это накладывает на fi некоторое условия. А именно, fi не равны
тождественно нулю в Ui и есть согласованность на пересечениях:

div(fi) = div(fj) в Ui ∩ Uj =⇒ fi
fj

∈ k[Ui ∩ Uj ]
×.

Соответственно, систему (Ui, fi)i∈I , где {Ui}i∈I — покрытие X, fi ∈ k(Ui)
× и fi · f−1

j ∈ k[Ui ∩ Uj ]
×

будем называть согласованной.
Чуть позже мы увидим, что на гладком многообразии всякая согласовання система функций

также определяет дивизор Вейля и две системы (Ui, fi) и (Vj , gj) задают один и тот же дивизор
тогда и только тогда, когда выполнено условие

div(fi)
∣∣∣
Ui∩Vj

= div(gj)
∣∣∣
Ui∩Vj

⇝ div

(
fi
gj

) ∣∣∣
Ui∩Vj

= 0 =⇒ fi
gj

∈ k[Ui ∩ Vj ]×

Можно естественно завести экивалентность на согласованных системах покрытий: две систе-
мы покрытий {(Ui, fi)} и {(Vj , gj)} многоообразия X, эквивалентны, если fi/gj ∈ k[Ui ∩ Vj ]× для
всех i, j. Можно заметить, что требование согласованности — это как раз то, что каждая система
эквивалентна себе.

Упражнение 1.10. Проверьте, что это действительно отношение эквивалентности.

Определение 1.11. Пусть X — неприводимое многообразие. Класс эквивалентности согласован-
ных систем покрытий {(Ui, fi)} (т.е. fi ∈ k(Ui)

× и fi/fj ∈ k[Ui∩Uj ]
×) относительно описанного выше

отношения эквивалентности называется дивизором Картье, или локально главным дивизором.

5



Множество дивизоров Картье будем обозначать Ca(X); это обозначение имеет смысл для любого
многообразия X, необязательно неособого.

Как и дивизоры Вейля, дивизоры Картье образуют группу. Сумму дивизора (Ui, fi) и дивизо-
ра (Vj , gj) определим как дивизор, заданный системой (Ui ∩ Vj , fi · gj). Это разумно, так как для
дивизоров Вейля div(fi) + div(gj) = div(figj).
Замечание 1.12. По-хорошему, здесь надо проверять корректность, но мы этим заниматься не будем,
это более или менее ясно.

Предложение 1.13. Пусть X — неособое многообразие. Тогда Div(X) ∼= Ca(X).

Доказательство. Выше уже было описано, как по дивизору Вейля получить дивизор Картье, и
понятно, что данный процесс — гомоморфизм абелевых групп. Построим стрелку в обратную сто-
рону.

Пусть D = {(Ui, fi)} — дивизор Картье, построим по нему дивизор Вейля D′ =
∑

C nC ·C. Пусть
нашлось такое i, что C ∩ Ui ̸= ∅, тогда положим nC := υC(fi).

Это определение не зависит от выбора окрестности Ui, так как если помимо Ui подмногообразие
C пересекается еще и с некоторым Uj , то в силу неприводимости C мы имеем C ∩ Ui ∩ Uj ̸= ∅. А
так как есть согласованность на пересечениях, υC(fi/fj) = 0 =⇒ υC(fi) = υC(fj).

Теперь проверим что сумма получится конечной. Это достаточно проверять локально, то есть
в одной окрестности Ui, так как в X \ Ui содержится лишь конечное замкнутых неприводимых
подмногообразий коразмерности 1. Без потери общности Ui аффинно (в любом случае её можно
уменьшить до аффинной окрестности), а с аффинной ситуацией мы уже разбирались в первой
части курса: если A = k[Ui], то подмногообразия коразмерности 1 соответствуют простым идеалам
высоты 1. Ненулевой коэффициент будет приписан тем, которые содержат fi ∈ k[Ui]. Но это в
точности минимальные идеалы в кольце k[Ui]/(fi), и их конечное число, как минимальных идеалов
в нётеровом кольце.

Из построения видно, что эти стрелки взаимно обратны.

На дивизорах Картье также определяется группа классов дивизоров Картье

CaCl(X)
def
= Ca(X)/CaPDIV(X),

где CaPDIV(X) — подгруппа главных дивизоров Картье, то есть дивизоров Картье вида {(Ui, f)}
(где функция f ∈ k(X) одна и та же).

1.3 Обратный образ дивизора
Пусть φ : X → Y — морфизм неприводимых многообразий, и D ∈ Div(Y ). Когда можно определить
«прообраз» дивизора φ∗(D)?

Предположим сначала, что D — простой дивизор, то есть D ⊂ Y — просто подмногообразие
коразмерности 1. Его теоретико-множественный прообраз φ−1(D) — какое-то замкнутое множество
в X, но при отсутствии каких-то данных об отображении φ ничего не известно про его неприводи-
мость, а также коразмерность. Скажем, может случиться так, что φ−1(D) = X.

Здесь и далее мы будем считать, что X и Y неособые. Сначала предположим, что φ — доми-
нантное отображение. В этом случае φ(X) плотно в Y и не содержится ни в каком собственном
замкнутом множестве.

Тогда определим отображение так:

φ∗ : Ca(Y ) → Ca(X), {(Ui, fi)} 7→ {(φ−1(Ui), φ
∗(fi))} = {(φ−1(Ui), fi ◦ φ)} ∈ Ca(X).

Замечание 1.14. Видно, что при таком отображении главные дивизоры переходят в главные и,
соответственно, у нас также индуцируется отображение на группах классах.

Теперь рассмотрим общий случай.
Так как мы хотим задавать всё через локальные системы, естественно сначала научиться от-

вечать на такой вопрос: когда мы можем определить пуллбек ненулевой рациональной функции
f ∈ k(Y ) и когда он не равен нулю тождественно на X.

Пусть f ∈ k(Y )×, предположим, что f регулярна и не равна нулю в некоторой точке y = φ(x)
для какой-то x ∈ X. Тогда мы можем сделать то, что хотим. Действительно, множество

V := {y ∈ Y |f регулярна в y, причём f(y) ̸= 0} .
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открыто и непусто; и x ∈ φ−1(V ), то есть φ−1(V ) также открыто и непусто.
На V функция f регулярна, значит φ∗(f) — регулярная и не равная нулю тождественно1 на

φ−1(V ) функция. Так как φ−1(V ) открыто, φ∗(f) определяет рациональную функцию на X. Введём
теперь такое вспомогательное определение.

Определение 1.15. Пусть f ∈ k(Y ). Её носитель — это множество, где она зануляется или не
определена, то есть

supp(f) = {y ∈ Y |f(y) = 0 или f не регулярна в y} .

Замечание 1.16. Это определение совсем не совпадает с определением из анализа, где

supp(f) = {y ∈ Y |f(y) ̸= 0}.

Пример 1.17. Пусть f ∈ k(A2), f(x0, x1) =
x0

x1
. Здесь supp(f) = {x1 = 0} ∪ {x2 = 0}. Отметим, что

в точке (0, 0) функция имеет существенную особенность — не нуль и не полюс.

Как мы видели выше, чтоб определить прообраз рациональной функции, нам нужна хотя бы
одна точка y ∈ φ(X), в которой функция f регулярна и не равна нулю. В терминах нового опреде-
ления это означает, что нам достаточно, чтоб было выполнено условие

φ(X) ̸⊂ supp(f).

Лемма 1.18. В описанном выше контексте supp(f) = supp div(f).

Доказательство. Чтобы проверить равенство двух замкнутых множеств, достаточно это делать
локально, в аффинных окрестностях. В частности, можно считать, что Y — аффинное многообра-
зие.

Включение supp(f) ⊂ supp div(f). Разберём два случая

1. Предположим, что f(y) = 0. Ещё сужая окрестность Y , мы можем считать, что f ∈ k[Y ]. Раз
f(y) = 0, то f ∈ my для максимального идеала my ⊴ k[Y ]. Рассмотрим минимальный простой
идеал p ∋ f , содержащийся в m. По теореме Крулля ht(p) = 1. Так как f ∈ p, то vp(f) > 0,
то есть подмногообразие C, отвечающее простому идеалу p, входит в div(f) с положительным
коэффициентом. При этом p ⊂ my, то есть y ∈ C.

2. Пусть теперь f не регулярна в y. Кольцо Oy факториально, значит, в поле частных имеет
место f = α · πk1

1 · . . . · πkn
n , ki ∈ Z. Так как f /∈ Oy, то хотя бы один из неприводимых

множителей в разложении f входит в отрицательной степени: без потери общности, k1 < 0.
Идеал (π1) ⊴ Oy — простой идеал высоты 1 в факториальном кольце. Как простой идеал в
локализации, (π1) имеет вид pAm для некоторого простого p ⊴ A = k[Y ]. Так как p имеет
высоту 1, то ему соответствует нормирование vp. Локализуя по p, мы заключаем из тождества
f = α · πk1

1 · . . . · πkn
n , что vp(f) = k1 < 0.

Включение supp(f) ⊃ supp div(f). Тоже придётся разобрать два случая.

1. Предположим, что для некоторого простого дивизора C выполняется υC(f) < 0, y ∈ C. Пусть
Y соответствует аффинной алгебре k[Y ] = A, точка y — максимальному идеалу my ⊂ A, а
C — простому идеалу p ⊂ A высоты 1; p ⊂ my.

Покажем, что f не определена в y. Действительно, если f(y) определено, то f ∈ OY,y = Amy
⊂

Ap, то есть υC(f) = υp(f) ≥ 0.

2. Теперь рассмотрим второй случай, когда υC(f) > 0. Пусть f определена в y, тогда f ∈ Oy =
Amy

. Предположим, что f /∈ myAmy
, тогда она обратима. Но тогда при включении Amy

⊂ Ap

она остаётся обратимой, то есть υC(f) = υp(f) = 0, что безусловно противоречит тому, что
υC(f) > 0. Итак, f ∈ myAmy , то есть f(y) = 0.

Лекция 3, 1 марта 2025 г.
Следующее предложение показывает, что в нашем контексте, предполагая для дивизора D вы-

полнение условия φ(X) ̸⊂ supp(D), мы в самом деле можем определить обратный образ дивизора
D.

1Более того, нигде.
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Предложение 1.19. Рассмотрим морфизм φ : X → Y и пусть C — дивизор на Y , причём φ(X) ̸⊂
supp(C). Пусть C задан согласованной системой (Ui, fi). Рассмотрим такой i, что φ(X) ∩ Ui ̸= ∅.
Тогда φ(X) ∩ Ui ⊈ supp(fi).

Доказательство. Предположим, что φ(X) ∩ Ui ⊂ supp(fi). Тогда

φ(X) ∩ Ui ⊂ supp(fi) ∩ Ui = suppdiv(fi) ∩ Ui ⊂ supp(C). (∗)

Так как X неприводимо, то φ(X) неприводимо, и раз φ(X) ∩ Ui ̸= ∅, то оно там плотно. Тем
самым, φ(X) = φ(X) ∩ Ui.

Замыкая части включения (∗), получаем φ(X) ⊂ supp(C), что противоречит предположению.

Из предложения наконец следует, что для всех Ui, которые пересекаются с φ(X), рациональные
функции φ∗(fi) ∈ k(X) определены и образуют согласованную систему относительно покрытия
открытыми множествами φ−1(Ui).

Определение 1.20 (Обратный образ дивизора). Пусть φ : X → Y — морфизм неприводимых
многообразий, а D — дивизор на Y , заданный согласованной системой {(Ui, fi)}, причём φ(X) ̸⊂
supp(D). Тогда для всех Ui, которые пересекаются с φ(X) определены Vi = φ−1(Ui). Множества Vi
открыты и образуют покрытие X и, соответственно, а {(Vi, φ∗(fi))} образуют согласованную систе-
му, определяющую некоторый дивизор на X. Полученный дивизор мы будем называть обратным
образом / pull-back’ом2 дивизора D и обозначать φ∗(D).

В частности, если φ(X) плотно в Y , определён обратный образ любого дивизора D ∈ Div(Y ) и
мы имеем гомоморфизм групп:

φ∗ : Div(Y ) → Div(X),

так как если D,D′ ∈ Div(Y ) заданы системами {(Ui, fi)} и {(Vj , gj)}, то D +D′ задаётся системой
{(Ui ∩ Vj , fi · gj)} и по нашему определению φ∗(D +D′) = φ∗(D) + φ∗(D′).

При таком определении ясно, что φ∗(div(f)) = div(φ∗(f)) (главный дивизор задаётся системой
функций fi = f), то есть у нас есть и корректное индуцированное отображение

φ∗ : Cl(Y ) → Cl(X), [D] 7→ [φ∗(D)]

Оказывается, что если φ(X) ⊂ supp(D), то всегда существует линейно эквивалентный дивизор
D′ ∼ D для которого φ(X) ̸⊂ supp(D′). Значит, при построении отображения на группах классов,
мы сможем избавиться от предположения про φ(X) ̸⊂ supp(D) (и определить его всегда).

Теорема 1.21. Пусть X — гладкое многообразие, x1, . . . , xm ∈ X — конечный набор точек, и
D ∈ Div(X) — дивизор. Тогда существует дивизор D′ ∼ D такой, что xi /∈ supp(D′) для всех xi.

Доказательство. Мы можем полагать D простым, а многообразие аффинным. Действительно, до-
казав утверждение для простых дивизоров далее можно применить его к каждой компоненте. Ре-
дукцию к аффинному случаю мы сделаем позже.

Аффинный случай. Будем вести индукцию по количеству точек; рассмотрим x1, . . . , xm, xm+1 ∈
X; по индукционному предположению мы можем полагать, что x1, . . . , xm /∈ supp(D). Пусть A =
k[X] — аффинная алгебра многообразия X. Для всех 1 ≤ j ≤ m выберем функцию gj ∈ A так, что

• gj |D = 0,

• gj(xi) = 0, если i ̸= j, 1 ≤ i ≤ m+ 1.

• gj(xj) ̸= 0.

Такую функцию gj можно найти, так как {xj} и {xi}i ̸=j ∪D — не пересекающиеся замкнутые (есть
функция, разделяющая точки).

Мы полагаем, что xm+1 ∈ supp(D), так как иначе доказывать нечего. Пусть π ∈ A — локальное
уравнение D в окрестности xm+1, то есть D|U = div(π)|U , где U — окрестность xm+1.

Рассмотрим функцию

f = π +

m∑
j=1

αjg
2
j , αj ∈ k, αj ̸= − π(xj)

gj(xj)2
, ⇝ f(xj) = π(xj) + αjgj(xj)

2 ̸= 0 при 1 ≤ j ≤ m.

2От староанг. оттяг.
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Заметим, что так как gj |D = 0, а xm+1 ∈ D, в локальном кольце Oxm+1
мы имеем

m∑
j=1

αjg
2
j = π2 · h⇝ f = π(1 + πh) ∈ Oxm+1

.

Пусть D соответствует p ∈ SpecA и m = mxm+1 , тогда p ⊂ m и pAm = πAm. Так как π ∈ mxm+1 , то
1+πh ∈ A×

m, а значит pAm = fAm, и f также является локальным уравнением для D в окрестности
xm+1.

Обозначим эту окрестность через V ∋ xm+1, D|V = div(f)|V . Рассмотрим теперь дивизор

D′ = D − div(f).

Он подходит: в V , окрестности xm+1: D′|V = 0.
Кроме того, при 1 ≤ j ≤ m по построению xj /∈ supp(div(f)) = supp(f), и по индукционному

предположению xj /∈ supp(D). Значит, при 1 ≤ j ≤ m имеем xj /∈ supp(D′).

Проективный случай. Пусть X ⊂ Pn. Рассмотрим такую гиперплоскость H, что все xj /∈ H.
Иными словами, все xj ∈ X \H ⊂ Pn \H. Так как Pn \H аффинное, а X \H = U — его замкнутое
подмножество, X \H также аффинное. Применяя первый пункт доказательства, мы найдём такой
дивизор D′ = D + div(f), что все xj /∈ supp(D′|U ), но так как все xj /∈ H, отсюда следует, что все
xj /∈ supp(D′).

Квазипроективный случай. Пусть X — проективное, а U ⊂ X — открытое подмножество.
Пусть D ∈ Div(U), тогда найдётся такой D1 ∈ Div(X), что D1|U = D. По предыдущему пункту мы
найдём D′

1 = D1 + div(f) ∈ Div(X) такой, что xi /∈ supp(D′
1), тогда уж тем более xi /∈ supp(D′

1|U ) =
supp(D + div(f |U )).

Заметим, что из предложения очевидно следует нужное нам. Действительно, пусть мы хотим
взять пуллбек класса [D] ∈ Cl(Y ), выберем представитель D и предположим, что случилось так,
что φ(X) ⊂ supp(D). Тогда возьмём x1 ∈ φ(X) и найдём D′ ∼ D такой, что x1 /∈ supp(D′). Тогда
φ(X) ̸⊂ supp(D′), как мы и хотели и мы можем определить отображение как [D] = [D′] 7→ [φ∗(D′)].

Доказательство корректности построенного отображения φ∗ : Cl(Y ) → Cl(X). Предположим, что
D′ ∼ D, D′′ ∼ D и φ∗(D′) и φ∗(D′′) определены. Но тогда, так как D′ ∼ D′′, имеем D′′ = D′+div(f).
Заметим, что в этом случае определён пуллбек дивизора div(f). Действительно, supp div(f) ⊂
supp(D′) ∪ supp(D′′), так что

φ(X) ⊂ supp(div(f)) ⊂ supp(D′) ∪ supp(D′′),

откуда по неприводимости мы получаем противоречие с тем, что прообразы D′ и D′′ определены.
Значит, φ∗(div(f)) определён и мы имеем

φ∗(D′′) = φ∗(D′) + φ∗(div(f)) = φ∗(D′) + div(φ∗(f)) =⇒ [φ∗(D′′)] = [φ∗(D′)].

Итак, мы построили отображение обратного образа на группах классов:

Cl(Y )
φ∗

−−→ Cl(X).

Это естественно наводит на мысль о том, что Cl — это функтор из категории неособых неприво-
димых многообразий в категорию абелевых групп. Для понимания этого нам осталось проверить,
что композиция морфизмов переходит в композицию.

Для этого сначала докажем такую лемму:

Лемма 1.22. Пусть φ : X → Y — морфизм, а такой C — простой дивизор на Y , что φ(X) ̸⊂ C =
supp(C). Тогда suppφ∗(C) = φ−1(C).

Доказательство. Выберем точку x ∈ X. φ(x) ∈ Y , и так как Ui — покрытие, то без потери общности
φ(x) ∈ U1.

Если x ∈ φ−1(C), то φ(x) ∈ U1 ∩ C = C|U1
= supp(f1) ∩ U1. Так как дивизор C ≥ 0, каж-

дая функция fi регулярна на своём Ui. Получается, φ(x) ∈ supp(f1) ∩ U1 эквивалентно условию
f1(φ(x)) = φ∗(f1)(x) = 0, что равносильно x ∈ φ−1(U1) ∩ supp(φ∗(C)).
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Доказательство того, что композиция переходит в композицию. Теперь покажем, что компози-
ция морфизмов переходит в композицию отображений групп классов. Рассмотрим

X
ρ−→ Y

π−→ Z.

Возьмём D ∈ Div(Z) и выберем D′ ∼ D так, чтоб (π ◦ ρ)(X) ̸⊂ supp(D′). Тогда, в частности,
π−1(supp(D′)) ̸= Y , то есть определён π∗(D′) ∈ Div(Y ). Пусть

D′ =
∑

siCi, Ci — простой; π∗(D′) =
∑

kiEi, Ei — простой.

Тогда имеем
Ei ⊂ supp(π∗(D′)) ⊂

⋃
j

supp(π∗(Cj)) =
⋃
π−1(Cj).

Значит, так как Ei — неприводимый, имеем включение Ei ⊂ π−1(Cj) для некоторого j. В частности,
Ei ⊂ π−1(suppD′). Так как ρ−1(π−1(suppD′)) ̸= X, в частности и ρ−1(Ei) ̸= X, то есть определены
ρ∗(Ei), а значит и ρ∗(π∗(D′)).

Пусть дивизору D′ соответствует система (Ui, fi). Так как мы убедились, что все пуллбеки опре-
делены, то дальше всё просто:

• Дивизору π∗(D′) соответствует система (π−1(Ui), fi ◦ π);

• Дивизору ρ∗(π∗(D′)) соответствует система (ρ−1(π−1(Ui)), fi ◦ π ◦ ρ);

• Дивизору (π ◦ ρ)∗(D′) соответствует система ((π ◦ ρ)−1(Ui), fi ◦ π ◦ ρ);

Последние две системы очевидно совпадают.

Домашнее задание 1.23. Пусть V ⊂ Pn — неособое проективное неприводимое многообразие,
dimV ≥ 1. Пусть X = C(V ) ⊂ An+1 — его аффинный конус, а X ⊂ Pn+1 — его проективное
замыкание. Пусть P = (0 : 0 : . . . : 0 : 1) ∈ Pn+1, рассмотрим отображение

π : X \ P → V, (x0 : x1 : . . . : xn+1) 7→ (x0 : x1 : . . . : xn)

1. Доказать, что существует такое покрытие V =
⋃
Ui, что диаграмма

π−1(Ui) Ui × A1

Ui

∼

коммутативна.

2. Доказать, что π∗ : Cl(V ) → Cl(X \ P ) = Cl(X) — мономорфизм.

3. Пусть U0 = V ∩ {x0 ̸= 0}, V \ U0 =
⋃
Vj . Предположим, что нам известно, что codimVj = 1.

Пусть
(X \ P ) \ π−1(U0) =

⋃
j

π−1(Vj)︸ ︷︷ ︸
неприв.

.

Доказать, что имеет место следующая коммутативная диаграмма с точными строками:⊕
j

Z Cl(X \ P ) Cl(π−1(U0)) 0

⊕
j

Z Cl(V ) Cl(U0) 0

π∗ π∗

Из неё вывести сюръективность π∗.
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2 Основы теории пересечений
Лекция 4, 15 марта 2025 г.

2.1 Индексы пересечения
Здесь мы следуем книге «Основы алгебраической геометрии» Шафаревича, глава IV «индексы пе-
ресечения». В отличие от неё, мы не будем использовать гомологическую алгебру, а коммутативную
алгебру будем использовать лишь в небольших объёмах.

ПустьX — неособое неприводимое многообразие, предположим, что dimX = n. ПустьD1, . . . , Dn

— дивизоры на X (здесь существенно, что их столько же, какова размерность X). Рассмотрим точку
x ∈ X. Будем говорить, что D1, . . . , Dn находятся в общем положении в точке x, если

1. x ∈
n⋂

i=1

suppDi, и также

2. существует окрестность U точки x, такая что {x} = U ∩
n⋂

i=1

suppDi.

Теперь пусть D1, . . . , Dn — просто набор дивизоров.

Определение 2.1. Будем говорить, что дивизоры D1, . . . , Dn находятся в общем положении, если
для любого k от 1 до n и любого k-элементного подмножества S ⊂ {1, . . . , n} всякая компонента
пересечения

⋂
i∈S

suppDi имеет размерность n− k.

Замечание 2.2. Иными словами, для любого подмножества S ⊂ {1, . . . , n}, размерность всякой
компоненты

⋂
i∈S

suppDi минимально возможна.

А именно, пусть D1, . . . , Dk ∈ Div(X) — произвольные дивизоры. Покажем, что коразмерность

всякой компоненты пересечения
k⋂

i=1

suppDi не меньше n− k.

Для этого рассмотрим ситуацию локально: пусть U — аффинная окрестность, и в ней Di =
div(fi). Ясно, что Z(f1, . . . , fk) = (D1 ∩ . . . ∩Dk)|U , откуда неприводимые компоненты пересечения
(D1∩ . . .∩Dk)|U соответствуют минимальным простым идеалам над (f1, . . . , fk). По теореме Крулля
каждый такой идеал имеет высоту не более k, и, значит, отвечает подмногообразию размерности
хотя бы n− k.

Замечание 2.3. В частности, если выбрать S = {1, . . . , n}, то отсюда следует, что в любой точке x

пересечения
n⋂

i=1

suppDi дивизоры Di находятся в общем положении3.

Определение 2.4 (Индекс пересечения D1, . . . , Dn в точке x). Предположим, что все D1, . . . , Dn

эффективны (они имеют вид Di =
∑
kijCj , где Cj — простые дивизоры, и kij > 0).

Пусть x ∈ X удовлетворяет одному из условий:

• D1, . . . , Dn находятся в общем положении в точке x,

• x /∈
n⋂

i=1

suppDi

Определим индекс (кратность) пересечения (D1, . . . , Dn)x дивизоров D1, . . . , Dn в точке x как
размерность линейного пространства dimk(Ox/(f1, . . . , fn)), где каждое fi — локальное уравнение
Di в окрестности точки x (оно возникает из представления этих дивизоров дивизорами Картье).

Проверим корректность этого определения:

1. Проверим, что пространство Ox/(f1, . . . , fn) конечномерно, то есть индекс пересечения коне-
чен.

Для этого заметим, что Z(f1, . . . , fn) = x, и поэтому
√

(f1, . . . , fn) = mx ⊂ Ox. Из нётерово-
сти кольца Ox следует, что для некоторого r ∈ N: mr

x ⊂ (f1, . . . , fn) ⊂ mx. Таким образом,
достаточно доказать, что Ox/m

r
x конечномерно над k для данного целого числа r > 0.

3Обратное, вообще говоря, неверно: например, можно рассмотреть систему из трёх дивизоров на P1 × P2, где
D1 = D2 = {0} × P2, и D3 = {1} × P2, здесь 0, 1 ∈ P1 — какие-то произвольные точки. Пересечение носителей этих
дивизоров пусто, однако размерность suppD1 ∩ suppD2 не равна 1.
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Но это почти очевидно: у нас есть фильтрация mr
x ⊂ mr−1

x ⊂ . . . ⊂ mx ⊂ Ox, а каждый её
последовательный фактор наделён структурой k = Ox/mx-векторного пространства, и конеч-
нопорождён, поскольку mx конечнопорождён (так как Ox нётерово).

2. Теперь покажем, что индекс пересечения в точке не зависит не зависит от выбора локальных
уравнений.

Фактически, если (f ′1, . . . , f
′
n) — другой набор локальных уравнений для D1, . . . , Dn, то для

всех f ′i существует gi ∈ O×
x , такой что f ′i = fi · gi, и поэтому даже векторное пространство в

определении индекса пересечения то же самое.

Сделаем несколько простых наблюдений.

Рассмотрим случай, в котором x /∈
n⋂

i=1

Di. Тогда Z(f1, . . . , fn) = ∅ в окрестности точки x, поэтому

в локальном кольце мы имеем (f1, . . . , fn) = (1), и индекс пересечения в точке x равен нулю, что
вполне логично, так как x не принадлежит пересечению.

Теперь рассмотрим следующий по простоте случай: (D1, . . . , Dn)x = 1, что эквивалентно тому,
что (f1, . . . , fn) = mx, или что f1, . . . , fn — система локальных параметров в Ox. По лемме Накаямы,
это эквивалентно тому, что f1, . . . , fn — базис mx/m

2
x (напомним, что n = dimX).

Теперь предположим, чтоD1, . . . , Dn не обязательно эффективны. В этом случае можно предста-
вить их в виде Di = D′

i −D′′
i , где D′

i и D′′
i оба эффективны и не имеют общих простых дивизоров.

Соотвественно, для произвольных дивизоров D1, . . . , Dn определим их кратность пересечения по
полилинейности:

(D1, . . . , Dn)x
def
= (D′

1 −D′′
1 , . . . , D

′
n −D′′

n)x =
∑

0≤k≤n

∑
(i1,...,in)
i1<...<ik

ik+1<...<in

(−1)n−k(D′
i1 , . . . , D

′
ik
, D′′

ik+1
, . . . , D′′

in)x

Здесь, вообще говоря, надо проверять корректность, а именно, почему это число не зависит от
представления Di в виде разности D′

i−D′′
i . Она следует из варианта теоремы 2.5 для эффективных

дивизоров (саму теорему в полной общности мы использовать не можем, так как она фактически
уже использует определение индекса пересечения дивизоров; однако доказательство 2.3, разумеется,
показывает этот факт для эффективных дивизоров).

Теперь мы сформулируем некоторые основные теоремы теории пересечений без доказательств.
Далее мы посмотрим на их приложения, а после уже докажем.

Теорема 2.5 (Аддитивность индекса пересечения). Предположим, что две системы дивизоров
(D1, . . . , Dn−1, D

′
n) и (D1, . . . , Dn−1, D

′′
n) обе находятся в общем положении в точке x. Тогда

(D1, . . . , Dn−1, D
′
n +D′′

n)x = (D1, . . . , Dn−1, D
′
n)x + (D1, . . . , Dn−1, D

′′
n)x

Теорема 2.6 (Moving lemma). Пусть D1, . . . , Dn — дивизоры. Тогда существуют D′
1, . . . , D

′
n, такие

что Di ∼ D′
i (их разность — главный дивизор), и также D′

1, . . . , D
′
n находятся в общем положении.

При этом можно построить такие D′
i, что D′

1 = D1.

Определение 2.7. Предположим, что D1, . . . , Dn находятся в общем положении. Определим их
индекс пересечения как сумму индексов пересечения по всем точкам:

(D1, . . . , Dn)
def
=
∑
x∈X

(D1, . . . , Dn)x.

Следующая теорема говорит нам, что на самом деле индекс пересечения зависит лишь от класса
линейной эквивалетности дивизора.

Теорема 2.8. Предположим, чтоX — неособое проективное многообразие, а две системы дивизоров
(D1, . . . , Dn) и (D′

1, . . . , D
′
n) обе находятся в общем положении. Предположим, что Di ∼ D′

i. Тогда
(D1, . . . , Dn) = (D′

1, . . . , D
′
n).

Последние две теоремы позволяют нам построить корректное полиаддитивное отображение

ClX × . . .× ClX︸ ︷︷ ︸
n

→ Z, ([D1], . . . , [Dn]) 7→ (D1, . . . , Dn).
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А именно, рассмотрим набор [D1], . . . , [Dn]. По второй теореме, существуют D′
1, . . . , D

′
n в общем

положении, такие что D′
i ∼ Di. Третья теорема утверждает, что индекс (D′

1, . . . , D
′
n) корректно

определён в том смысле, что он не зависит от выбора D′
i. Наконец, из первой теоремы следует

полиаддитивность только что определённого отображения:

Следствие 2.9 (Из Теоремы 2.5). Пусть X — проективное многообразие. Тогда индекс пересечения
полиаддитивен: (D1 +D′

1, D2, . . . , Dn) = (D1, D2, . . . , Dn) + (D′
1, . . . , Dn).

Доказательство. Пусть
D1 =

∑
j

kjCj и D′
1 =

∑
j

k′jCj ,

где некоторые kj и k′j могут быть нулями, но всего имеется конечное число Cj .
Выберем D̃2, . . . , D̃n такие, что D̃i ∼ Di и также системы (D1, D̃2, . . . , D̃n) и (D′

1, D̃2, . . . , D̃n) обе
находятся в общем положении.

А именно, чтобы найти такие D̃2, . . . , D̃n, применим теорему 2.6 к системе
∑
j

Cj , D2, . . . , Dn.

Ясно, что

suppD1 ∩
n⋂

i=2

supp D̃i ⊂
⋃
j

suppCj ∩
n⋂

i=2

supp D̃i,

и поэтому любая компонента пересечения любого подмножества носителей D1, D̃2, . . . , D̃n имеет
минимально возможную размерность. Согласно замечанию 2.2, это означает, что D1, D̃2, . . . , D̃n

находятся в общем положении. Аналогично с D′
1, D̃2, . . . , D̃n.

Теперь, поскольку все наборы дивизоров находятся в общем положении, применима теорема 2.5:

(D1 +D′
1, D2, . . . , Dn) = (D1, D̃2, . . . , D̃n) + (D′

1, D̃2, . . . , D̃n),

что и требовалось доказать.

2.1.1 Теорема Безу

Пусть X = Pn. Рассмотрим дивизоры форм F1, . . . , Fn степеней d1, . . . , dn соответственно, предпо-
ложим, что они находятся в общем положении.

Как мы знаем, Cl(Pn) = Z, а порождающая группы — класс [H] ∈ ClPn любой гиперплоскости
H. Поэтому [div(Fi)] = di · [H] ∈ ClPn.

По полилинейности

(div(F1), . . . ,div(Fn)) = (d1[H], . . . , dn[H]) = d1 · . . . · dn([H], . . . , [H]),

и остается вычислить индекс пересечения ([H], . . . , [H]).
Для этого поместим гиперплоскости в общее положение, а именно, пусть Hi = {xi = 0}. То-

гда H1 ∩ . . . ∩ Hn = {(1 : 0 : . . . : 0)} = {P}. Перейдем к локальным координатам, то есть
рассмотрим аффинную карту {x0 ̸= 0} ∼= An. Локальное кольцо в точке P — это k[An]P =
k[x1, . . . , xn](x1,...,xn), и локальное уравнение Hi — это xi. Таким образом, индекс пересечения равен
dimk(

(
k[x1, . . . , xn](x1,...,xn)

)
/(x1, . . . , xn)) = 1.

Таким образом, мы доказали следующую теорему:

Теорема 2.10 (Bézout). Пусть F1, . . . , Fn — формы степеней d1, . . . , dn на Pn. Предположим, что
система уравнений 

F1 = 0
...
Fn = 0

имеет конечное число решений. Тогда это число, посчитанное с кратностями, составляет d1 · . . . ·dn4.
4Эта теорема должна быть верна и в сформулированном виде. Однако в курсе мы приводим доказательство только

более узкого случая — когда дивизоры div(F1), . . . , div(Fn) находятся в общем положении при нашем определении.
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2.2 Теорема Безу и алгебры с делением над R
Пусть R — вещественные числа. R можно рассматривать, как одномерное тело над R; разумеется,
оно коммутативно и ассоциативно. Далее имеется двумерное тело над R — тело комплексных чисел
C. Также имеется алгебра кватернионов H с базисом {1, i, j, k} над R, умножение в которой опреде-
лено тождествами i2 = j2 = k2 = ijk = −1, и тем, что оно ассоциативно (но уже не коммутативно).
Это позволяет записать таблицу умножения

· 1 i j k

1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

Следующая размерность, в которой имеется алгебра с делением — 8, в этой размерности содержится
алгебра октонионов O, dimR O = 8.

2.2.1 Октонионы

В отличие от кватернионов, алгебра октонионов даже не ассоциативна. Для того, чтобы определить
умножение в алгебре октонионов, представим её как удвоение кватернионного тела: O = {q1 + q2e |
q1, q2 ∈ H}. Здесь e — формальный символ. Фактически, O = ⟨1, e⟩H.

Используя кватернионное сопряжение

w + xi+ yj + zk = w − xi− yj − zk,

определим умножение

(q1 + q2e)(r1 + r2e)
def
= (q1r1 − r2q2) + (r2q1 + q2r1)e.

Определим также октонионное сопряжение тождеством q1 + q2e = q1 − q2e. В таком случае для
любого октониона u = q1 + q2e можно записать величину uu:

(q1 + q2e)(q1 − q2e) = (q1q1 + q2q2) + (−q2q1 + q2q1)e = q1q1 + q2q2 ∈ R

Более того, это число не только вещественное, но и положительное, так как q1q1 = w2+x2+y2+z2,
где q = w + xi + yj + zk. По аналогии с кватернионами, квадратный корень из данного числа uu
называют нормой октониона u, и обозначают |u|.

Упражнение 2.11.

• Докажите, не раскрывая чудовищного количества скобок, что ∀q1, q2, r1, r2 ∈ H:

r2q1r1q̄2 + q2r̄1q̄1r̄2 − q1r1q̄2r2 − r̄2q2r̄1q̄1 = 0

• Докажите мультипликативность нормы: ∀u, v ∈ O: |u · v| = |u| · |v|.

• Докажите, что ∀u, v ∈ O: имеет место в некотором смысле ослабленная ассоциативность:

(uv)v = u(vv) v(vu) = (vv)u (uv)v = u(vv) v(vu) = (vv)u

• Докажите, что октонионы образуют алгебру с делением: ∀a, b ∈ O: если a ̸= 0, то уравнение
ax = b имеет (единственное) решение, и уравнение xa = b тоже имеет (единственное) решение.
Замечание 2.12. Требование единственности можно опустить: для любого a ∈ O можно рас-
смотреть линейное отображение O → O, x 7→ ax. Это R-линейный эндоморфизм конечно-
мерного пространства, и он инъективен ровно тогда, когда сюръективен. При этом инъектив-
ность означает единственность, а сюръективность — существование решения соответствующе-
го уравнения для всех b ∈ O.
Обозначим за φa оператор умножения на a слева, а за ψa — умножения на a справа. Можно
заметить, что φa инъективен для всех ненулевых a ∈ O, если и только если ∀c ∈ O: ac =

0 ⇐⇒

[
a = 0

c = 0
. Но это — то же условие, что и инъективность ψc для всех ненулевых c ∈ O.

Подытожим эти условия в предложение ниже.
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Определение 2.13 (A — алгебра над полем R). A — R-линейное пространство; умноже-
ние mult : A × A → A, (a, b) 7→ ab — R-линейный оператор, выполнена дистрибутивность
(∀a, b, c ∈ A: a(b + c) = ab + ac и (a + b)c = ac + bc) и аксиома алгебры ∀α ∈ R,∀b, c ∈ A:
b(αc) = (αb)c = α(bc).

Предложение 2.14. Пусть A — конечномерная алгебра над полем R. Следующие условия
эквивалентны:

1. ∀x, y ∈ A : xy = 0 ⇐⇒

[
x = 0

y = 0

2. ∀a ∈ A \ {0}: φa : x 7→ ax инъективно.

3. ∀a ∈ A \ {0}: φa : x 7→ ax сюръективено.

4. ∀a ∈ A \ {0}: φa : x 7→ ax биективно.

5. ∀a ∈ A \ {0}: ψa : x 7→ xa инъективно.

6. ∀a ∈ A \ {0}: ψa : x 7→ xa сюръективено.

7. ∀a ∈ A \ {0}: ψa : x 7→ xa биективно.

Определение 2.15 (Алгебра с делением). Алгебра A, в которой выполнено любое из равно-
сильных условий предложения.

Базисом октонионов над R являются базинсые буквы {1, i, j, k} и {e, ie, je, ke}. Обозначим последние
буквами E, I, J,K соответственно.

Оказывается, таблица умножения для октонионов выглядит следующим образом:

I

J

K

i

j

k

E

Чтобы ей воспользоваться, например, перемножить k и E, надо взять прямую (или окружность),
проходящую через них, и результатом будет третья буква на этой кривой с точностью до знака. При
этом знак определяется следующим образом: если перемножаемые буквы идут подряд по порядку,
обозначаемому стрелкой, то результат получается с плюсом, а если подряд против порядка — то с
минусом (картинку следует представлять в проективной плоскости, так что за k идёт E, дальше
K, затем снова k).

Например, kE = K, но Ek = −K, или, скажем, KE = −k, а kK = −E.

Упражнение 2.16. Проверить, что C является удвоением R, а H — удвоением C, где сопряжения
— тождественное отображение и комплексное сопряжение соответственно.

Естественно спросить, что получится при удвоении октонионов. К сожалению, алгебры с де-
лением уже не получится — получатся секстенионы S = O ⊕ Os, в которых уже есть делители
нуля.

2.2.2 Теорема Безу для Pn × Pm

Лекция 5, 22 марта 2025 г.
Пусть на Pn × Pm введены координаты ((x0 : . . . : xn), (y0 : . . . : ym)).
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Как мы помним, Cl(Pn×Pm) = Z⊕Z. Выберем у неё образующие (1, 0) и (0, 1), соответствующие
классам гиперплоскостей E = [{x0 = 0}] ⊂ Pn и F = [{y0 = 0}] ⊂ Pm. Рассмотрим систему дивизо-
ров D1, D2, . . . , Dn+m ∈ Div(Pn × Pm), тогда [Di] = kiE + ℓiF . Вычислим их индекс пересечения:

(D1, D2, . . . , Dn+m) = (k1E + ℓ1F, . . . , kn+mE + ℓn+mF ) =

=
∑

i1<...<in,j1<...<jm
все i∗ и j∗ попарно различны

ki1ki2 . . . kinℓj1ℓj2 · . . . · ℓjm = N,

так как
(E, . . . , E︸ ︷︷ ︸

n штук

;F, . . . , F︸ ︷︷ ︸
m штук

) = 1.

Докажем это. Действительно, выберем представителей {xi = 0}, 1 ≤ i ≤ n для E и {yj = 0}, 1 ≤ j ≤
m для F . Пересечение всех этих гиперплоскостей — одна точка P = ((1 : 0 : . . . : 0); (1 : 0 : . . . : 0)) и
нам достаточно посчитать индекс пересечения в ней. Перейдём в аффинную карту {x0 ̸= 0, y0 ̸= 0}
с центром в точке P , там она будет нулём. Координаты в этой карте записываются как(

x1
x0
, . . . ,

xn
x0
,
y1
y0
, . . . ,

ym
y0

)
= (z1, . . . , zn+m);

соотвественно, локальные уравнения для наших гиперплоскостей — это просто {zi = 0}.
Тогда наша точка 0 соответствует максимальному идеалу m и ясно, что

(E, . . . , E︸ ︷︷ ︸
n штук

;F, . . . , F︸ ︷︷ ︸
m штук

)P = dimk(k[z1, . . . , zn+m]m/(z1, . . . , zn+m)) = 1,

так как эта факторалгебра — это просто k.

Рассмотрим теперь конкретный случай, когда эффективный Di — дивизор однородного много-
члена Fi(x0, . . . , xn, y1, . . . , ym), где degx Fi = ki,degy Fi = ℓi.

Теорема 2.17 (Теорема Безу для Pn × Pm). Пусть Fi ∈ k[x0, . . . , xn, y0, . . . , ym] — биоднородные
многочлены степени degx Fi = ki,degy Fi = ℓi. Предположим, что дивизоры Di = div(Fi) находятся
в общем положении5. Тогда число решений (посчитанное с кратностями) равно.∑

i
i1<...<in,j1<...<jm

все i∗ и j∗ попарно различны

ki1ki2 . . . kinℓj1ℓj2 · . . . · ℓjm = N

Нам также пригодится частный случай теоремы Безу над R (которое не алгебраически замкну-
то).

Теорема 2.18. В контексте выше рассмотрим пространство Pn
C×Pm

C , но предположим, что формы
Fi имеют вещественные коэффициенты. Предположим, что число

N :=
∑

i1<...<in,j1<...<jm
все i∗ и j∗ попарно различны

ki1ki2 . . . kinℓj1ℓj2 · . . . · ℓjm

нечётное. Тогда система {Fk = 0}1≤k≤n+m имеет вещественное решение. Здесь не предполагается,
что все дивизоры div(Fi) находятся в общем положении.

Доказательство. Случай 1. Предположим сначала, что все дивизоры Di = div(Fi) в общем поло-
жении. Предположим, что [Di] = ki[E] + ℓi[F ], где E — гиперплоскость в Pn

C, F — гиперплоскость
в Pm

C . Заметим, что если (x, y) ∈ Pn
C × Pm

C — решение системы
F1(x, y) = 0
...
Fn+m(x, y) = 0

,

5Аналогично теореме Безу для Pn (2.10), эта теорема должна быть верна и при более слабой посылке — лишь
когда число решений системы конечно. Однако в курсе мы приводим доказательство только этого случая.
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то так как коэффициенты уравнений вещественные, (x, y) — тоже решение. Соответственно, для лю-
бой точки (x, y), которая является решением, мы имеем (D1, . . . , Dn+m)(x,y) = (D1, . . . , Dn+m)(x,y),
так как

(D1, . . . , Dn+m)(x,y) = dimk
(
O(x,y)/(f1, . . . , fn+m)

)
= dimk

(
O(x,y)/(f1, . . . , fn+m)

)
где fi — локальное уравнение для Di в окрестности (x, y). Действительно, пусть (x, y) = ((x0 : x1 :
. . . xn); (y1 : . . . : ym)) и не умаляя общности x0 ̸= 0 и y0 ̸= 0; пусть U = {x0 ̸= 0, y0 ̸= 0}.

Di|U = div

(
Fi

xn0y
m
0

)
,

а значит, сопряжение g 7→ g(·) осуществляет изоморфизм

O(x,y)/(f1, . . . , fn+m)
·−→ O(x,y)/(f1, . . . , fn+m).

Тогда мы имеем
(D1, . . . , Dn+m) ≡

∑
x∈Pn

R×Pm
R

(D1, . . . , Dn+m)x (mod 2)

откуда следует нужное.
Случай 2. Теперь разберёмся, как свести ситуацию к случаю дивизоров общего положения.

Рассмотрим формы
F̃i = Fi + εri(x)

kisi(y)
ℓi ,

где ε ∈ R, ri и si — вещественные линейные формы, deg ri = ki, deg si = li. Зафиксируем ε ̸= 0.
Покажем, что ri и si можно выбрать так, что дивизоры div(F̃i) в общем положении, и коэффициенты
ri и si — вещественны, и ограничены (скажем, не превышают 1 по модулю).

Выберем r1 и s1 так, что F̃1 ̸= 0, ясно, что это можно сделать.
Будем строить rk и sk последовательно индукцией по k так, чтоб все компоненты пересечений⋂

i∈S supp div(F̃i) имели коразмерность |S|, где S ⊂ {1, . . . , k}. Покажем, как сделать первый шаг.
Предположим, что

supp div(F1) =
⋃
Pj , Pj — неприводимые компоненты.

Выберем по точке pj ∈ Pj , и выберем r2 и s2 так, чтоб ни одна из pj не была решением F̃2(x, y) =
F (x, y) + εr2(x)s2(y) = 0. Так как ε ̸= 0, то ясно, что так можно сделать. При этом

supp div(F̃1) ∩ supp div(F̃2) =
⋃
P ′
j , P ′

j ⊊ Pj .

Так как P ′
j ⊂ Pj — собственное замкнутое подмножество, dimP ′

j < dimP ′, откуда коразмерность
каждой компоненты supp div(F̃1) ∩ supp div(F̃2) будет равна двум. Общий шаг делается также, но
надо аккуратно проследить за коразмерностями пересечений всех подмножеств множества дивизо-
ров.

А именно, предположим, что мы добились того, что для любого S ⊂ {1, . . . , k}: коразмерность
каждой компоненты

⋂
i∈S supp div(F̃i) равна |S|. Пусть⋂

i∈S

supp div(F̃i) =
⋃
P

(S)
j , codim

(
P

(S)
j

)
= |S|,

Рассмотрим коллекцию точек, выбрав по точке из каждой компоненты: p(S)
j ∈ P

(S)
j ; выберем rk+1 и

sk+1 так, чтоб ни одна pj не была решением F̃k+1(x, y) = Fk+1(x, y)+εrk+1(x)sk+1(y) = 0. Все компо-
ненты

⋂
i∈S∪{k+1} supp div(F̃i) строго содержатся в соответствующих компонентах

⋂
i∈S supp div(F̃i),

и, значит, имеют коразмерность |S|+ 1.
Обозначим Fi,ε = F̃i. У нас есть модифицированная система

F1,ε = 0

F2,ε = 0
...
Fn+m,ε = 0

. (⋆)
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При всех ε ̸= 0 дивизоры этих форм находятся в общем положении, при этом degFi = degFi,ε =
(ki, ℓi). Следовательно, если

N =
∑

i1<...<in,j1<...<jm
все i∗ и j∗ попарно различны

ki1ki2 . . . kinℓj1ℓj2 · . . . · ℓjm

нечётно, то по первому пункту доказательства система (⋆) будет иметь вещественное решение Pε =
(x0,ε : . . . : xn,ε; y0,ε : . . . : ym,ε) ∈ Pn

R × Pm
R . Так как Pn

R × Pm
R компактно, мы можем выбрать

подпоследовательность εj → 0 так, чтоб Pεj → P ∈ Pn
R × Pm

R .
По непрерывности мы имеем F1(P ) = F2(P ) = . . . = Fn+m(P ) = 0, так как Fi,ε →

ε→0
Fi (для этого

мы выбирали коэффициенты ri и si ограниченными).

Теперь применим это знание к вопросу об алгебрах с делением над R.

Теорема 2.19. Пусть A — алгебра с делением над R и dimRA = n. Тогда n = 2k.

Доказательство. Выберем базис e1, . . . , en алгебры A над R. Предположим, что xy = 0 для неко-
торых x, y ∈ A. Пусть x = x1e1 + . . .+ xnen, y = y1e1 + . . .+ ynen. Тогда

xy =
∑

1≤i,j≤n

xiyjeiej =
∑

1≤i,j≤n

xiyj

(∑
k=1

cijkek

)
, где eiej =

∑
k=1

cijkek.

Поменяем порядок суммирования:

=
∑

1≤i,j≤n

xiyj

(∑
k=1

cijkek

)
=

n∑
k=1

 ∑
1≤i,j≤n

cijkxiyj

ek = 0.

Так как ei — базис, отсюда мы получаем систему уравнений из n биоднородных уравнений (отно-
сительно xi и yj): ∑

1≤i,j≤n

cijkxiyj = 0, 1 ≤ k ≤ n.

Соотвественно, естественно рассматривать эту систему в Pn−1×Pn−1 с координатами (x1, . . . , xn, y1, . . . , yn)
6

Рассмотрим любое 1 ≤ r ≤ n и предположим, что xr+2 = . . . = xn = 0. Симметрично, предположим,
что yn−r+2 = . . . = yn = 0. Тогда мы имеем систему относительно оставшихся переменных

Fi(x1, . . . , xr+1, 0, 0, . . . , 0, y1, . . . , yn−r+1, 0, . . . , 0) = 0. (∗∗)

Это уже система в пространстве Pr × Pn−r, размерность которого равна в точности n. Так как
в нашем случае ki = ℓj = 1 для всех i и j, мы имеем

N =
∑

i1<...<ir,j1<...<jn−r

все i∗ и j∗ попарно различны

1 =

(
n

r

)
.

Соответственно, если существует 1 ≤ r ≤ n−1 такой, что
(
n
r

)
нечётный, то по предложению 2.18

система (∗∗) имеет нетривиальное решение. Но это означает, что в алгебре A есть делители нуля.
Так как в A делителей нуля нет, мы получаем, что каждый биномиальный коэффициент

(
n
r

)
, где r

пробегает от 1 до n− 1, чётен. Доказательство завершит следующее элементарное утверждение:

Лемма 2.20. Следующие два условия эквивалентны:

1. Для всех натуральных k = 1, . . . , n− 1 биномиальный коэффициент
(
n
k

)
чётный.

2. n — степень двойки.
6Да, тут мы нумеруем их с единицы, а не с нуля как обычно.
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Доказательство леммы. Рассмотрим многочлен (x+ 1)n над F2. Пункт 1 равносилен тому, что

(x+ 1)n = xn + 1 ∈ F2[x].

Пусть n = 2se, где e ≡ 1 (mod 2). Тогда, так как над F2 для любого многочлена выполнено равенство
f(x)2 = f(x2), мы имеем

(x+ 1)2
se =

(
x2

s

+ 1
)e

= x2
se + ex2

s(e−1) + . . . ̸= xn + 1,

если e > 1.

2.3 Доказательство аддитивности индекса пересечения
Определение 2.21. ПустьA— коммутативное кольцо. Последовательность элементов {a1, . . . , an} ⊂
A называется регулярной78, если для всех i в промежутке 0 ≤ i ≤ n−1 класс ai+1 ∈ A/(a1, a2, . . . , ai)
не является делителем нуля.

В частности, a1 ∈ A — не делитель нуля.

Пример 2.22. Например, в случае A = k[x1, . . . , xn] последовательность {x1, . . . , xn} является
регулярной, так как

k[x1, . . . , xn]/(x1, . . . , xi) = k[xi+1, . . . , xn].

Но, например, в A = k[x] последовательность {x(x − 1), x} не является регулярной, так как x
будет делителем нуля в k[x]/(x(x− 1)).

Предложение 2.23. Пусть (A,m) — нётерово локальное кольцо, a, b ∈ m. Предположим, что
последовательность {a, b} регулярна. Тогда последовательность {b, a} также регулярна.

Доказательство. По предположению a не является делителем нуля в A, а b — делителем нуля
в A/(a). Докажем сначала, что b не является делителем нуля в A. Предположим, что bc = 0 и
покажем, что отсюда следует, что c = 0.

Сначала покажем, что c ∈
⋂∞

k=1(a
k). Из этого всё следует, так как для a ∈ m,

∞⋂
k=1

(ak) ⊂
∞⋂
k=1

mk = 0 ∈ A;

факт про пересечение степенй максимального идеала был доказан в прошлом семестре.
Пусть c = akx для некоторого k. Тогда akbx = 0, а так как ak не является делителем нуля,

отсюда bx = 0. Так как b не является делителем нуля в A/(a), отсюда имеем, что x ∈ A/(a), то есть
x ∈ (a), значит c ∈ (ak+1). Индукция по k показывает, что c ∈

⋂∞
k=1(a

k).
Теперь докажем, что a не является делителем нуля в A/(b). Предположим, что ad = 0 ∈ A/(b).

Тогда ad = be ∈ A, и так как b — не делитель нуля в A/(a), то

e = af =⇒ a(d− bf) = 0 =⇒ d = bf =⇒ d = 0 ∈ A/(b).

Замечание 2.24. На самом деле, результат о том, что
⋂∞

k=1(a
k) = 0 в локальном кольце, можно вы-

вести просто из леммы Накаямы, не пользуясь тем, что в нётеровом локальном кольце
⋂∞

k=1 m
k = 0.

Следствие 2.25. Пусть (A,m) — локальное кольцо и ai ∈ m. Предположим, что последователь-
ность {a1, . . . , an} регулярна. Тогда ∀π ∈ Sn последовательность {aπ(1), . . . , aπ(n)} регулярна.

Доказательство. Представим перестановку π ∈ Sn произведением транспозиций, меняющих сосед-
ние элементы.

Если последовательность {a1, . . . , ai, ai+1, . . . , an} ⊂ A регулярна, то по лемме 2.23, применённой
к A/(a1, . . . , ai−1) и {ai, ai+1}, последовательность {a1, . . . , ai+1, ai, . . . , an} регулярна тоже.

7В книге Шафаревича [Ша07] такую последовательность называют простой.
8Вообще говоря, порядок элементов априори имеет смысл в определении регулярной последовательности. Однако

вскоре мы увидим, что для локального кольца разницы нет, поэтому будем заключать последовательноть в фигурные
скобки, как множество.
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Лекция 6, 29 марта 2025 г.
Теперь у нас есть достаточно средств, чтобы начать доказательство аддитивности индекса пе-

ресечения.
Теорема 2.5. Предположим, что две системы дивизоров (D1, . . . , Dn−1, D

′
n) и (D1, . . . , Dn−1, D

′′
n)

обе находятся в общем положении в точке x. Тогда

(D1, . . . , Dn−1, D
′
n +D′′

n)x = (D1, . . . , Dn−1, D
′
n)x + (D1, . . . , Dn−1, D

′′
n)x

Доказательство теоремы 2.5. Будем полагать, что все дивизоры эффективные.

Упражнение 2.26. Доведите доказательство без этого предположения.

Пусть f1, . . . , fn−1, f
′
n, f

′′
n — соответствующие локальные уравнения дивизоров, нам необходимо

доказать, что

dimk(Ox/(f1, . . . , fn−1, f
′
n · f ′′n )) = dimk(Ox/(f1, . . . , fn−1, f

′
n)) + dimk(Ox/(f1, . . . , fn−1, f

′′
n ))

Обозначим Ox := Ox/(f1, . . . , fn−1), обозначим f := f ′n ∈ Ox, g := f ′′n ∈ Ox, тогда есть естествен-
ные отображения

0 → Ox/(g)
·f−→ Ox/(fg) → Ox/(f) → 0

Правое отображение — это просто проекция в фактор:
(
Ox/(fg)

)
/(f) ∼= Ox/(f).

Для доказательства утверждения достаточно показать, что последовательность точная. Точ-
ность в среднем и правом членах очевидна. Значит, достаточно показать, что умножение на f —
мономорфизм.

Предположим, что f · α ∈ (fg), тогда

f · α = f · g · β ⇐⇒ f(α− g · β) = 0.

Если f не является делителем нуля в Ox, то мы имеем α = g ·β, то есть его класс в Ox/(g) нулевой,
что и требовалось. Значит, всё сводится к такому утверждению из коммутативной алгебры:

Теорема 2.27. Пусть (A,m) — нётерово локальное регулярное кольцо, n = dimA ≥ 1, а f1, . . . , fn ∈
m таковы, что

dimA/(f1, . . . , fn) = 0,

где выше стоит размерность Крулля факторкольца. Тогда последовательность f1, . . . , fn регулярна.

Доказательство теоремы 2.27. Будем доказывать утверждение индукцией по n, база индукции
следует из целостности регулярного локального кольца A.

Переход. Рассмотрим простые идеалы pi, минимальные по отношению к включению

(f1, . . . , fn−1) ⊂ pi.

Рассмотрим u ∈ m \ (m2 ∪
⋃

i pi). Такой есть, так как иначе m = m2 (чего быть не может) или же
m = pi, но по теореме Крулля о высоте ht pi ≤ n− 1, а htm = n.

Заметим, что 0 ̸= u ∈ m/m2, откуда dimA/u ≤ n − 1. С другой стороны, строгого неравенства
не может быть, так как если размерность понизилась больше чем на 1, можно было бы выбрать
g1, . . . , gn−2, дополнить элементом u и получить снова9:

mk ⊂ (g1, . . . , gn−2, u) ⊂ m,

что противоречит тому, что dimA = n. С другой стороны, A/u регулярно, что наводит на мысль,
что к нему стоит применить индукционное предположение (к системе f1, . . . , fn−1). Проверим, что
выполнено предположение теоремы. А именно, нам надо проверить, что

dimA/(u, f1, . . . , fn−1) = 0.

Заметим, что dimA/(f1, . . . , fn−1) = 1. Действительно, размерность не может быть равна нулю,
так как иначе dimA = n − 1, а больше единицы оно также не может быть, так иначе, дофактори-
зовывая по fn мы бы не получили кольцо размерности нуль. Так как u ∈ m \ (m2 ∪

⋃
i pi), когда мы

дофакторизуем по нему, размерность понизится, чего мы и хотим.
9Тут мы используем такое утверждение, доказанное в первой части курса: Теорема. Пусть A — нётерово ло-

кальное кольцо. Тогда dimA < ∞ и она равна такому минимальному d, для которого ∃k ∈ N, x1, x2 . . . , xd ∈ m такие,
что mk ⊂ (x1, . . . , xd) ⊂ m.
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Значит, мы можем применить индукционное предположение и заключить, что последователь-
ность f1, . . . , fn−1 ∈ A/(u) регулярная. Но тогда u, f1, . . . , fn−1 — регулярная последовательность
в A, так как u не является делителем нуля. По следствию 2.25 последовательность f1, . . . , fn−1, u
регулярна в A.

Для некоторого k справедливо mk ⊂ (f1, . . . , fn), в частности, uk ∈ (f1, . . . , fn), откуда uk ≡
afn (mod (f1, . . . , fn−1)). Тогда, если fn ∈ A/(f1, . . . , fn−1) является делителем нуля, то uk тоже, а
значит и u. Но это противоречит тому, что f1, . . . , fn−1, u — регулярная последовательность. Итак,
fn ∈ A/(f1, . . . , fn−1) — не делитель нуля, что завершает доказательство.

2.4 Длины модулей и кратность пересечения
Начнём с такого утверждения.

Лемма 2.28. Пусть A — нётерово кольцо, M ∈ A−Mod — конечнопорождённый. Тогда существует
такая убывающая фильтрация, что

M =M0 ⊃M1 ⊃ . . . ⊃Mn = 0, Mi/Mi+1
∼= A/pi, где pi ∈ SpecA.

Доказательство. Рассмотрим семейство идеалов {Ann(m)}m∈M\0, выберем среди них максималь-
ный по включению и обозначим Ann(m) = p. Это простой идеал по лемме 1.6. Кроме того, под-
модуль Am ⊂ M изоморфен A/p. Далее, в модуле M ′ = M/Am мы тем же подходом сможем
найти подмодуль, изоморфный A/p′ для простого p′. Так мы построим последовательность моду-
лей M1 ⊂ M2 ⊂ . . ., удовлетворяющих нужному условию. Так как модуль M нётеров, эта цепочка
оборвётся и последовательность будет конечной.

Заметим, что модули вида A/m, где m ∈ SpecmA — это в точности простые (без собственных
подмодулей) модули над A: с одной стороны, совершенно ясно, что такой модуль простой; с другой
стороны, простой модуль порождён каким-то одним элементом, M = Am, но тогда Am = A/I для
некоторого I и если I не максимален, то есть нетривиальный подмодуль m/I.

Определение 2.29. Пусть A — нётерово кольцо, M ∈ A −Mod – конечнопорождённый. Предпо-
ложим, что существует фильтрация

M =M0 ⊃M1 ⊃ . . . ⊃Mn = 0, Mi/Mi+1
∼= A/mi, где mi ∈ SpecmA.

Иными словами, все модули Mi/Mi+1 простые. Тогда фильтрация называется композиционным
рядом, а M — модулем конечно длины.

Известная теорема Жордана-Гёльдера утверждает, что длина не зависит от выбора композици-
онного ряда; и, более того, если нашёлся хотя бы один композиционный ряд, то любую убывающую
цепочку подмодулей можно дополнить до композиционного ряда, вставляя промежуточные подмо-
дули между соседними.

Определение 2.30. Длину n композиционного ряда называют длиной модуля и обозначают ℓ(M).
Если нужно подчеркнуть, над каким кольцом мы рассматриваем модуль, пишут ℓA(M).

Также напомним, что длина модуля аддитивна:

Лемма 2.31 (Аддитивность длины). Рассмотрим короткую точную последовательность модулей

0 →M ′ α−→M
β−→M ′′ → 0.

Тогда ℓ(M) <∞ тогда и только тогда, когда ℓ(M ′) <∞ и ℓ(M ′′) <∞. И, более того, в этом случае
ℓ(M) = ℓ(M ′) + ℓ(M ′′).

Доказательство. Действительно, рассмотрим фильтрации

0 =M ′
k ⊂M ′

k−1 ⊂ . . . ⊂M ′
0 =M ′, 0 =M ′′

r ⊂M ′′
r−1 ⊂ . . . ⊂M ′′

0 =M ′′.

В качестве композиционного ряда можно взять

0 = α(M ′
k) ⊂ α(M ′

k−1) ⊂ . . . ⊂ α(M ′
0) = β−1(M ′′

r ) ⊂ β−1(M ′′
r−1) ⊂ . . . ⊂ β−1(M ′′

0 ) =M.

21



Замечание 2.32. Случаются ситуации, когда идеал I ⊂ A аннулирует модуль M ∈ A−Mod, то есть
IM = 0. Тогда M можно рассматривать как A/I-модуль и при этом ℓA(M) = ℓA/I(M).

Замечание 2.33. Если кольцо A артиново, а модуль M — конечнопорождён, то его длина всегда
конечна.

Пример 2.34. Если (A,m) — нётерово локальное кольцо, а I ⊴ A – такой идеал, что mk ⊂ I для
некоторого k10, то длина модуля A/I конечна.

Доказательство. Достаточно доказывать, что конечна длина модуля A/mk (в силу включения
mk ⊂ I). Теперь рассмотрим фильтрацию

A/mk ⊃ m/mk ⊃ . . . ⊃ mi/mk ⊃ . . .

Достаточно показать конечность длин фактормодулей Mi/Mi+1 = (mi/mk)/(mi+1/mk) ∼= mi/mi+1.
Заметим, что при действии кольца A на Mi/Mi+1 идеал m аннулирует все элементы mi, и на

самом деле действует A/m ∼= k. То есть, mi/mi+1 — векторное пространство над k и его длина
совпадает с его размерностью, которая конечна, так как кольцо нётерово, а значит, идеал конечно-
порождён.

Пример 2.35. Пусть A — дискретно нормированное кольцо, 0 ̸= f ∈ A. Тогда кольцо A/(f)
артиново и, более того,

ℓA(A/(f)) = ℓA/f (A/(f)).

Доказательство. Выберем локальный параметр m = (π) и запишем f = πku где u ∈ A×, тогда
A/(f) = A/πk и мы можем рассмотреть фильтрацию

A/πk ⊃ π/πk ⊃ π2/πk ⊃ . . . ⊃ πk/πk = 0.

Факторы такой фильтрации имеют вид πi/πi+1 ∼= A/π, что и требовалось.

Перейдём теперь к менее тривиальным фактам о длинах модулей над нётеровыми кольцами.

Теорема 2.36. Пусть (A,m) — нётерово локальное кольцо размерности 1, a ∈ A не является делите-
лем нуля, а p1, . . . , pn — минимальные простые идеалы. Пусть M — конечнопорождённый A-модуль.
Положим e(M,a) = ℓA(M/aM)− ℓA(AnnM (a)). Тогда это число можно вычислить и иначе:

e(M,a) =

n∑
i=1

ℓApi
(Mpi

)ℓA(A/(pi + (a))). (⋆)

Замечание 2.37. Заметим, что ℓA(M/aM) = ℓA/(a)(M/aM) < ∞, так как A/(a) — нётерово коль-
цо размерности 0, то есть артиново. Аннулятор AnnM (a), в свою очередь, также является A/(a)-
модулем, так что его длина тоже конечна.

Отметим также, что так как pi — минимальный простой, dimApi
= 0, то есть это кольцо также

артиново. Наконец, кольцо A/(pi + (a)) тоже артиново. Значит, длины в сумме (⋆) конечны и всё
определено корректно.

Заметим, что полагая M = A (в этом случае Ann(a) = 0, так как он не является делителем нуля)
мы получаем следующее очевидное следствие:

Следствие 2.38. Пусть (A,m) — нётерово локальное кольцо размерности 1, a ∈ A не является
делителем нуля, а p1, . . . , pn — минимальные простые идеалы. Тогда

ℓA(A/(a)) =
∑
i=1

ℓApi
(Api

)ℓA(A/(pi + (a))).

Доказательство теоремы 2.36. Рассмотрим следующую диаграмму с точными строками.

0 M1 M M2 0

0 M1 M M2 0

·a ·a ·a

10Такое часто бывает как раз в геометрии.
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По лемме о змее у нас есть следующая длинная точная последовательность

0 AnnM1
(a) AnnM (a) AnnM2

(a)

M1/aM1 M/aM M2/aM2 0

Из неё мы получаем равенство

ℓ(AnnM1
(a))− ℓ(AnnM (a)) + ℓ(AnnM2

(a))− ℓ(M1/aM1) + ℓ(M/aM)− ℓ(M2/aM2) = 0,

которое, в свою очередь, равносильно

e(M,a) = e(M1, a) + e(M2, a),

то есть левая часть равенства аддитивна. Значит, если у нас есть ряд подмодулей (Mi) для M , то

e(M,a) =

n∑
i=1

e(Mi/Mi+1, a).

Правая часть также очевидно аддитивна.
Тогда из рассуждения в начале этого параграфа следует, что мы можем полагать, что M = A/q,

где q — простой идеал.
Случай 1. Предположим, что q = m. Тогда M = A/m ∼= k и

e(A/m, a) = ℓA(A/m)− ℓA(AnnA/m(a)) = 1− 1 = 0,

так как в данном случае AnnA/m(a) = A/m ∼= k. С другой стороны, так как m ⊈ pi, локализация
будет нулевой: (A/m)pi

= 0. Значит, вся сумма (⋆) равна нулю, что и требовалось.
Случай 2. Теперь пусть q — минимальный простой; скажем, q = p1. Тогда при i ̸= 1 имеем

Mpi = 0 (по тем же соображениям, что и ранее), а вот Mp1 = (A/p1)p1 , то есть поле частных кольца
A/p1. Значит, ℓAp1

(Mp1
) = 1 и нам нужно убедиться в справедливости равенства

ℓA(A/(p1 + (a)))− ℓA(AnnA/p1
(a)) = ℓA(A/(p1 + (a))).

Так как p1 — минимальный простой, то он состоит из делителей нуля. Значит, a /∈ p1, откуда
AnnA/p1

(a) = 0 (A/p1 — область целостности, и a ̸= 0 ∈ A/p1).

Упражнение 2.39. Пусть (A,m) — нётерово локальное кольцо и предположим, что k ⊂ A →
A/m — изоморфизм полей. Тогда для любого конечно-порожденного модуля M

ℓA(M) = dimkM = ℓk(M).

Доказательство. Пусть k ⊂ A и A/m ∼= k; пусть M — конечнопорождённый A-модуль. Тогда
очевидно, что ℓ(M) ≤ dimkM (всякая цепочка подмодулей — цепочка k-векторных пространств).

Обратно, пусть M порождён над A элементами x1, . . . , xn. По лемме Накаямы M ̸= mM , откуда
найдётся xi такой, что xi /∈ mM . Без потери общности xi = x1. Выберем M1 = mM + ⟨x2, . . . , xn⟩.
Теперь ясно, что

M/M1 = (M/mM)/⟨x2, . . . , xn⟩,

то есть фактор порождён образом x1, и его размерность над k равна 1.
Всё, мы справились найти A-подмодуль M1 ≤M так, что его k-размерность только на 1 меньше

k-размерности M . Дальше индукцией отщепляем всё меньшие подмодули.

Применим это всё в нашем геометрическом контексте. А именно, у нас k ⊂ Ox → Ox/mx —
изоморфизм и мы имеем следущее следствие:

Следствие 2.40. Индекс пересечения дивизоров можно вычислять следующим образом:

(D1, D2, . . . , Dn)x = dimk(Ox/(f1, . . . , fn)) = ℓOx
(Ox/(f1, . . . , fn)).

Также нам понадобятся некоторые факты про дедекиндовы области. Для этого напомним неко-
торые определения.
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Определение 2.41. Пусть A — нётерова область целостности размерности 1. Она называется
дедекиндовым кольцом, если выполнено одно из следующих эквивалентных11 условий:

1. A — целозамкнуто.

2. Для любого p ∈ Spec(A), локализация Ap — кольцо дискретного нормирования.

Напомним также, что в дедекиндовом кольце любой ненулевой собственный идеал раскладыва-
ется в произведение простых.

Нам пригодится следующая теорема:
Лекция 7, 5 апреля 2025 г.

Теорема 2.42. Как всегда, k — поле, A — аффинная целостная k-алгебра, K = k(A), L/K —
конечное расширение полей, B = IntL(A).

Тогда B — конечнопорождённый A-модуль (откуда, ясное дело, B — аффинная k-алгебра; в
частности, dimA = dimB).

Замечание 2.43. Нам понадобится только случай L = K, но, как ни странно, доказательство этого
частного случая, по-видимому, нисколько не проще доказательства общего случая.

Доказательство.

• Сначала разберёмся со случаем сепарабельного расширения L/K при условии целозамкнуто-
сти A.

Возьмём {ωi}ni=1 — базис L/K, причём выберем ωi ∈ B (что возможно, так как L = k(B)12.).
Рассмотрим билинейную форму следа

L× L→ K, (x, y) 7→ Tr(xy).

Из курса теории полей известно, что так как расширение сепарабельно, то эта форма невырож-
дена (на самом деле, расширение сепарабельно ровно тогда, когда эта форма невырождена).
Возьмём двойственный базис к ωi, то есть рассмотрим такой набор {ω∗

i }, что

Tr(ωiω
∗
j ) =

{
1, i = j

0, иначе.

Докажем, что
B ⊂ Aω∗

1 ⊕ . . .⊕Aω∗
n.

Пусть b ∈ B, разложим его по базису: b = a1ω
∗
1 + . . .+ anω

∗
n, где ai ∈ K. Покажем, что ai ∈ A.

Для этого запишем
ai = Tr(bωi).

Пусть G = {σ : L → Kalg} — множество всех вложений L в Kalg. Если ζ цела над A, то
σζ цела над A13, а тогда и Tr(ζ) цел над A, так как согласно второму определению следа
(эквивалентность этих определений также предполагается известной из теории полей)

Tr(ζ) =
∑
σ∈G

σζ.

Так как Tr(bωi) ∈ K цело над A, то из целозамкнутости A: ai = Tr(bωi) ∈ A. Мы получи-
ли, что B — подмодуль конечно порождённого модуля над нётеровым кольцом, откуда B —
конечнопорождённый A-модуль.

11Их эквивалентность доказывают в любом курсе коммутативной алгебры. Можно еще несколько условий добавить,
но кажется незачем.

12На лекции это не обсуждалось, но вообще говоря, видимо, можно действовать так: L/k(B) — конечное расшире-
ние, пусть k(B) ̸= L. Возьмём x ∈ L \ k(B), и запишем целую зависимость на него: bnxn + bn−1xn−1 + . . . + b0 = 0,
где bi ∈ B. Домножая на bn−1

n , мы получаем, что bnx — цел над B. Тем самым, bnx ∈ IntL(B) = IntL(IntL(A)) =
IntL(A) = B, значит, x ∈ k(B).

13Если ζn + an−1ζn−1 + . . .+ a0 = 0, где ai ∈ A, то действуя на это равенство при помощи σ, мы получаем, что σζ
— корень этого же уравнения.
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• Теперь рассмотрим случай A = k[x1, . . . , xm], причём предположим, что L/K — чисто несепа-
рабельное расширение.

Воспользуемся спецификой чисто несепарабельного расширения: всякое чисто несепарабель-
ное расширение имеет вид K

(
pm1
√
f1, . . . ,

pms
√
fs
)
, где p = char k > 0. Расширяя L ещё сильнее,

можно считать, что L имеет вид K
(

q
√
f1, . . . ,

q
√
fs
)

для некоторого fi ∈ A, q = pmax(m1,...,ms).
Разумеется, достаточно доказать теорему для большего расширения L/K, так как опять же
подмодуль конечнопорождённого модуля конечнопорождён.

Более того, можно считать, что L = k̃
(

q
√
x1, . . . , q

√
xm
)
, где k̃ порождён над k элементами q

√
cj ,

где cj — коэффициенты многочленов fi (в алгебраически замкнутой ситуации, разумеется,
k = k̃).

В таком случае B ⊃ k̃
[

q
√
x1, . . . , q

√
xm
]
, и так как справа стоит кольцо многочленов от перемен-

ных yi := q
√
xi, то оно целозамкнуто. Тем самым, имеет место равенство B = k̃

[
q
√
x1, . . . , q

√
xm
]
,

и B — конечнопорождённый A-модуль с базисом
∏

q
√
cj

mj
∏
ymi
i , где степени mj ,mi пробегают

от 0 до q − 1.

• Пусть теперь A = k[x1, . . . , xm], и расширение L/K нормально.

Как известно, любое конечное расширение E/F можно разложить в башню расширений полей
E/E1/F , где E1/F — сепарабельно, а E/E1 чисто несепарабельно.

В случае же нормального расширения L/K можно развернуть порядок сепарабельных рас-
ширений: рассмотрим группу Галуа расширения G := Gal(L/K), и разложим расширение в
башню L/LG/K. Легко проверить, что L/LG сепарабельно, а LG/K — чисто несепарабельно.

Обозначим B1 := IntLG(A), тогда B = IntL(B1). По предыдущему пункту B1 — конечнопо-
рождённый A-модуль, причём B1 — целозамкнутое кольцо, как целое замыкание A внутри
LG. Значит, первый пункт применим; получается, что B — конечнопорождённый B1-модуль,
откуда получаем искомое B — конечнопорождённый A-модуль.

• Теперь пусть A = k[x1, . . . , xn], и L/K — произвольное конечное расширение.

Этот случай простой, так как любое конечное расширение можно увеличить до нормального
расширения L̃/K, и мы уже обсудили, что этого достаточно, так как L ⊂ L̃.

• Наконец, разберёмся с общим случаем.

По лемме Нётер о нормализации существует подалгебра многочленов C := k[x1, . . . , xm] ⊂ A
такая, что A — конечнопорождённый C-модуль. В частности, A цело над C, и таким образом,
B = IntC L. Применяя предыдущий случай к кольцу C, целозамкнутому в своём поле частных
k(C), и к полю L14, мы получаем искомое утверждение.

Рассмотрим частный случай: пусть k — алгебраически замкнутое поле, A— целостная аффинная
k-алгебра, dimA = 1, и пусть B := Intk(A)A. Согласно предыдущей теореме (2.42), dimB = 1
(так как при целом расширении сохраняется размерность), при этом B целозамкнуто, откуда B —
дедекиндово. Значит, имеем следующее следствие.

Следствие 2.44. Если в условиях теоремы 2.42 мы также знаем, что dimA = 1, тоB — дедекиндова
область.

Пусть m ⊴ A — максимальный идеал. Перечислим все максимальные идеалы mi ⊴ B над m, то
есть такие, что mi ∩A = m.

Упражнение 2.45. Есть лишь конечное число таких mi.

Доказательство. Тензорно домножим на A/m вложение A ↪→ B. Получится конечный морфизм
колец A/m → B/mB. Ясно, что любой интересующий нас максимальный идеал mi ⊴ B (такой,
что mi ∩ A = m) содержит mB15. Значит, при факторизации по mB все интересующие нас идеалы
mi ⊴ B сохранились в факторкольце B/mB, и остались различными.

14Случай применим, так как L/k(C) конечно; это следует из того, что K/k(C) конечно, что можно увидеть, на-
пример, так: лемма Нётер о нормализации гарантирует, что K/k(C) — целое расширение; при этом A — аффинная
k-алгебра, в частности K = k(A) конечнопорождено, как поле, над k.

15Более того, если n ⊴ B прост, и содержит mB, то n ∩ A = m. Это ясно, так как данное пересечение — простой
идеал в A, содержащий m.
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Осталось доказать, что если F — поле, R — кольцо, и F → R — конечный морфизм, то в R
конечное количество максимальных идеалов. Это верно, так как R артиново (нётерово и размер-
ности нуль); артиново кольцо раскладывается в произведение локальных артиновых колец. При
этом количество множителей не превышает размерность dimF R, и такая же оценка получается на
количество максимальных идеалов в конечном произведении.

Замечание 2.46. На самом деле, это общий случай: если A ⊂ B — конечное расширение колец (B
— конечнопорождённый A-модуль), p ⊴ A — простой идеал, то существует лишь конечное число
простых идеалов pi ⊴ B над p.

Теорема 2.47. Итак, пусть k = kalg, A — целостная аффинная k-алгебра, dimA = 1, B := Intk(A)A,
m ⊴ A— максимальный идеал, над m висят идеалы m1, . . . ,mk ⊴ B. Выберем 0 ̸= f ∈ A, и обозначим
S := A \m. Тогда

ℓAm
(S−1A/(f)) = ℓAm

(S−1B/(f)) =

k∑
i=1

υmi
(f) =

k∑
i=1

ℓAm
(Bmi

/(f)).

В силу упражнения 2.39, все длины можно считать не над Am, а над k.

Доказательство. Можно предполагать, что f ∈ m, в противном случае все выражения, равенство
которых надо доказать, равны нулю.

Сначала заметим, что S−1B — целое замыкание S−1A в k(A), откуда S−1B — конечнопорождён-
ный S−1A-модуль. При этом все максимальные идеалы в S−1B — это m1, . . . ,mk, где mi = S−1mi.
Воспользуемся тем, что B дедекиндово, и разложим (f) ⊴ S−1B в произведение (f) = mr1

1 · . . . ·mrk
k .

По китайской теореме об остатках

S−1B/(f) = S−1B/ (mr1
1 · . . . ·mrk

k ) ∼= S−1B/mr1
1 × . . .× S−1B/mrk

k

При этом в силу алгебраической замкнутости k: S−1A/m ∼= S−1B/mi.
Теперь посчитаем

ℓAm
(S−1B/(f)) = ℓk(S

−1B/(f)) =

k∑
i=1

ℓk(S
−1B/mri

i ) =

Чтобы посчитать последнюю сумму, рассмотрим фильтрацию mri
i ⊂ mri−1

i ⊂ . . . ⊂ m ⊴ S−1B.
Покажем, что ms

i/m
s+1
i

∼= S−1B/mi, как векторные пространства над k:

• Выберем произвольный g ∈ ms
i \ms+1

i , и рассмотрим умножение на g, действующее S−1B/mi →
ms

i/m
s+1
i . Проверим, что это изоморфизм.

• Проверим, что умножение на g инъективно: пусть gx ∈ ms+1
i . Разложим (g)(x) в произведение

максимальных идеалов: пусть (g) = ms
i · . . ., и (x) = md

i · . . . (троеточием обозначены степени
всех остальных максимальных идеалов, не равных mi). Так как произведение лежит в ms+1

i ,
то d ≥ 1, и x ∈ mi.

• Для проверки сюръективности достаточно доказать, что ms
i = (g) +ms+1

i . Раскладывая (g) +
ms+1

i в произведение степеней максимальных идеалов, мы получаем (g) + ms+1
i = mk

i : если в
произведение входит ещё какой-то p ̸= mi, то имеется цепочка включений ms+1

i ⊂ (g)+ms+1
i ⊂

p, что невозможно, так как mi ⊈ p. Ясно, что k = s.

Это позволяет нам продолжить цепочку равенств:

=

k∑
i=1

ri =

k∑
i=1

υmi
(f) =

k∑
i=1

ℓAm
(Bmi

/(f))

Осталось доказать, что ℓAm
(S−1A/(f)) равно любому из этих выражений. Для этого рассмотрим

коммутативную диаграмму S−1A-модулей (здесь модуль снизу — подмодуль модуля сверху):

S−1B

S−1A fS−1B

fS−1A
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Она позволяет записать

ℓk(S
−1B/fS−1A) = ℓk(S

−1B/S−1A)+ℓk(S
−1A/fS−1A) = ℓk(S

−1B/fS−1B)+ℓk(fS
−1B/fS−1A) (◦)

Заметим, что все длины в этом выражении конечны:

• Во-первых, ∃0 ̸= u ∈ A: uS−1B ⊂ S−1A: в качестве u подходит общий знаменатель всех
порождающих S−1B над S−1A (здесь мы используем, что k(B) = k(A)).

• Тем самым, ℓ(S−1B/S−1A) ≤ ℓ(S−1B/uS−1B). Кольцо S−1B/uS−1B артиново, как нётерово
кольцо размерности нуль.

• Артиново же кольцо R := S−1B/uS−1B раскладывается в прямое произведение локальных
артиновых колец, назовём их R1, . . . , Rn с максимальными идеалами n1, . . . , nn. При этом k =
Ri/mi.

• Теперь уже легко видеть, что dimkRi <∞, так как ni — конечнопорождённый нильпотентный
идеал, и есть стабилизирующаяся фильтрация 0 = nNi

i ⊂ . . . ⊂ n ⊴ Ri.

• Итак, мы доказали, что ℓk(S−1B/uS−1B) <∞, все остальные слагаемые мажорируются этим.

Теперь заметим, что S−1B/S−1A ∼= fS−1B/fS−1A, где изоморфизм — умножение на f (он биекти-
вен, так как S−1A и S−1B — области целостности). Из равенств (◦) получается, что ℓk(S−1A/(f)) =
ℓk(S

−1B/(f)).

2.5 Абстрактные кривые
Прежде всего отметим, что содержание этого параграфа в точности соответствует [Har77, 1 глава,
§6].

Пусть K/k — расширение полей степени трансцендентности 1. Докажем, что для него суще-
ствует и единственна (с точностью до изоморфизма) проективная гладкая кривая X такая, что
K ∼= k(X) над k. Достаточно доказать существование, единственность последует из изоморфизма
полей рациональных функций.

Как было доказано в предыдущем семестре, если X — проективная гладкая кривая, то OP —
кольцо дискретного нормирования, причём все локальные кольца {OP | P ∈ X} биективно соответ-
ствуют всем дискретным k-нормированиям на k(X). Это мотивирует следующим образом опреде-
лить абстрактную кривую:

Определение 2.48 (Абстрактная кривая). Пусть K/k — расширение полей степени трансцендент-
ности 1.

• Определим CK как множество всех дискретных k-нормирований на K. В соответствии с тем,
что непустое открытое подмножество проективной гладкой кривой — тоже гладкая (но не
проективная) кривая, определим абстрактную гладкую кривую, как подмножество CK с ко-
нечным дополнением.

• На CK можно определить топологию: замкнутыми множествами будут конечные подмноже-
ства, а также всё CK .

• Пусть U ⊂ CK — открытое множество. Определим кольцо регулярных функций на U : на
проективной кривой открытому подмножеству U соответствует кольцо регулярных функций
O(U), состоящее из тех функций, которые регулярны в каждой точке U , поэтому

O(U) =
⋂
P∈U

OP .

В соответствии с этой интуицией, для абстрактной кривой X и её открытого подмножества
U ⊂ X определим кольцо регулярных функций на U как

O(U) =
⋂
R,

где R пробегает все кольца дискретного нормирования Oυ, соответствующие нормированиям
υ из U . Иными словами,

O(U) = {f ∈ K | ∀υ ∈ U : υ(f) ≥ 0} .
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• Для двух открытых подмножеств U ⊂ V ⊂ X имеется вложение O(V ) ↪→ O(U).

Предложение 2.49. Пусть x ∈ K×. Тогда существует лишь конечное число k-нормирований
υ на K таких, что υ(x) < 0.

Доказательство. Пусть υ(x) < 0 для некоего нормирования υ. Положим y := 1
x , и рассмот-

рим кольцо k[y] ⊂ K. Оно изоморфно кольцу многочленов, так как y трансцендентно над k.
Положим B := IntK k[y]. Пусть b ∈ B \ {0}, убедимся в том, что υ(b) ≥ 0 от противного: так
как b ∈ IntK k[y], то имеется многочлен, обнуляющий b вида bn + pn−1b

n−1 + . . . + p0 = 0 с
коэффициентами pi ∈ k[y]. В предположении υ(b) < 0 можно перенести bn в другую часть
равенства, и получить противоречие.

Тем самым, B ⊂ Oυ.

Лемма 2.50. Пусть B — дедекиндово кольцо, K = Frac(B), υ — нормирование на K, и
B ⊂ Oυ. Тогда найдётся максимальный идеал m ⊴ B: υ = υm.

Доказательство. p := mυ ∩B — простой идеал в B. При этом, так как K — поле частных B,
то найдётся y ∈ B: υ(y) ̸= 0. Так как B ⊂ Oυ, то υ(y) > 0. Значит, p ̸= 0, а так как dimB = 1,
то p ⊴ B — максимален.

Так как при вложении B ↪→ Oυ прообразом mυ является p, то это вложение продолжается до
вложения Bp ↪→ Oυ, Так как B дедекиндово, то Bp — кольцо дискретного нормирования, и
так как K = Frac(B), то Bp — кольцо некоторого нормирования на K. Из следующей леммы
следует, что на самом деле υ = υp.

Лемма 2.51. Пусть υ1, υ2 — два нормирования на поле K, причем Oυ1
⊂ Oυ2

. Тогда υ1 = υ2.

Доказательство. 1. Докажем, что mυ2
⊂ mυ1

. Это ясно, так как mυ = {x−1 | x /∈ Oυ}.
2. Докажем, что mυ1 = mυ2 . Из посылки и первого пункта O×

υ1
⊂ O×

υ2
. Пусть mυ1 = (π1).

Предположение π1 ∈ O×
υ2

влечёт противоречие: в таком случае Oυ1 \ 0 ⊂ O×
υ2

. Отсюда
π1 ∈ mυ2

; далее, mυ1
= π1O×

υ1
⊂ mυ2

Oυ2
= mυ2

.

3. Докажем, что O×
υ1

= O×
υ2

. Это ясно, так как максимальные идеалы уже равны, и O×
υ =

{x | x /∈ m и x−1 /∈ m}.
4. Докажем, что υ1 = υ2. Это ясно, так как соответствующие кольца дискретного нормиро-

вания оказались равны.

Получается, нормирования υ, такие, что υ(x) < 0, биективно соответствуют локализациям
Bp в тех простых (максимальных) идеалах p, которые содержат y. Отсюда следует, что их
конечное число.

Следствие 2.52. Копредел по всем открытым множествам U ⊂ X равен lim−→O(U) ∼= K.

Доказательство. При включении U ↪→ V возникает вложение колец O(V ) ↪→ O(U). Копре-
дел, таким образом, является просто теоретико-множественным объединением всех этих колец
внутри их общего поля частных K. Согласно предложению 2.49, это объединение совпадает с
K.

Итак, мы доказали, что для всякого x ∈ K× множество U = {υ | υ(x) ≥ 0} открыто в CK .
В частности, ∀f ∈ K×: существует лишь конечное число нормирований υ: υ(f) ̸= 0 (надо
рассмотреть множества нормирований υ, на которых одновременно υ(f) ≥ 0 и υ(f−1) ≥ 0).

Замечание 2.53. Однако определённое таким образом CK , хотя и имеет топологию, кольца регуляр-
ных функций, и кольца рациональных функций, не вложен ни в какое аффинное или проективное
пространство.

Тем самым, она не является никаким квазипроективным многообразием.
В дальнейшем мы хотим в каком-то смысле всё же показать, что это проективное многообразие,

или многообразие, изоморфное проективному, но для этого надо будет определить, что же значит
изоморфизм абстрактной кривой и проективной кривой.
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Домашнее задание 2.54.
1. Пусть V ⊂ An — замкнутое аффинное многообразие. Рассмотрим вложение An ↪→ Pn, (a1, . . . , an) 7→
(1 : a1 : . . . : an). Можно рассмотреть замыкание V ⊂ Pn. Докажите, что I

(
V
)
= {β(f) | f ∈ I(V )},

где β — ободнороднивание (гомогенизация), то есть β(f)(x0, x1, . . . , xn) = f
(

x1

x0
, . . . , xn

x0

)
· xdeg f

0 .

2. Теорема Клейна. Пусть X = {x20 + . . . + x2n = 0} ⊂ Pn, где n ≥ 4. Предположим, что C ⊂ X
— замкнутое подмногообразие X коразмерности 1. Докажите, что есть гиперповерхность V ⊂ Pn

такая, что C = V ·X. Иными словами, C — полное пересечение V и X, или же C = div(F ), где F
— форма, соответствующая гиперповерхности V .

Доказательство теоремы Клейна. Ранее мы доказали, что (градуированное) координатное кольцо
S(X) = k[x0, . . . , xn]/(x20+ . . .+x2n) факториально при n ≥ 4. Тогда S(C) = S(X)/(π̄) где π̄ неприво-
дим в S(X). Он является образом некоторого π ∈ S(Pn) = k[x0, . . . , xn]. Разложим в произведение
простых:

π = π1 · π2 · . . . · πk ∈ S(Pn), πi — простой.

Тога π̄ = π̄1 · π̄2 · . . . · π̄k ∈ S(X), и так как все идеалы слева и справа простые, (π̄) = (π̄i)
для некоторого i. Значит, с самого начала можно думать, что π прост. Пусть V = {π = 0} —
гиперповерхность определённая π. Докажем, что div(π) = C. Ясно, что V ∩ X = C, нужно лишь
посчитать кратность.

Можно считать, что C неприводимо (в противном случае для каждой компоненты Ci найдётся
гиперповерхность Vi, и их можно перемножить, чтобы получить ответ).

Пусть C ⊈ {x0 = 0}. Рассмотрим U = X \ {x0 = 0} и пусть div(π) = kC. Тогда

div

(
π

xd0

)
= div(π)|U = kC|U .

Но π/xd0 — простой элемент в локальном кольце OC|U , откуда k = 1 (так как простым идеалам
соответствуют простые дивизоры и наоборот).

Лекция 8, 12 апреля 2025 г.
Замечание 2.55. После такого определения кольца регулярных функций возникает естественный
вопрос, почему же его элементы — это функции (откуда и куда они действуют?). Так вот, каждому
элементу α ∈ O(U) мы сопоставляем функцию fα : U → k, определённую на нормированиях υ ∈ U ,
которая действует так:

α⇝ fα : U → k, fα(υ) = α (mod mυ) ∈ Oυ/mυ
∼= k.

Отметим, что Oυ/mυ естественно отождествляется с k, так как k ↪→ Oυ/mυ — конечное расши-
рение, а поле k алгебраически замкнуто.

2.5.1 Категория кривых

Как и обычно, нам хотелось бы говорить о некой категории C, которая будет включать и многооб-
разия (в старом смысле) и особые кривые. Для этого нужно расширить понятие морфизма.

Определение 2.56. Пусть X,Y — многообразия или абстрактные кривые. Непрерывное отобра-
жение φ : X → Y — морфизм, если для всякого открытого U ⊂ Y и регулярной функции f ∈ O(U)
функция φ∗(f) является регулярной на φ−1(U).

Замечание 2.57. Морфизмы между многообразиями в смысле этого определения — в точности
регулярные морфизмы между многообразиями из начала предыдущего семестра.

Следующее предложение показывает, что понятие абстрактной кривой в самом деле является
обобщением понятия кривой.

Предложение 2.58. Любая неособая квазипроективная кривая изоморфна Y некоторой абстракт-
ной кривой.

Доказательство. Пусть K = k(Y ) — поле функций кривой Y . Из первой части курса мы знаем,
что любое локальное кольцо Oy точки y на кривой Y является кольцом дискретного нормирования
с некоторым нормированием υy. Значит, можно задать отображение естественным образом:

φ : Y → CK , y 7→ υy
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Так как различным точкам y ∈ Y соответствуют различные нормированные подкольца Oy ⊂ K то,
это отображение — биекция на образ. Значит, осталось проверить, что φ— вложение (гомеоморфизм
на образ), и что φ и φ−1 уважают регулярные функции.

Сначала проверим, что φ— вложение с открытым образом. Обозначим φ(Y ) = U и покажем,
что U ⊂ CK — открытое подмножество, то есть имеет конечное дополнение. Для этого можно
полагать кривую Y аффинной с координатным кольцом A. В этом случаеK — поле частных алгебры
A.

Пусть x1, . . . , xn — система образующих алгебры A над полем k. Согласно лемме 2.50, нормирова-
ние υ ∈ CK содержится в образе, если A ⊂ Oυ, а это происходит ровно тогда, когда x1, . . . , xn ∈ Oυ.
Значит, U =

⋂
Ui где Ui = {υ ∈ CK | xi ∈ Oυ}. Каждое из множеств Ui имеет конечное дополнение,

что напрямую следует из предложения 2.49.
Остаётся проверить, что φ — изоморфизм. Для этого достаточно проверить, что он переводит

регулярные функции в регулярные функции, то есть, что кольца регулярных функций на соотвест-
вующих открытых множествах в Y и в U одинаковы. Но это следует просто из нашего определения:
если V ⊂ CK — открытое, а W = φ−1(V ), то

O(V ) =
⋂
υ∈V

Oυ =
⋂
p∈W

OY,p = O(W ).

Предложение 2.59. У любой точки υ ∈ CK есть открытая окрестность, изоморфная неособой
аффинной кривой.

Доказательство. Выберем y ∈ K так, чтоб υ(y) > 0. Пусть B = IntK k[y], рассмотрим максималь-
ный идеал m = {b ∈ B | υ(b) > 0}. Есть включение локальных колец дискретного нормирования
Bm ⊂ Oυ, откуда по лемме 2.51: Bm = Oυ и υ = υm. Значит, множество U = {vm | m ∈ SpecmB} ⊂
CK будет искомой окрестностью точки υ.

В самом деле, оно содержит υ; если x1, . . . , xn — система образующих алгебры B, то по лем-
ме 2.50, U =

⋂
Ui, где Ui = {υ ∈ CK |υ(xi) ≥ 0}. Значит, U ∈ CK имеет конечное дополнение, то есть

открыто.

Следующее предложение мы доказывали в случае обычных многообразий.

Предложение 2.60. Пусть X — абстрактная неособая кривая, υ = P ∈ X, а Y — проективное под-
многообразие в Pn. Рассмотрим морфизм φ : X \ P → Y . Тогда существует единственный морфизм
φ̄ : X → Y , продолжающий φ.

Доказательство. Вложим Y в Pn и покажем, что φ продолжается до морфизма в Pn. Этого будет
достаточно, так как образ X обязан будет содержаться в Y .

Выберем в Pn однородные координаты x0, . . . , xn и пусть U — пересечение всех стандартных
карт Ui = {xi ̸= 0}, i = 0, . . . , n. Можно предполагать, что φ(X \ υ)∩U ̸= ∅ (этого можно добиться
заменами координат)16.

Функции xi/xj регулярны на U , значит так как φ морфизм,

fij = φ∗
(
xi
xj

)
∈ O(φ−1(U)).

Положим ri := υ(fi0), тогда υ(fij) = υ(fi0)−υ(fj0) = ri− rj . Выберем самое индекс k с наимень-
шим rk из r0, . . . , rn. Тогда υ(fik) = ri − rk ≥ 0 для всех i. Значит, все fik регулярны в точке P , то
есть f0k, . . . , fnk ∈ Oυ. Теперь мы можем определить φ̄ так:

φ̄(υ) = (f0k(P ) : . . . : fnk(P )), φ̄(Q) = φ(Q) при Q ̸= P.

16Один из способов это сделать таков: предположим, что φ(X \ P ) ⊂ Pn \ U . Заметим, что

Pn \ U =

n⋃
i=0

Hi, где Hi — гиперплоскость {xi = 0}.

Так как φ(X \ P ) неприводимо, оно обязано попадать в какую-то одну гиперплоскость Hi. Но Hi
∼= Pn−1 и φ

пропускается через вложение Pn−1 ↪→ Pn, так что можно рассматривать лишь случай φ(X \ P ) ∩ U ̸= ∅ (мы можем
уменьшить n до тех пор пока образ не начинает пересекаться с U).

Другой способ состоит в том, что можно выбрать так координаты на Pn, что некоторая точка образа φ(X \ υ)
имеет координаты (1 : . . . : 1).
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Покажем, что φ̄ и является морфизмом, продолжающим φ. Для доказательства того, что это
морфизм, достаточно показать, что прообразами регулярных функций в окрестности φ̄(P ) относи-
тельно φ̄ являются регулярные функции на X. Рассмотрим аффинную карту Uk = {xk ̸= 0} ⊂ Pn,
тогда так как fkk(P ) = 1, имеем φ̄(P ) ∈ Uk. На множестве φ̄−1(Uk) же φ̄ задана формулой φ̄(Q) =
(f0k(Q) : . . . : fnk(Q)). Наконец, Uk — аффинное с координатным кольцом k[x0/xk, . . . , xn/xk], а
пуллбеки xi/xk будут регулярны в P , так это функции fik ∈ Oυ.

Единственность следует, как обычно, из следующего аргумента: если φ̄ и ψ — два разных про-
должения φ, то можно их сузить на такое открытое множество U ∋ P , что образы ψ(U) и φ̄(U)
лежат в аффинном подпространстве An ⊂ Pn. Тогда функция φ̄− ψ равна нулю везде на U , кроме
точки P , и мы получаем противоречие с непрерывностью.

Упражнение 2.61. Пусть X,Y — многообразия или абстрактные кривые. Тогда морфизм φ : X →
Y — изоморфизм тогда и только тогда, когда

1. φ — гомеоморфизм.

2. ∀υ ∈ X отображение локальных колец Oφ(υ)
φ∗

−−→ Oυ — изоморфизм.

Доказательство. Это практически тавтология. Утверждение “тогда” очевидно, докажем утвержде-
ние в обратную сторону. Достаточно доказать, что φ и φ−1 — морфизмы. Покажем сначала, что φ —
морфизм. Для этого нужно показать, что если f ∈ OY (U), то функция φ∗(f) регулярна в каждой
точке. Пусть P ∈ φ−1(U), заметим что в таком случае f ∈ Oφ(P ),Y . Тогда φ∗

P (f) ∈ OP,X , значит
существует некоторая окрестность W ∋ P , в которой функция f ◦ φ регулярна, что и означает, что
она регулярна в точке P . Тот факт, что φ−1 — морфизм, доказывается аналогично.

Перейдём теперь к основному результату этого параграфа: сейчас мы покажем, что мы на самом
деле не расширили нашу категорию.

Теорема 2.62. Любая неособая абстрактная кривая CK над k изоморфна некоторой неособой
проективной кривой.

Доказательство. Идея доказательства. Покроем CK открытыми подмножествами Ui, изоморф-
ными неособым аффинным кривым, и обозначим через Yi их проективные замыкания. Таким об-
разом мы имеем:

φi : Ui
∼= Vi ⊂ An ↪→ Pn, Yi = φi(Ui).

По предыдущему предложению 2.60 мы можем продолжить φi до морфизма φ̄i : CK → Y и
рассмотреть произведение этих морфизмов:

φ : CK →
∏
i

Yi, φ(P ) =
∏

φ̄i(P )

Пусть Y — замыкание φ(CK), Y — проективная кривая. Покажем, что φ : CK → Y — изомор-
физм.

Реализация. Пусть P ∈ CK — произвольная точка. По предложению 2.59 у неё существу-
ет окрестность Ui, изоморфная некоторой аффинной кривой Vi ⊂ An

i (тут мы рассматриваем An
i

как открытое подмножество в Pn
i ). Мы можем выбрать некоторое конечное покрытие CK такими

окрестностями. Пусть Yi — проективное замыкание Vi в Pn
i , Yi — проективная кривая и вложение

становится морфизмом φi : Ui → Yi, изоморфно отображающим Ui на образ. Так как CK \ Ui —
конечное множество точек, по предложению 2.59 мы можем продолжить каждый морфизм φi до
φ̄i : CK → Yi. Далее,

∏
Yi — проективное многообразие, рассмотрим диагональное отображение

φ : CK →
∏
i

Yi, φ(P ) =
∏

φ̄i(P ),

и обозначим через Y замыкание образа φ. Тогда Y — проективное многообразие и φ : C → Y мор-
физм с плотным образом, значит Y — неприводима и размерности 1, иначе говоря, проективная
кривая. Покажем, что φ — изоморфизм. Для этого покажем, что выполнены условия упражне-
ния 2.61. Рассмотрим точку P ∈ CK , пусть она попадает в некоторое Ui из покрытия. У нас есть
следующая коммутативная диаграмма, где πi : Y → Yi — проекция на i-й сомножитель.

CK Y

Ui Yi

φ

πi

φi
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Она индуцирует цепочку вложений локальных колец:

Oφi(P ),Yi
↪→ Oφ(P ),Y ↪→ OP,CK

= OP,Ui
.

То что это вложения, следует из такого общего наблюдения: если φ : X → Y — доминантный
морфизм (то есть с плотным образом), то он индуцирует инъекции на локальных кольцах. Но
крайние кольца изоморфны (так как φi : Ui → Vi — изоморфизм), значит и среднее изоморфно
каждому из них. Значит, мы показали, что Oφ(P ),Y → OP,CK

— изоморфизм.
Осталось проверить, что отображение биективно. Оно инъективно, так как различным точкам

CK соответствуют разные подкольца нормирования в K.
Докажем сюръективность. Доминантный морфизм индуцирует вложение k(Y ) ⊂ K. Найдём

для точки Q ∈ Y некоторое нормирование υ ∈ CK , для которого φ(υ) = Q. Для этого заметим,
что кольцо OQ содержится в некотором кольце дискретного нормирования R ⊂ K. А именно,
можно взять R := (IntK OQ)m, где m ∈ Specm IntK OQ — произвольный. Из равенства локальных
колец (изоморфизма при вложении) R = Oυ,CK

= Oφ(υ),Y для некоторого υ ∈ CK . Значит, имеем
OQ,Y ⊂ Oφ(υ),Y и нужное следует из леммы ниже.

Лемма 2.63. Пусть Y ⊂ Pn — проективное многообразие, P,Q ∈ Y и OP ⊂ OQ. Тогда P = Q.

Доказательство. Ранее мы доказывали, что мы можем выбрать аффинное U ⊂ Y так, что P,Q ∈ Y .
А именно, можем выбрать гиперплоскость H так, чтоб P,Q ∈ Y \H ⊂ Pn \H ∼= An.

А для аффинных этот факт очевиден, так как тогда если A — координатное кольцо U , то P и
Q соответствуют там m1,m2 ∈ SpecmA. Тогда по условию Am1

⊂ Am2
откуда m1 = m2.

2.6 Нормализация кривой
Лекция 9, 19 апреля

Пусть K/k — расширение полей степени трансцендентности 1, X — проективная (возможно, особая)
кривая с полем функций k(X) ∼= K.

В предыдущем параграфе мы показали также, что существует и неособая проективная кривая
Y с таким же полем функций: k(Y ) ∼= K.

Тогда в силу изоморфности полей функций есть бирациональный изоморфизм φ : Y ∼99K X, и
так как Y — неособая кривая, то он продолжается до регулярного морфизма φ : Y → X.

Образ проективного Y замкнут внутри X, и так как φ доминантен, то φ(Y ) = X.

Определение 2.64 (Нормализация кривой X). Пусть X — проективная кривая с полем функций
k(X) = K. Её нормализацией называется гладкая проективная кривая Y с таким же полем функций
k(Y ) ∼= K.

Выберем аффинную окрестность SpecmA ⊂ X, и проверим, что φ−1(SpecmA) аффинно. А
именно, докажем следующее утверждение.

Предложение 2.65. В сделанных предположениях φ−1(SpecmA) = SpecmB, где B := IntK A.

Доказательство.
Y X

SpecmB SpecmA

φ

f−1f

Пусть f : SpecmB ∼99K Y — бирациональный изоморфизм, имеющий место, так как k(B) = k(Y ).
Как и φ, он продолжается до регулярного морфизма f : SpecmB → Y , так как B — дедекиндово
кольцо, и SpecmB — неособая. f(SpecmB) ⊂ Y открыто: его дополнение конечно, так как бирацио-
нальный изоморфизм f осуществляет изоморфизм некого открытого U0 ⊂ f(SpecmB) и открытого
подмножества Y , то есть даже дополнение f(U0) конечно.

Покажем, что морфизм f−1 : f(SpecmB) ∼99K SpecmB регулярен. Для этого вложим SpecmB в
некоторое аффинное пространство AN , и запишем f−1 в координатах: f−1(y) = (g1(y), . . . , gN (y)),
где gi — рациональные функции на f(SpecmB). Пойдём от противного: пусть f−1 нерегулярен в
какой-то точке y0 ∈ f(SpecmB) (пусть y0 = f(x0)), без потери общности в y0 нерегулярна функция
g1. Обозначим за {ti}Ni=1 координатные функции на SpecmB. Ясно, что gi = (f−1)∗(ti), применяя f∗
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получаем f∗(gi) = ti, откуда f∗( 1
gi
) = 1

ti
. f∗ индуцирует гомоморфизм локальных колец f∗ : OY,y0

→
OSpecmB,x0

, при котором образ максимального идеала — максимальный идеал. При этом OY,y0

— кольцо дискретного нормирования, и так как g1 нерегулярна в y0, то 1
g1

∈ mY,y0
. Тем самым,

1
t1

∈ mSpecmB,x0
. Но t1 ∈ Ox0

, получаем противоречие. Тем самым, f осуществляет изоморфизм
SpecmB на свой образ в Y .

Вложение колец A ⊂ B индуцирует морфизм SpecmB → SpecmA, и диаграмма ниже коммута-
тивна, так как это верно на уровне полей функций.

Y X

SpecmB SpecmA

φ

φ

Диаграмма показывает, что SpecmB ⊂ φ−1(SpecmA), покажем обратное включение от противного:
пусть y0 ∈ Y , φ(y0) = x0 ∈ SpecmA, но y0 /∈ SpecmB. Пусть те прообразы x0, которые лежат
в SpecmB — точки y1, . . . , yn ∈ SpecmB. Все точки y0, y1, . . . , yn попарно различны. Подберём
функцию f ∈ k(Y )× так, что f /∈ Oy0

, f ∈ Oyi
17. Пусть y′1, . . . , y

′
m — все полюсы f на SpecmB.

Избавимся от полюсов, не трогая остальные условия. Для этого рассмотрим регулярную функцию
h на SpecmA, имеющую нули достаточно высокого порядка в φ(y′1), . . . , φ(y′m), причём пусть h(x0) ̸=
018. Теперь f1 = fφ∗(h) вместо f подходит: она регулярна везде на SpecmB, и по-прежнему f1 /∈
Oy0 , f1 ∈ Oyi . Так как f1 ∈ B = IntK A, то она удовлетворяет некоему уравнению fn1 + an−1f

n−1
1 +

. . .+a0 = 0, где ai ∈ A. Поделив на fn−1
1 , получаем f1 = −an−1−. . .−a0(f−1

1 )n−1. Осталось заметить,
что f1 /∈ Oy0

, но правая часть регулярна в y0. Получаем противоречие.

2.6.1 Инвариантность индекса пересечения по модулю PDiv(X)

Теперь приступим к доказательству теоремы 2.8. Данное доказательство повторяет то, что в книге
Шафаревича по модулю изменённого определения дивизоров, находящихся в общем положении.

Лемма 2.66. Пусть X — неособое проективное неприводимое многообразие, dimX = n, D1, . . . , Dn

и D′
1, . . . , D

′
n — две системы дивизоров, обе находятся в общем положении, и Di = D′

i для всех
1 ≤ i < n. Также предположим, что Dn ∼ D′

n. Докажем, что в этой ситуации (D1, . . . , Dn) =
(D′

1, . . . , D
′
n).

Доказательство. Сначала предположим, что все дивизоры эффективны (понятно, что общность
от этого предположения не теряется: полилинейность индекса пересечения позволяет избавиться от
этого требования).

Пусть suppD1 ∩ . . .∩ suppDn−1 =
r⋃

i=1

Ci, где Ci — кривые. Так как дивизоры находятся в общем

положении, то неприводимых компонент другой размерности нет.
Зафиксируем такой x ∈ X, что (D1, . . . , Dn)x ̸= 0. Ясно, что x ∈

⋃
Ci. Переупорядочим Di так,

что x ∈ Ci в точности при 1 ≤ i ≤ k, и, значит, x /∈ Ci при k < i ≤ r. Пусть C — какое-то Ci. Сопо-
ставим некоторое число этой кривой C и дивизорам D1, . . . , Dn−1. А именно, рассмотрим кольцо OC

рациональных функций, регулярных хотя бы в одной точке C (следовательно, в открытом подмно-
жестве C). Выберем y ∈ C, в её окрестности Di = div(fi). Оказывается, кольцо OC/(f1, . . . , fn−1)
артиново, и его длина не зависит ни от выбора y, ни от выбора fi:

• Пусть y, y′ ∈ C — две точки; Uy ∩Uy′ ясное дело непусто, так как это открытые подмножества
в C. Пусть div(fi)|Uy = Di|Uy и div(f ′i)|U ′

y
= Di|U ′

y
.

Получается, div(fi/f ′i) = div(fi)−div(f ′i), что равно нулю на Uy ∩U ′
y Но многообразие Uy ∩U ′

y

гладкое, откуда из эффективности дивизора следует, что функция fi
f ′
i

регулярна на Uy ∩ Uy′ .
Иными словами, fi ∼ f ′i ∈ OC .

• Теперь пусть y ∈ C, A — аффинная алгебра Uy. Кривая C соответствует идеалу p ⊴ A высоты
n − 1, OC = Ap. Так как p — минимальный простой идеал, содержащий (f1, . . . , fn−1), то
кольцо Ap/(f1, . . . , fn−1) = (A/(f1, . . . , fn−1))p локально, и имеет размерность 0.

17Например, по аппроксимационной теореме.
18Такую h можно построить руками, без всяких аппроксимационных теорем: к тому же, здесь аппроксимационная

теорема не применима, так как X не факт, что неособая. В качестве h подойдёт достаточно большая степень
m∏
i=1

hi,

где hi(φ(y
′
i)) = 0, но hi(x0) ̸= 0.
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• Эту длину будем обозначать (D1, . . . , Dn−1)C .

Перейдём в аффинную окрестность: пусть x ∈ SpecmA, и точка x соответствует максимальному
идеалу m ⊴ A. Введём обозначения O := Ox = Am и O := Am/(f1, . . . , fn−1). Ясно, что dimO = 1 и
(D1, . . . , Dn)x = ℓ(O/(fn)). А для выражения такой длины у нас была теорема 2.38:

ℓ(O/(fn)) =
k∑

i=1

ℓOpi
(Opi

)ℓO(O/(pi + (fn)))

где идеалы pi соответствуют кривым Ci для 1 ≤ i ≤ k, m ↔ x. Посчитаем оба множителя:

Opi
= (Am/(f1, . . . , fn−1))pi

= Api
/(f1, . . . , fn−1) = OCi

/(f1, . . . , fn−1),

и отсюда ℓOpi
(Opi

) = (D1, . . . , Dn−1)C ;

O/pi = Am/pi = (A/pi)m.

Последнее выражение — это локальное кольцо той же точки x, но не на всём многообразии X, а

на кривой Ci. Тем самым, (D1, . . . , Dn)x =
k∑

i=1

(D1, . . . , Dn−1)Ci
· ℓ(Ox,Ci

/(fn)). У этой формулы есть

следующее неудобство: в разных точках x ∈ X сумма будет вестись по разным k в зависимости от
того, носители каких дивизоров содержат точку x. Чтобы это исправить, условимся, что для x /∈ Cj :
кольцо Ox,Cj

— нулевое. Это естественно считать, так как тогда pj ⊈ m, то есть pj = (1) ⊴ Am, и
соответствующий фактор нулевой. Это даёт возможность записать общую формулу

(D1, . . . , Dn)x =

r∑
i=1

(D1, . . . , Dn−1)Ci
· ℓ(Ox,Ci

/(fn))

Разберёмся подробнее с выражением длины фактора Ox,Ci
. Пусть A0 = A/pi — аффинная алгебра

кривой Ci; обозначим B0 := Intk(A0)A0. Включение A0 ⊂ B0 индуцирует отображение спектров
SpecmB0 → SpecmA0. При этом SpecmA0 ⊂ Ci, и SpecmB0 ⊂ Cν

i , где Cν
i — нормализация Ci.

Согласно предложению 2.65, прообраз SpecmA0 равен SpecmB0. По теореме 2.47, ℓ(Ox,Ci/(fn)) =∑
y 7→x

vy(fn), где сумма берётся по точкам y ∈ Cν
i , являющимся прообразами x. При этом формула

верна также и для x /∈ Cj : тогда таких слагаемых нет вообще.
Теперь убедимся, что эта формула верна для x таких, что (D1, . . . , Dn)x = 0. Если x /∈ Ci, то

кольцо просто-напросто нулевое, а иначе x ∈ Ci, и тогда fn обратим в Ox,Ci
— иначе бы x попал в

пересечение Ci ∩ supp div(fn).
Осталось всё это сложить по всем точкам x ∈ X.∑

x∈X

(D1, . . . , Dn)x =

r∑
i=1

(D1, . . . , Dn−1)Ci

∑
y∈Cν

i

vy(fn,x)

Вспоминаем, что у нас-то на деле было две системы дивизоров. Заменяя fn на f ′n, мы получаем ту
же сумму

r∑
i=1

(D1, . . . , Dn−1)Ci

∑
y∈Cν

i

vy(f
′
n,x)

Осталось воспользоваться тем, чтоDn ∼ D′
n, то есть они отличаются на некоторый главный дивизор

div(g). Иными словами, ∀x ∈ X: div
(

f ′
n,x

fn,x

)
= div(g), или, перенося равенство на Cν

i , для g ∈ k(Cν
i ):

vy

(
f ′
n,x

fn,x

)
= vy(g). Значит, ∑

y∈Cν
i

vy(f
′
n,x) =

∑
y∈Cν

i

vy(fn,x) +
∑
y∈Cν

i

vy(g).

А сумма
∑

y∈Cν
i

vy(g) равна нулю, так как это степень главного дивизора div(g).

Теорема 2.8. Предположим, чтоX — неособое проективное многообразие, а две системы дивизоров
(D1, . . . , Dn) и (D′

1, . . . , D
′
n) обе находятся в общем положении. Предположим, что Di ∼ D′

i. Тогда
(D1, . . . , Dn) = (D′

1, . . . , D
′
n).
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Доказательство теоремы 2.8. В предыдущем случае было равенство Di = D′
i для всех 1 ≤ i ≤

n−1. Пусть теперь есть две системы дивизоров D1, . . . , Dk, Dk+1, . . . , Dn и D1, . . . , Dk, D
′
k+1, . . . , D

′
n,

обе находятся в общем положении, причём для i > k: Di ∼ D′
i. Докажем убывающей индукцией по

k, что в таком случае (D1, . . . , Dk, Dk+1, . . . , Dn) = (D1, . . . , Dk, D
′
k+1, . . . , D

′
n).

Базой индукции является случай k = n− 1, это только что доказанная лемма 2.66.
Теперь совершим индукционный переход. Пусть пересечение D1 ∩ . . . ∩Dk ∩Dk+2 ∩ . . . ∩Dn

раскладывается в объединение некоторого множества кривых
⋃
Cj , и аналогично D1 ∩ . . . ∩ Dk ∩

D′
k+2 ∩ . . . ∩D′

n =
⋃
C ′

j .
Выберем по точке xi ∈ Ci и x′i ∈ C ′

i. Выберем D′′
k+1 ∼ Dk+1 ∼ D′

k так, что обе системы то-
чек xi ∈ Ci, x

′
i ∈ C ′

i не попадают на suppD′′
k+1. Теперь системы (D1, . . . , Dk, D

′′
k+1, Dk+2, . . . , Dn) и

(D1, . . . , D
′′
k+1, D

′
k+2, . . . , D

′
n) обе находятся в общем положении19, а значит применимо индукцион-

ное предположение, и их индексы пересечения равны. Но по лемме 2.66, индекс пересечения первой
системы дивизоров равен индексу (D1, . . . , Dk, Dk+1, . . . , Dn), а индекс пересечения второй системы
дивизоров — индексу системы (D1, . . . , Dk, D

′
k+1, . . . , D

′
n).

3 Дифференциальные формы
Лекция 10, 26 апреля 2025 г.

3.1 Дифференциальные 1-формы и модуль первых дифференциалов
Пусть X — многообразие, x ∈ X, функция f ∈ OX,x регулярна в окрестности x.

Определение 3.1 (Дифференциал регулярной функции f в точке x). Линейная форма dxf на ка-
сательном пространстве TxX, то есть элемент кокасательного пространства T ∗

xX
∼= mx/m

2
x, равный

f − f(x).

Если рассматривать dxf как функцию от точки x, то у нас получится нечто доселе в этом
курсе еще не рассматриваемое: функция, которая сопоставляет точке на многообразии вектор в
кокасательном пространстве.

Рассмотрим множество Φ[X] всевозможных функций X →
⊔
T ∗
xX

∼=
⊔
mx/m

2
x, посылающих x в

T ∗
xX. Это множество легко наделить структурой абелевой группы с естественной операцией пото-

чечного сложения: (φ+ψ)(x)
def
= φ(x)+ψ(x). Кроме того, Φ[X] также легко наделяется структурой

модуля над кольцом функций {f : X → k}: (f · φ)(x) def
= f(x) · φ(x). В частности, Φ[X] обладает

структурой модуля над кольцом регулярных функций k[X] = OX(X). Любая функция f ∈ k[X]
определяет φ(x) = dxf , φ ∈ Φ[X], такую функцию φ : X →

⊔
T ∗
xX мы будем обозначать df .

Определение 3.2. Элемент φ ∈ Φ[X] называется регулярной дифференциальной 1-формой на X,
если

∀x ∃Ux ∋ x : φ|Ux
=

n∑
i=1

fidgi, где fi, gi ∈ OX(Ux).

Такие формы образуют подмодуль модуля Φ[X], который мы будем обозначать Ω1[X].

Отметим некоторые элементарные тождества, связанные с 1-формами.

Упражнение 3.3. Проверьте, что выполнены следующие свойства:

1. d(αf + βg) = αdf + βdg.

2. d(fg) = gdf + fdg

Пример 3.4. Пусть X = An, а t1, . . . , tn — координатные функции. Как мы видим, в любой точке
x ∈ X формы dxti составляют базис mx/m

2
x. Значит, любой элемент φ ∈ Φ[An] мы можем однозначно

представить в виде

φ(x) =

n∑
i=1

ψi(x)dxti, ψi : X → k.

19Неправда! Надо гарантировать не только дискретность пересечения носителей всех n дивизоров, но ещё и условие
на коразмерность компонент пересечения подмножеств размера k. Это можно сделать, но точек придётся выбрать
заметно больше. Чтобы не нагромождать сущности, а также потому что мне лень, оставлю так. Подобный выбор
точек честно сделан в доказательстве 2.18.
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Таким образом, в модуле Φ[X] имеет место равенство

φ =

n∑
i=1

ψidti.

Теперь рассмотрим φ ∈ Ω1[An]. Тогда, по определению, в некой окрестности Ux ∋ x имеет место

φ|Ux =

m∑
i=1

fidgi, где fi, gi ∈ OX(Ux).

Функции gi мы можем записать как многочлены от координатных:

gi =
Pi(t1, . . . , tn)

Qi(t1, . . . , tn)
.

Далее, проведём стандартные технические вычисления:

d

(
P

Q

)
=
QdP − PdQ

Q2
, dP =

n∑
i=1

∂P

∂ti
dti.

Подставляя это, мы имеем

φ|Ux =

m∑
i=1

fidgi =

n∑
i=1

hidti, hi ∈ OX(Ux) =⇒ φ =

n∑
u=1

hidti.

Так как такое представление однозначно, отсюда мы получаем, что ψi регулярны в любой точке
x ∈ An, то есть ψ ∈ OAn(An) = k[An]. Значит, наш модуль Ω1[An] — это просто свободный модуль с
базисом {dt1, . . .dtn} и имеет место прямое разложение

Ω1[X] =

n⊕
i=1

k[X]dti.

Пример 3.5. Реализуем проективную прямую P1 стандартной склейкой двух карт P1 = A1
0 ∪A1

1 =
{x0 ̸= 0} ∪ {x1 ̸= 0}, положим t = x1/x0 и u = x0/x1. Возьмём ω ∈ Ω1[P1], тогда пользуясь
предыдущим примером

ω|A1
0
= P (t)dt, ω|A1

1
= Q(u)du

Тогда на пересечении карт должно быть выполнено равенство P (t)dt = Q(u)du. Заметим, что du =
−dt/t2, откуда

P (t)dt = −Q
(
1

t

)
dt

t2
⇐⇒ P (t) = −

Q
(
1
t

)
t2

.

Но, так как обе части — многочлены, такого равенства попросту быть не может. Значит, P = Q = 0
и отсюда ω = 0. Таким образом, Ω1[P1] = 0.

Пример 3.6. Рассмотрим плоскую эллиптическую кривую, заданную уравнением {x30 + x31 + x32 =
0} ⊂ P2 над полем k характеристики не 3. Рассмотрим в P2 три аффинные карты, покрывающие
X:

Uij = {xixj ̸= 0}, X = U01 ∪ U02 ∪ U12.

Заведём следующие обозначения:

x =
x1
x0
, y =

x2
x0
, φ =

dy

x2
на U01, (1)

u =
x2
x1
, v =

x0
x1
, ψ =

dv

u2
на U12, (2)

s =
x0
x2
, t =

x1
x2
, χ =

dt

s2
на U02. (3)

Заметно, что φ ∈ Ω1[U01], ψ ∈ Ω1[U12], χ ∈ Ω1[U02]. Проверим, что на пересечениях всё согласо-
вано:
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Так как x3 + y3 = −1 и u = y/x, v = 1/x, на U01 ∩ U12, то следующие равенства равносильны:

dy

x2
?
=

dv

u2
⇐⇒ dy

x2
?
=

d
(
1
x

)(
y
x

)2 ⇐⇒ dy

x2
?
=

−dx/x2

y2/x2
⇐⇒ y2dy + x2dx

?
= 0,

Покажем, что последнее равенство выполнено. Действительно, дифференцируя равенство x2+y3 =
−1 мы получаем 3x2dx+ 3y2dy = 0, а так как характеристика поля не 3, отсюда x2dx+ y2dy = 0.

Остальные проверки делаются аналогично. Значит, приведённая выше форма склеивается в
глобальную (и, очевидно, ненулевую) форму на X и, в частности, Ω1[X] ̸= 0. В то же время, всякая
глобально регулярная на X функция постоянна.

Пусть x ∈ X — неособая точка, в частности через неё проходит только одна компонента X и
корректно определена размерность dimxX: это просто размерность компоненты, в которой лежит
точка x. Напомним, что в этом случае

dimxX = dimOx = dimmx/m
2
x.

Предложение 3.7. Пусть x — неособая точка X. Тогда существует такая окрестность Ux ∋ x, что
Ω1[X] — свободный OX(Ux) = k[Ux]-модуль. Его ранг равен n := dimxX.

Доказательство. Так как вопрос локальный, можно полагать X аффинным, пусть X ⊂ AN . Вы-
берем образующие идеала I(X) = (F1, . . . , Fm), а также координатные функции t1, . . . , tN . Продиф-
ференцируем равенства Fi = 0, получим m уравнений

N∑
j=1

∂Fi

∂tj
dtj = 0.

Рассмотрим матрицу J(x) =
(

∂Fi

∂tj
(x)
)
ij

. Так как x — неособая точка, rank J(x)) = N − n. С другой

же стороны, вычисляя ранг через миноры, мы получаем, что при должном переупорядочивании Fi

и tj :

g(x) = det


∂F1

∂tn+1
(x) , . . . ,

∂F1

∂tN
(x)

... . . .
...

∂FN−n

∂tn+1
(x) , . . . ,

∂FN−n

∂tN
(x)

 ̸= 0.

Так как невырожденность — открытое условие, это выполнено в некоторой окрестности Ux точки
x. Невырожденность же матрицы означает, что первые N − n строк системы позволяют выразить
dtn+1, . . . ,dtN через dt1, . . . ,dtn с коэффициентами из рациональных функций, регулярных в Ux.
Получается, dt1, . . . ,dtn — система локальных параметров в каждой точке y ∈ Ux.

Покажем, что в Ux всякая форма раскладывается по системе dt1, . . . ,dtn с коэффициентами из
k[Ux]. Рассмотрим φ ∈ Ω1[Ux]. Так как dt1, . . . ,dtn — система локальных параметров во всех точках
Ux, то существует и единственен набор таких ψi : Ux → k, что

φ =
n∑

i=1

ψidti.

Нам надо проверить, что ψi — регулярные функции. С другой стороны, в окрестности любой точки
y ∈ Ux мы можем записать

φ|Uy =

n∑
i=1

gidti, gi ∈ k[Uy].

Тогда, так как на пересечении всё должно быть согласовано, ψi|Uy
= gi|Uy

, откуда ψi регулярна на
Uy. По произвольности точки y имеем ψi ∈ k[Ux]. Значит, мы по крайней мере имеем

Ω1[Ux] = k[Ux]dt1 + . . .+ k[Ux]dtn.

Если между dt1, . . . ,dtn имеется соотношение вида g1dt1 + . . . + gndtn = 0 на Ux, где не все
gi ∈ k[Ux] равны нулю, то найдётся такая точка y ∈ Ux, что не все g1(y), . . . , gn(y) равны нулю.
Однако, подставляя точку y в равенство, мы получаем зависимость между системой локальных
параметров в Oy, противоречие.

Тем самым, в разложении Ω1[Ux] в сумму выше сумма прямая.
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Замечание 3.8. Как видно из доказательства, в любой подокрестности U ′ ⊂ Ux модуль дифферен-
циалов Ω1[U ′] — тоже свободен над k[U ′], с тем же базисом.

Замечание 3.9. На самом деле, несложно убедиться, что можно выбирать любые локальные пара-
метры u1, . . . , un в окрестности точки x и, возможно, сужая окрестность, иметь прямое разложение

Ω1[U ] =

n⊕
i=1

k[U ]dui.

Рассмотрим теперь случай, когда X ⊂ AN — аффинное многообразие с координатным кольцом
A. Тогда, взяв регулярную функцию f ∈ A = OX(X) = k[X] можно рассмотреть соответствующую
1-форму df ∈ Ω1[X].

Тут можно задать достаточно естественный вопрос

Всякая ли ω ∈ Ω1[X] имеет такой вид?

Оказывается, что любая форма раскладывается по таким глобально регулярным образующим.
Докажем это. Для точки x ∈ X возьмём окрестность Ux ∋ x, тогда

ω|Ux
=

n∑
i=1

fidgi, fi, gi ∈ OX(Ux) = k[Ux].

Сужая, если нужно, эту окрестность, можно полагать, что fi и gi — это просто частные мно-
гочленов от координатных функций на AN . Тогда для каждой точки x мы сможем найти такие
многочлены px и f̃xi , что

(px · ω)|Ux
=

n∑
i=1

f̃xi dti.

Далее можно рассуждать абсолютно также, как и при доказательстве того, что OX(X) = k[X] =
A. Применяя такой аргумент, мы получаем, что равенство

px · ω =

n∑
i=1

f̃xi dti.

выполнено на всём X. Но тогда (px)x∈X = (1) ⊴ A. Отсюда получаем, что

ω =

n∑
i=1

qidti, qi ∈ k[t1, . . . , tn].

Значит, мы нашли образующие. Какие на них наложены соотношения? Часть из них мы видели
ранее, это свойства, которым удовлетворяет дифференциал (упражнение 3.3). Но достаточно ли
этих соотношений?

Вообще говоря, имея алгебру A, можно определить (абстрактный) модуль первых дифференци-
алов Ω1

A чисто алгебраически.

Определение 3.10. Пусть A — аффинная алгебра. Определим модуль первых дифференциалов,
как модуль над A, образующими и соотношениями (для α, β ∈ k):

Ω1
A = ⟨da, a ∈ A⟩/(d(αa+ βb) = αda+ βdb, d(ab) = adb+ bda).

Это, в самом деле, модуль над A.

Замечание 3.11. Тут нужно дать такой формальный комментарий. До того момента, пока мы не
покажем изоморфизм соответствующих модулей, образующие Ω1

A — это просто формальные знач-
ки! Александр Станиславович обозначает их d̃a, чтоб отличать da ∈ Ω1

A от da ∈ Ω1[X], но я так
делать не буду, так как это выглядит чудовищно. Также, А.С. обозначает модуль первых диффе-
ренциалов буквой R (следуя также Шафаревичу), но я этого делать также не буду, используя более
стандартное обозначение.
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Предположим, что алгебра A гладкая (т.е. SpecmA гладкое многообразие). Итак, из наблюдений
выше мы имеем естественный эпиморфизм

Ω1
A

ξ−→ Ω1[X] → 0, da 7→ da.

Осталось вычислить его ядро. Предположим, что ξ(φ) = 0. Заметим, что при доказательстве
предложения 3.7 мы пользовались лишь аксиомами, которые мы записали в соотношения Ω1

A. Дей-
ствительно, если у нас есть полиномиальное соотношение F (t1, . . . , tN ) = 0, то dF1 = 0 ∈ Ω1

A. Далее
можем преобразовывать по формальным правилам. Единственная проблема в том, что выражая
dti ∈ Ω1

A через другие, мы не можем поделить на определитель. Но, не беда, тем не менее для
любой x ∈ X мы нашли такой Px ∈ A, что Px(x) ̸= 0, и

Px · φ =

N∑
i=1

hidti ∈ Ω1
A.

Применяя к этому равенству отображение ξ мы получаем

0 = ξ(Px · φ) =
n∑

i=1

hidti ∈ Ω1[X] =⇒ hi = 0.

Значит, Pxφ = 0 ∈ Ω1
A. Так как в точке x элемент Px не обращается в нуль, (Px)x∈X = (1) = A

и дальше мы снова можем применить стандартное рассуждение с разбиением единицы. Значит, мы
доказали такую теорему. н

Теорема 3.12. Пусть X — гладкое аффинное многообразие с координатным кольцом A. Тогда

Ω1[X] ∼= Ω1
A = ⟨df, f ∈ A⟩/⟨αdf + βdg, d(fg) = gdf + fdg)

Определение 3.13. Пусть X — неприводимое гладкое многообразие, U ⊂ X — открытое. Тогда
рациональная дифференциальная форма определяется как класс эквивалентности форм ωU ∈ Ω1[U ]
относительно естественного отношения ωU ∼ ωV ⇐⇒ ωU |U∩V = ωV |U∩V .

Замечание 3.14. Доказательство того, что это в самом деле отношение эквивалентности, использует
аргументы аналогичные доказательству такого же факта для регулярных функций. Для этого нам
понадобится следующая лемма.

Лемма 3.15. Пусть U — открытое подмножество в X, ω ∈ Ω1[X] и ω|U = 0. Тогда ω = 0.

Доказательство. Достаточно показать, что множество W = {x ∈ X | ωx = 0} замкнуто. Это можно
проверить локально: рассмотрим x ∈ X и её открытую окрестность Ux ∋ x; покажем, что W ∩ U
замкнуто. Для этого выберем окрестность U так, что Ω1[U ] — свободный k[U ]-модуль с базисом dgi.
Тогда ω|U =

∑
i fidgi, fi, gi ∈ k[U ]. Тогда имеем

∀x ∈ U ωx =
∑

fi(x)dxgi = 0 =⇒ ∀x ∈ U fi(x) = 0 =⇒ fi|U = 0 =⇒ fi = 0,

так как dygi(x) — базис mx/m
2
x для любой x ∈ U (их можно выбрать так, что это верно, действуя

так же, как и в доказательстве теоремы 3.7).

Домашнее задание 3.16. Задачи:

1. Пусть X = {x2 + y2 = 1} ⊂ A2, char k ̸= 2. Докажите, что

Ω1[X] ∼= k[X]
dx

y
.

2. Докажите, что Ω1[Pn] = 0.

3. Рассмотрим эллиптическую кривую X = {x30 + x31 + x32 = 0}. Докажите, что dimk Ω[X] = 1.

4. Пусть ω = p(t)
q(t)dt, deg p = m, deg q = n. В каких точках эта форма на P1 регулярна? (Тут

t = x1/x0, как всегда).

39



5. Пусть X = {y2 = x3} ⊂ A2 — каспидальная кубика, A = k[x, y]/(y2 − x3) — её аффин-
ная алгебра. Вычислите модуль первых дифференциалов Ω1

A. Далее, рассмотрев стандартное
отображение

ξ : Ω1
A → Ω1[X],

покажите, что ξ(3ydx − 2xdy) = 0, в свою очередь, подтверждая существенность условия
гладкости в теореме 3.12.

Лекция 11, 3 мая 2025 г.
В соответствии с модулями Ω1[X] и Ω1(X) регулярных и рациональных дифференциальных

форм над k[X] и k(X) соответственно, определим модули r-форм.

Положим Φr[X] =

{
f : X →

⊔
x∈X

∧r
mx/m

2
x | f(x) ∈

∧r
mx/m

2
x

}
.

Определение 3.17 (Модуль регулярных дифференциальных r-форм на X). Подмодуль Φr[X],
состоящий из таких φ ∈ Φr[X], что ∀x ∈ X: ∃Ux ∋ x

φ|Ux
=

∑
i1,...,ir

gi1,...,irdfi1 · · · dfir fi1 , . . . , fir , gi1,...,ir ∈ k[Ux]

Он обозначается Ωr[X], и на нём имеется естественная структура k[X]-модуля.

Теорема 3.18. Пусть x ∈ X — гладкая точка, n = dimxX. Тогда ∃Ux ∋ x: Ωr[Ux] — свободный
k[Ux]-модуль ранга

(
n
r

)
= n!

r!(n−r)! .

Доказательство. Пусть Ux ∋ x — окрестность точки x из теоремы 3.7, то есть модуль Ω1[Ux] —
свободный k[Ux]-модуль с базисом du1, . . . ,dun. В частности, для всех y ∈ Ux: dyu1, . . . ,dyun —
базис my/m

2
y. Рассмотрим теперь форму φ ∈ Ωr[Ux]. Её можно единственным образом разложить

по базису в каждой точке, и это записывается в виде

φ =
∑

i1<···<ir

ψi1,...,irdui1 ∧ · · · ∧ duir , ψi : Ux → k

Теперь проверим, что ψ∗ регулярна в Ux.
Для всякой точки y ∈ Ux имеется окрестность Uy:

φ|Uy
=

N∑
i=1

gidfi1 ∧ · · · ∧ dfir , gi, fi1 , . . . , fir ∈ k[Uy]

Однако Uy — подмножество Ux, и, значит, Ω1[Uy] — свободный k[Uy]-модуль с образующими du1, . . . ,dun.
Отсюда, dfi1 ∧ · · · ∧ dfir выражается через dui1 ∧ · · · ∧ duir с коэффициентами из k[Uy], получая
равенство на Uy вида

φ =
∑

i1<···<ir

hi1,...,irdui1 ∧ · · · ∧ duir , hi1,...,ir ∈ k[Uy]

Это показывает, что на Uy: ψi1,...,ir = hi1,...,ir , и по произвольности точки y ∈ Ux: ψi1,...,ir регулярны
на Uy.

Теперь проверим независимость образующих {dui1 ∧ . . . ∧ duir}i1<···<ir . Как и в случае 1-форм,
если есть зависимость вида

∑
gi1,...,irdui1 ∧ . . .∧duir = 0, где не все gi1,...,ir ∈ k[Ux] нули, то найдётся

точка y ∈ Ux, в которой эта зависимость означает зависимость dyui1 ∧ . . .∧ dyuir внутри
∧r

my/m
2
y.

Замечание 3.19. Для всех U ′ ⊂ Ux система dui1 ∧ . . . ∧ duir для i1 < . . . < ir — тоже базис Ωr[U ′]
над k[U ′].

Пусть du1, . . . ,dun ∈ Ω1[U ] — базис, и v1, . . . , vn ∈ k[U ]. Предположим, что dyvi ∈ my/m
2
y — базис

my/m
2
y для всех y ∈ U . Распишем по базису в Ω1[Ux]:dv1

...
dvn

 = (fij)

du1
...

dun


Подставляя точку y, получаем, что матрица (fij(y)) обратима, а её определитель — ненулевое число
из k. Значит, это так и в некоторой окрестности y, и там dv1, . . . ,dvn образуют базис Ω1[X].
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3.2 Рациональные дифференциальные r-формы
Теперь определим рациональные r-формы. Как и в случае 1-форм, верна следующая лемма.

Лемма 3.20. Пусть X — гладкое многообразие, ω ∈ Ωr[X]. Тогда множество {x ∈ X | ω(x) = 0}
замкнуто в X.

Доказательство абсолютно аналогично доказательству леммы 3.15 для 1-форм, не будем его
повторять.

Пусть U1, U2 ⊂ X — открытые множества, и на них определены r-формы ω1 и ω2. Введём
отношение эквивалентности: (ω1, U1) ∼ (ω2, U2) ровно в случае ω1|U1∩U2 = ω2|U1∩U2 . Лемма говорит,
что это отношение эквивалентности. Множество рациональных форм (ω,U), отфакторизованных по
данному отношению эквивалентности, обозначим Ωr(X), и снабдим его структурой k(X)-векторного
пространства. Если dui1 ∧ . . .∧ duir (i1 < . . . < ir) — базис Ωr[U ] для некоторого открытого U ⊂ X,
а ω ∈ Ωr(X), то по определению ω регулярна на некотором открытом V ⊂ X. На пересечении
ω ∈ Ωr[U ∩ V ], система dui1 ∧ . . . ∧ duir — тоже базис, значит, имеет место разложение вида ω =∑
fdui1 ∧ . . . ∧ duir , где f ∈ k[U ∩ V ]. Это равенство показывает, что dui1 ∧ . . . ∧ duir — система

образующих в Ωr(X).
При этом они там независимы: любая нетривиальная линейная зависимость поднималась бы в

нетривиальную линейную зависимость регулярных форм на каком-то открытом подмножестве X.
Значит, любой базис Ωr[U ] для любого открытого U ⊂ X является базисом Ωr(X).

3.3 Дивизор дифференциальной формы. Формулировка теоремы Римана
— Роха

Рассмотрим модуль дифференциалов степени n, Ωn(X). Это одномерное векторное пространство
над k(X). Исследуем его подробнее. Пусть ω ∈ Ωn(X). Эта форма локально регулярна: нашлись
такие Ui, что ω|Ui

= fidu
(i)
1 ∧ . . . ∧ du

(i)
n для fi ∈ k(Ui), причём X =

⋃
Ui. Сравнивая разложения ω

по базису на Ui и на Uj , мы получаем на Ui ∩ Uj равенство

fidu
(i)
1 ∧ . . . ∧ du(i)n = fjdu

(j)
1 ∧ . . . ∧ du(j)n

С другой стороны, du(i)1 ∧ . . .∧ du
(i)
n = J

(
u
(i)
1 ···u(i)

n

u
(j)
1 ···u(j)

n

)
du

(j)
1 ∧ · · · ∧ du

(j)
n . Якобиан обратим в k[Ui ∩Uj ],

причём fi = J

(
u
(i)
1 ···u(i)

n

u
(j)
1 ···u(j)

n

)
fj , откуда мы получаем дивизор Картье (Ui, fi): в самом деле, условие о

том, что fi
fj

— обратимая на Ui ∩ Uj функция — выполнено. Обозначим этот дивизор (ω).

Определение 3.21 (Дивизор формы ω ∈ Ωn(X)). Определённый выше дивизор (ω).

Зафиксируем ω1 ∈ Ωn(X), и рассмотрим новый дивизор ω = fω1 для f ∈ k(X). Ясно, что (ω) =
div(f)+(ω1), так как если (ω1) = (Ui, fi), то (ω) = (Ui, ffi). Далее, ясно, что ω — регулярная форма
на X ровно в том случае, когда (ω) ≥ 0. Дело опять в том, что вопрос локальный, и ω ∈ Ωn(Ui)
регулярна ровно тогда, когда ffi ∈ k[Ui], то есть (ω) ≥ 0. Из равенства видно, что [(ω)] = [(ω1)] ∈
Cl(X).

Размерность Ωn(X) над k(X) равна единице, то есть при разных f ∈ k(X) форма ω пробегает
все формы из Ωn(X). Значит, класс дивизора формы не зависит от выбора формы.

Определение 3.22 (Канонический класс). Класс этого максимального дивизора K ∈ Cl(X).

Пусть ω1 ∈ Ωr[X] зафиксирована, f ∈ k(X) и форма ω = fω1 регулярна. Это значит, что
f ∈ L((ω1)). Напомним, что для дивизора D векторное пространство L(D) было определено в
прошлом семестре: это пространство таких функций f ∈ k(X), что div(f)+D ≥ 0. Также в прошлом
семестре мы показали, что если X — гладкая проективная кривая, то dimk L(D) <∞.

Более того, dimk Ω
1[X] = dimk L((ω1)), так как эти векторные пространства изоморфны посред-

ством отображения f 7→ fω1.
Пусть теперь X — проективная неособая кривая. Оказывается, для всякого дивизора D ∈

Div(X):
ℓ(D)− ℓ(K −D) = degD − g + 1 (!)

где ℓ(D) = dimk L(D), и g = dimk Ω
1[X] = ℓ(K) (формально ℓ и L мы определяли на дивизорах, а не

на их классах, но понятно, что при замене D на D+div(f) образуется изоморфизм L(D+div(f)) ∼=
L(D), реализуемый умножением на f , поэтому ℓ корректно определять и от класса дивизора).
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Определение 3.23 (Геометрический род кривой X). Это число g = dimk Ω
1[X] = ℓ(K)20.

Равенство (!) называется теорема Римана — Роха. Чуть позже будет приведено её доказатель-
ство, а пока выведем из неё некоторые результаты о классификации кривых определённых родов.

3.4 Применения теоремы Римана — Роха
Пусть D = 0. В таком случае теорема Римана — Роха говорит, что ℓ(0) − ℓ(K) = 1 − g. Ясно, что
ℓ(0) = dimk{f ∈ k(X) | (f) ≥ 0} = dimk k[X] = dimk k = 1. Отсюда мы получаем, что ℓ(K) = g.
Далее, подставляя D = K, мы получаем, что degK = 2g − 2.

Подставим теперь degD > 2g − 2. В этом случае можно явно посчитать ℓ(D). Запишем, что
L(K−D) = {f |(f)+K−D ≥ 0}. Однако deg div f = 0, и таким образом L(K−D) = 0, ℓ(K−D) = 0.
Значит, ℓ(D) = degD − g + 1.

Рассмотрим теперь случай рода g = 0. Мы знаем, что, например, в случае P1: Ω1[P1] = 0, и,
значит, g = 0. Теперь мы можем доказать и обратное.

Предложение 3.24. Если род проективной неособой кривой X равен 0, то X изоморфна P1.

Доказательство. Рассмотрим дивизор D = {x}, состоящий из одной точки. Так как g = 0, то
1 = degD > 2g − 2 = −2, откуда ℓ({x}) = 1 − 0 + 1 = 2, значит, имеется непостоянная функция
f ∈ k(X), такая, что div(f) + {x} ≥ 0. У любой непостоянной функции на проективной кривой есть
полюс, и из эффективности дивизора, div(f)∞ = {x}. Получается, deg div(f)∞ = 1, и в прошлом
семестре мы также доказали, что это число равно [k(X) : k(f)]. Тем самым, k(X) = k(f). Справа
записано чисто трансцендентное расширение k степени 1, и значит X бирационально изоморфно
P1. Но это — неособые проективные кривые, а значит, они изоморфны и регулярно.

Рассмотрим аффинную кривую y2 = F (x), где F — многочлен с простыми корнями, и пусть
char k ̸= 2. Тогда эта аффинная кривая неособая. Наложим условие нечётности n = degF : случай
чётного n = 2m сводится к случаю n = 2m− 1 заменой (скажем, если F (x) = a2mx

2m + . . ., то надо
заменить y на z, подставив y = z +

√
a2mx

m).
Теперь считаем, что n = 2m + 1. Скажем, если m = 1, то после линейной замены по иксам

уравнение обращается в y2 = x3 + ax + b, а после проективизации получается неособая кривая X,
задаваемая уравнением y2z = x3 + axz2 + bz3. Она отличается от своей аффинной версии дополни-
тельной точкой на бесконечности [0 : 1 : 0].

Чтобы различать проективные и аффинные координаты, в аффинной карте {z ̸= 0} координаты
x
z и y

z будем обозначать x1 и y1 соответственно.

Предложение 3.25. Пусть char k ̸= 2. Рациональная форма dx1

y1
∈ Ω1(X) регулярна на всей кривой

X, задаваемой уравнением {y2z = x3 + axz2 + bz3}. Более того, Ω1[X] = dx1

y1
k[X] = dx1

y1
k.

Доказательство. Пусть ω = dx1

y1
∈ Ω1[X]. Посчитаем дивизор (ω).

• Рассмотрим точку P с координатами x1 = β, y1 = 0, где β — корень F . В ней mP /m
2
P

порождается координатными функциями x1 − β и y1. Установим связь между ними: пусть
x31 + ax1 + b = (x1 − β) · f1(x1) для некоего многочлена f1 степени 2, такого, что f1(β) ̸= 0.
Соотношение (x1 − β) · f1(x1) = y21 показывает, что

x1 − β =
y21

f1(x1)
,

откуда действительно x1 − β равен произведению y1 на некоторую регулярную в P функцию.
Значит, y1 — локальный параметр в P , и vP (y1) = 1, а из выражения выше vP (x1 − β) = 2.
Дифференцируя y21 = x31 + ax1 + b, мы получаем y1dy1 = (3x21 + a)dx1, откуда dx1 = y1

3x2
1+a

dy1,
значит, в некоторой окрестности UP ∋ P : Ω1[UP ] = ⟨dy1⟩k[UP ]. Обозначим s := 1

f1(x1)
, и запишем

d(x1 − β)

y1
=

d(sy21)

y1
=
y21ds+ 2sy1dy1

y1
= 2sdy1 + y1ds

В свою очередь, ds = d
(

1
f(x1)

)
= − dx1

f(x1)2
= − y1

3x2
1+a

· dx1

f(x1)2
. В итоге дивизор dx1

y1
разложился в

произведение обратимой в P функции (её значение в P равно 2s) на dy1, откуда в UP дивизор
формы нулевой.

20Первое равенство можно считать определением рода, а второе следует из теоремы Римана — Роха для D = 0.
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• Пусть теперь точка P имеет координаты x1 = β, y1 = γ, и β ̸= 0. Здесь в качестве локального
параметра удобно выбрать x1 − β: уравнение y21 − γ2 = x31 + ax1 − β3 − aβ раскладывается
на множители, и y1 − γ = (x1 − β) · x2

1+βx1+β2−a
y1+γ . Из записи (ω) = dx1

y1
сразу видна прежняя

ситуация: форма представилась в виде произведения локального параметра dx1, на регуляр-
ную функцию, обратимую в окрестности P , а именно, 1

y1
. Значит, в окрестности этой точки

дивизор формы также равен нулю.

• Наконец, для анализа ситуации в бесконечно удалённой точке [0 : 1 : 0] перейдём в аффинную

карту y1 ̸= 0. При делении уравнения на y3, оно обращается в z
y =

(
x
y

)3
+a · xy

(
z
y

)2
+ b ·

(
z
y

)3
.

Обозначая s = x
y , p = z

y , мы получаем уравнение p = s3 + asp2 + bp3.

dx1
y1

= p · d
(
s

p

)
=
pds− sdp

p
= ds− sdp

p

Локальный параметр в этой точке — s, так как выразить p через s позволяет равенство p −
bp3 = p(1 − bp2) = s3 + asp2. При этом функция 1 − bp2 обратима в точке s = p = 0, откуда
v(p) = v(s3+asp2). Отсюда видно, что v(p) ≥ 3, и случай v(p) > 3 невозможен, то есть v(p) = 3.

Тем самым, p = s3v для некоторой обратимой v, и переписывая

sdp

p
=
s(3vs2ds+ s3dv)

s3v
= 3ds+

s

v
dv

получаем dx1

y1
= ds− sdp

p = −2ds− s
vdv. Расписывая dv через ds, получаем, что в окрестности

бесконечно удалённой точки дивизор также нулевой — коэффициент при ds — обратимая
функция, так как она равна 2 в этой бесконечно удалённой точке.

Получается, fω ∈ Ω1[X] ⇐⇒ (fω) ≥ 0 ⇐⇒ div(f) ≥ 0 ⇐⇒ f ∈ k×, откуда dimk Ω
1[X] = 1, и

Ω1[X] = ⟨(ω)⟩k. Отсюда получается, что g(X) = dimk Ω
1[X] = 1.

Теперь докажем обратное: пусть g(X) = 1, убедимся, что кривая — эллиптическая. Здесь мы
будем пользоваться теоремой Римана — Роха. В случае рода g(X) = 1 она обращается в равенство

ℓ(D)− ℓ(K −D) = degD.

При этом degK = 2g − 2 = 0.

• Пусть P ∈ X — точка, рассмотрим дивизор D = 2P . Теорема Римана — Роха говорит, что
ℓ(2P ) − ℓ(K − 2P ) = 2; однако deg(K − 2P ) = −2 < 0, откуда ℓ(K − 2P ) = 0 (нет никаких
функций f , даже констант, таких, что (f) + K − 2P ≥ 0). Равенство ℓ(2P ) = 2 говорит о
существовании неконстантных функций x ∈ k(X), таких, что (x)+2P ≥ 0. Значит, у функции
x имеется полюс в P степени не выше 2, и никаких других полюсов нет. Случай полюса степени
1 показывает, что deg div(x)∞ = 1, откуда [k(X) : k(x)] = 1, и это выдаёт противоречие:
как и раньше, получилось бы X ∼= P1. Значит, полюс x имеет степень 2, и [k(X) : k(x)] =
deg div(x)∞ = 2.

• Теперь подставим в теорему Римана — Роха D = 3P . Аналогично мы получаем ℓ(3P ) = 3.
Ясно, что L(2P ) ⊂ L(3P ), дополним 1 и x до базиса в L(3P ) какой-то функцией y.

Ясно, что υP (x) = −2 и υP (y) = −3. Отсюда получается, что y /∈ k(x), так как P -адические
нормирования элементов k(x) чётные.

• Наконец, подставим D = 6P . В пространство L(6P ) попадают функции 1, x, y, x2, x3, y2, xy, и
раз ℓ(6P ) = 6, то эти функции линейно зависимы: нашлись a0, . . . , a6 ∈ k, не все нули, такие,
что

a0 + a1x+ a2y + a3x
2 + a4x

3 + a5y
2 + a6xy = 0

Так как [k(X) : k(x)] = 2, и y /∈ k(x), то поле k(x, y) совпадает с k(X). Поэтому случай a5 = 0
невозможен: если a5 = 0, то

y(−a6x− a2) = a0 + a1x+ a3x
2 + a4x

3

и y выражается через x в поле функций.
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• Осталось привести уравнение к каноническому виду. Деля на a5 мы можем считать, что a5 = 1.
Подставляя вместо y выражение y− a6

2 x−
a2

2 , мы избавляемся от a6 и a2, после чего уравнение
−y2 = a0+a1x+a3x

2+a4x
3 линейной заменой x превращается в стандартное y2 = x3+ax+ b.

• Осталось проверить, что многочлен от x справа не имеет кратных корней. Это несложно: в

противном случае наличия корня α кратности хотя бы 2 можно было бы записать
(

y
x−α

)2
=

x− β, и поле функций опять оказалось бы чисто трансцедентным, а кривая — рациональной.

• А раз так, то поле функций этой кривой совпадает с полем функций неособой эллиптической
кривой y2 = x3 + ax+ b, и в силу равенства полей функций они изоморфны21.

А что с гиперэллиптическими кривыми? Пусть, скажем, кривая имеет уравнение Y : y2 = x5 +
ax + b. Это, конечно, не общее уравнение кривой пятой степени, но тем не менее, давайте пока
ограничимся таким. Проективное замыкание y2z3 = x5 + axz4 + bz3 имеет особенность в точке
∞ = [0 : 1 : 0]. Поэтому нормализация этой гиперэллиптической кривой X не равна проективизации
— она устроена как-то по-другому, непонятно, как. Аффинная часть кривой Y вкладывается в
нормализацию Y ⊂ X, как открытое подмножество:

Y A1

X P1

(x,y)7→x

Та же дифференциальная форма dx
y по-прежнему регулярна на Y , и, оказывается, её дивизор dx

y =

2 · ∞ (в общем случае будет (n − 2)∞, где n = degF — степень правой части). f dx
y ≥ 0 ⇐⇒

div(f) + (n− 3)∞ ≥ 0, то есть у f есть единственный полюс — на бесконечности, да и тот степени
не выше n− 3. Представим f = P (x) + yQ(x), ведь y2 выражается через x. Оказывается, Q(x) = 0,
что видимо остаётся без доказательства.

3.4.1 Формула для подсчёта дивизора формы

Лекция 12, 10 мая 2025 г.
Пусть X — гладкая кривая, и пусть ω ∈ Ω(X) — рациональная форма, а P ∈ X — точка. Попробуем
посчитать υP (ω) более-менее в общем случае. Пусть π — локальный параметр в точке P . В некоторой
окрестности U ∋ P модуль дифференциалов свободен: Ω[U ] = k[U ]dπ, и, следовательно, Ω(U) =
k(U)dπ.

Представим ω|U = fdπ, где f ∈ k(U), и положим υP (ω) = υP (f). Итак, (ω) =
∑
υP (ω)P , и чтобы

посчитать дивизор ω, надо уметь считать дивизор этой формы во всех точках.
Ясно, что υP (fdg) = υP (f) + υP (dg). Пусть e := υP (g), тогда g = πeu для некоторого u ∈ O×

P , и

υP (dg) = υP (d (π
eu)) = υP (π

edu+ eπe−1udπ) =

Распишем du|U = hdπ|U , где h ∈ k[U ]. Чтобы получить что-то интересное, наложим предположение
chark ̸ | e. В таком случае несложно продолжить равенство

= υP (π
eh+ eπe−1u) = e− 1

Вы видели доказательство следующего предложения:

Предложение 3.26. Пусть e := υP (g), и char k ̸ | e, тогда υP (dg) = e− 1.

Применим доказанное предложение, чтобы посчитать дивизор ω := dx
y на проективизации X

эллиптической кривой Y : y2 = x3+ax+ b побыстрее, чем в 3.25 (разумеется, у нас всё ещё имеется
предположение char k ̸= 2, в противном случае это особая кривая).

• Пусть P ∈ Y имеет координаты (α, β), где β ̸= 0. Тогда υP (x − α) = 1 (ведь это локальный
параметр), а υP (y) = 0, откуда υP

(
dx
y

)
= υP (dx)− υP (y) = (e− 1)− 0 = 0

21Предыдущий пункт существеннен: без него нельзя было бы утверждать, что наша кривая X изоморфна кривой
с таким полем функций. Априори ничуть не ясно, что уравнение y2 = x3 + ax + b задаёт X в какой-то аффинной
карте. Так что для получения изоморфизма X и проективного замыкания кривой с уравнением y2 = x3 + ax + b,
нам нужна гладкость обеих кривых — изоморфизм кривых с изоморфными полями частных следует только в таком
случае.
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• Пусть P ∈ Y имеет координаты (α, 0). υP (x − α) = 2, откуда υP (d(x − α)) = e − 1 = 1, и
υP (y) = 1, то есть опять υP

(
dx
y

)
= 0.

• Наконец, если P = ∞ с проективными координатами [0 : 1 : 0], то υP (x) = −2. Например, это
можно обосновать следующим образом: supp(x)∞ = P , причём 2 = [k(X) : k(x)] = deg(x)∞.
Отсюда сразу получается, что υP (y2) = −6, и, значит, υP (y) = −3. Опять применяя предложе-
ние, получаем υP (dx) = −2−1 = −3, и, вычитая υP (y) = −3, мы снова получаем υP

(
dx
y

)
= 0.

3.5 Доказательство теоремы Римана — Роха
Теорема 3.27 (Теорема Римана — Роха). Пусть X — неособая проективная кривая, K ∈ Cl(X) —
канонический класс. Тогда для любого дивизора D ∈ Div(X) выполнено равенство

ℓ(D)− ℓ(K −D) = degD − g + 1,

где геометрический род g не зависит от данного дивизораD. Также утверждается, что g = dimk Ω
1[X] =

ℓ(K).

Доказательство этой теоремы довольно длинное и техническое. Здесь оно воспроизводится по
книжке S. Lang «Introduction to algebraic and abelian functions».

Похожее, но несколько другое доказательство можно найти в книжке Степанова «Арифметика
алгебраических кривых».

Пусть P ∈ X — точка на кривой, υP — соответствующее нормирование на поле функций K :=
k(X). Выберем вещественное число α ∈ (0, 1), и введём на K норму по формуле ∥x∥ := αυP (x)22.
Норма устанавливает наK структуру метрического пространства, и можно рассмотреть пополнение
K по данной метрике KP . Арифметические операции продолжаются с K на KP по непрерывности,
и, таким образом, на KP имеется структура поля.

Пусть π — локальный параметр в точке P . Как мы видели в предыдущем семестре, локальное
кольцо OP вкладывается в кольцо формальных степенных рядов k[[π]], и при данном вложении со-
храняются π-адические нормирования. С другой стороны, k[π] содержится в OP , откуда пополнение
OP по π-адическому нормированию υP совпадает с кольцом формальных степенных рядов k[[π]].
Пополнение же поля частных k(X) = Frac(OP ) совпадает с полем частных кольца формальных
степенных рядов k[[π]], то есть с кольцом рядов Лорана. Иными словами, ненулевые элементы KP

имеют вид πn(a0 + a1π + a2π
2 + . . .), где ai ∈ k, причём a0 ̸= 0, и n ∈ Z. В частности, мы получили,

что структура нормированного поля на KP не зависит от выбора α.
Рассмотрим кольцо

∏
p∈X

KP , и в нём — подкольцо аделей

A := {(ξP )P∈X | υP (ξP ) ≥ 0 для почти всех P ∈ X}

Элементы A называются аделями; это сокращение от «аддитивный идеальный элемент», или что-то
в этом роде. Ясно, что кольцо аделей естественным образом наделяется структурой K-алгебры.

Пусть теперь a ∈ Div(X) — произвольный дивизор. Определим k-векторное пространство

Λ(a) = {ξ | ∀P ∈ X : υP (ξP ) + υP (a) ≥ 0} ≤ A

где υP (a) — коэффициент, с которым P входит в a; в частности, если a = div(f), то υP (a) = υP (f).
В соответствии с терминологией из алгебраической теорией чисел, на которой мы сейчас не будем
останавливаться, будем называть пространства вида Λ(a) для дивизоров a параллелотопами.

Рассмотрим два дивизора a, b ∈ Div(X), и предположим, что a − b ≥ 0 (будем это обозначать
a ≥ b). А именно, ∀P ∈ X: υP (a) ≥ υP (b), откуда получается Λ(a) ⊃ Λ(b). Рассмотрим короткую
точную последовательность k-подпространств в кольце аделей A (K отождествляется со своим
образом под действием естественного диагонального вложения)

0 −→ Λ(a) ∩K
Λ(b) ∩K

−→ Λ(a)

Λ(b)
−→ Λ(a) +K

Λ(b) +K
−→ 0. (⇒)

и посчитаем в ней размерности членов над k.
22Условимся, что ∥0∥ = 0, что согласуется с договорённостью υP (0) = ∞.
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0. Видимо, она точная по следующей причине: для любых k-векторных подпространств A,B,C
одного большого пространства при условии B ⊂ A имеет место следующая короткая точная
последовательность:

0 −→ B + (A ∩ C)
B

−→ A

B
−→ A

B + (A ∩ C)
−→ 0.

При этом левый член изоморфен A∩C
B∩C (по теореме Нётер об изоморфизме); так как B ⊂ A, то

B + (A ∩ C) = A ∩ (B + C)23, откуда A
B+(A∩C) =

A
A∩(B+C)

∼= A+C
B+C (тоже по теореме Нётер).

Теперь примем A = Λ(a), B = Λ(b), C = K.

1. Во-первых, Λ(a) ∩K = L(a), откуда dimk

(
Λ(a)∩K
Λ(b)∩K

)
= ℓ(a)− ℓ(b).

2. Теперь докажем, что dimk (Λ(a)/Λ(b)) = deg a− deg b.

3. Теперь докажем, что dimk (Λ(a)/Λ(b)) = deg a− deg b.

Для этого докажем следующую лемму

Лемма 3.28. Пусть дивизоры a = (m1 + 1)P1 +m2P2 + . . . и b = m1P1 +m2P2 + . . . имеют
отличающиеся коэффициенты только при P1, да и там всего лишь на единичку.

Тогда dimk (Λ(a)/Λ(b)) = 1.

Доказательство. Факторпространство Λ(a)/Λ(b) содержит ненулевые элементы: достаточно
рассмотреть какой-нибудь адель ξ ∈ Λ(a) такой, что υP1(ξP1) = −m1 − 1.

Проверим, что любые два элемента (ξ), (ξ′) ∈ Λ(a) пропорциональны по модулю Λ(b). Распи-
шем ξP1

= π−m1−1(a0 + a1π + . . .) и аналогично ξ′P1
= π−m1−1(a′0 + a′1π + . . .). Можно считать,

что a0 ̸= 0, так как в противном случае уже ξ ∈ Λ(b), и доказывать нечего. Из этого равенства
видно, что υP (ξ′P1

− a′0a
−1
0 ξP1

) ≥ −m1, откуда ξ′ − a′0a
−1
0 ξ ∈ Λ(b).

Последовательно увеличивая коэффициенты b на 1, и применяя данную лемму, мы получаем
искомое утверждение.

4. Отсюда получается, что dimk

(
Λ(a)+K
Λ(b)+K

)
= r(a) − r(b), где r(a) := deg a − ℓ(a). Так как ℓ(a) и

deg a зависят только от класса a ∈ Cl(X), то это же верно и для r(a).

Пусть a, b ∈ Div(X).

Определение 3.29 (Максимум из двух дивизоров a и b). Такой дивизор c ∈ Div(X), что ∀P ∈ X:
υP (c) = max(υP (a), υP (b)).

Аналогично можно определить минимум.

Предложение 3.30. Пусть a ∈ Div(X). Тогда пространство A
Λ(a)+K конечномерно над k.

Доказательство. Доказательство частично повторяет доказательство о конечномерности L(a) из
предыдущего семестре.

Вспомним, что для непостоянной функции y ∈ k(X) расширение полей k(X)/k(y) конечомерно,
размерности [k(X) : k(y)] = deg div(y)∞ =: n. Пусть z1, . . . , zn — базис k(X)/k(y); домножая их на
подходящий элемент k(y), можно считать, что все zi целы над k[y].

Пусть P ∈ X — полюс для zi, то есть υP (zi) < 0. Тогда из равенства zmi = pm−1(y)z
m−1
i +. . .+p0(y)

получается, что υP (y) < 0, так как иначе не сходятся нормирования левой и правой частей.
Обозначим c := div(y)∞. Так как всякий полюс zi содержится среди полюсов y, то ∃µi ∈ N:

div(zi) + µic ≥ 0. Положим µ0 := max(µ1, . . . , µn). Для µ ≥ µ0 рассмотрим семейство функций
{yszi}1≤i≤n

0≤s≤µ−µ0
. Утверждается, что все yszi ∈ L(µc). В самом деле,

div(yszi) + µc = div(zi) + µ0c+ sdiv(y) + (µ− µ0)c =

= div(zi) + µ0c+ s · (div(y) + c) + (µ− µ0 − s)c ≥ 0.

23В общем случае равенства (X ∩ Y ) + (X ∩ Z) = X ∩ (Y + Z) нет, это неверно. Контрпример: три прямые на
плоскости, пересекающиеся в нуле.
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Эти функции yszi — k-линейно независимые элементы L(µc), так как zi — базис k(X) над k(y).
Запишем (⇒) для a = µc и b = 0:

0 Λ(µc)∩K
Λ(0)∩K

Λ(µc)
Λ(0)

Λ(µc)+K
Λ(0)+K 0

Размерность левого пространства равна ℓ(µc)−1, среднего — µdeg c, а правого — обозначим Nµ.
Воспользуемся тем, что deg c = deg div(y)∞ = n, а также тем, что ℓ(µc) ≥ (µ− µ0 + 1)n:

Nµ = µn− (ℓ(µc)− 1) ≤ µn− ((µ− µ0 + 1)n− 1) = (µ0 − 1)n+ 1

Тем самым, Nµ, как функция от µ, ограничена. С другой стороны, Nµ = r(µc)− r(0), и, тем самым,
при фиксированном c функция µ 7→ r(µc) ограничена.

Этого мало, следующим шагом мы докажем, что функция b 7→ r(b) ограничена для всех диви-
зоров b ∈ Div(X). Ключом к этому послужит следующая лемма:

Лемма 3.31. Пусть b ∈ Div(X) — произвольный дивизор, а c — по-прежнему дивизор полюсов
функции y ∈ k(X). Тогда существует такой z ∈ k[y], что b ≤ div(z) + µc для достаточно больших
µ ∈ N.

Доказательство. Пусть P1, . . . , Pm — те нули b, которые не являются полюсами y. Эти точки со-
ответствуют нормированиям υ1, . . . , υm на k(X). При ограничении этих нормирований на k(y) по-
лучаются нормирования w1, . . . , wm. При этом υi(y) ≥ 0, так как y регулярна в этих точках, откуда
wi(y) ≥ 0, и, стало быть, wi ̸= w∞

24.
Пусть zi ∈ k[y] такова, что υi(zi) ≥ υi(b) (например, zi := (y − y(Pi))

υi(b)). Определим z :=
z1 · . . . · zm. Она подходит:

Рассмотрим некоторые случаи расположения точки P ∈ X.

• Пусть P — полюс y. Тогда υP (c) > 0, и для µ≫ 0 неравенство выполнено.

• Пусть P — не полюс y, и вдобавок P — нуль b, то есть υP (b) > 0. Здесь неравенство выполнено
по построению z: υP (div(z) + µc) = υP (div(z)) ≥ υP (b).

• Пусть P — не полюс y и не нуль b. Тогда υP (div(z) + µc) ≥ 0 (так как P — не полюс y, а
z ∈ k[y]) и υP (c) ≥ 0 (по предположению). Наконец, 0 ≥ υP (b).

Выберем произвольный дивизор b ∈ Div(X), и, применяя лемму, получим такой z ∈ k[y], что
b ≤ div(z) + µc. Для двух сравнимых дивизоров a ≤ b можно выписать (⇒), которая показывает,
что r(a) ≤ r(b), так как r(b) − r(a) — размерность некоторого векторного пространства. Значит,
r (b) ≤ r (div(z) + µc) = r(µc) (так как r = deg−ℓ — функция на Cl(X)), что ограничено.

Но отсюда размерность факторпространства dimk
Λ(a)+K
Λ(b)+K = r(a)−r(b) тоже ограничена. Зафик-

сируем b, и будем увеличивать a до тех пор, пока Λ(a)+K
Λ(b)+K не станет максимальной размерности.

Утверждается, что при этом a: Λ(a) +K = A.

Доказательство. От противного: пусть ξ ∈ A, но ξ /∈ Λ(a) +K. В таком случае ∃a′ > a: ξ ∈ Λ(a′).

А именно, пусть P1, . . . , Pk — точки, в которых υP (ξP ) ̸= 0. Сконструируем a1 =
k∑

i=1

miPi, где

mi ≥ −υPi
(ξPi

). Далее, чтобы удовлетворить условие a′ ≥ a, можно принять a′ = max(a1, a).

Итак, ∃a0 : Λ(a0) +K = A. Тогда для дивизора a из посылки предложения:

A

Λ(a) +K
=

Λ(a0) +K

Λ(a) +K
=

Λ(max(a, a0)) +K

Λ(a) +K

Это пространство конечномерно над k, и его размерность равна r(a0)− r(a).
24Под w∞ подразумевается нормирование на поле частных кольца многочленов k[y], сопоставляющее рациональной

функции минус её степень.
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Размерность этого пространства будем обозначать δ(a) := dimk
A

Λ(a)+K . Ясно, что Λ(a)+K
Λ(b)+K =

A
Λ(b)+K /

A
Λ(a)+K , и размерность равна r(a)−r(b) = δ(b)−δ(a). Выражая r через deg и ℓ, мы получаем

равенство
deg a− ℓ(a) + δ(a) = deg b− ℓ(b) + δ(b) (◦)

для всех пар дивизоров a ≥ b. Последнее предположение несложно снять: пусть c := max(a, b). Обе
части потенциального равенства совпадают с deg c− ℓ(c) + δ(c), и, значит, равенство действительно
имеет место.

Тем самым, число ℓ(a)− deg a− δ(a) не зависит от дивизора a, и было бы неплохо показать, что
это равно 1− g, где g — род кривой X. Подставляя a = 0, получаем, что достаточно доказать, что
g = δ(0).

3.5.1 Дифференциалы

Лекция 13, 17 мая 2025 г.
Определение 3.32 (Дифференциал). k-линейный функционал λ : A → k, такой, что для некото-
рого дивизора a ∈ Div(X): λ|K+Λ(a) = 0.

Предложение 3.33. Пусть дифференциал λ обнуляется на некотором параллелотопе Λ(a). Тогда
он обнуляется и на некотором наибольшем параллелотопе Λ(a0).

Более того, дифференциалы образуют одномерное K-пространство: мы определяем действие
функции f ∈ k(X) на дифференциалах по формуле (f, λ) 7→ λ(f · _). Ясно, что если λ|K+Λ(a) = 0,
то (fλ)|K+Λ(a+div(f)) = 0, то есть λ(f · _) — тоже дифференциал.

Доказательство. Пусть λ : A→ k — ненулевой дифференциал, обнуляющийся на параллелотопах
a1 и a2.

Упражнение 3.34. Λ(a1) + Λ(a2) = Λ(max(a1, a2)).

Таким образом, чтобы показать существование наибольшего параллелотопа, достаточно прове-
рить, что степени deg a по всем дивизорам a, таким, что λ|Λ(a) = 0, ограничены сверху.

Для этого мы воспользуемся равенством (◦). Пусть b — произвольный дивизор. Выберем n
линейно независимых функций y1, . . . , yn ∈ L(b), где n = ℓ(b). Дифференциалы y1λ, . . . , ynλ неза-
висимы над k: если для ai ∈ k получилось так, что a1y1λ + . . . + anynλ = 0, то это всё равно что
λ((a1y1 + . . .+ anyn) · _) = 0, чего не может быть в силу линейной независимости yi над k.

Пусть a ∈ Div(X) таков, что λ|Λ(a) = 0. Из неравенства div(yi)+b ≥ 0 получаем a+div(yi) ≥ a−b.
Тем самым, yiλ|Λ(a−b) = 0, и функции yiλ можно мыслить, как линейно независимые элементы

пространства
(

A
Λ(a−b)+K

)∗
. Его размерность равна δ(a − b), и отсюда мы получаем неравенство

δ(a − b) ≥ ℓ(b) для любого дивизора b. Запишем равенство (◦), обозначив общее значение этого
равенства g − 1 (мы ещё не доказали, что так определённое g — род, это нам не пригодится; в
данном доказательстве мы будем использовать, что это некоторая константа).

ℓ(a− b)− deg(a− b)− δ(a− b) = 1− g;

оценивая δ(a− b), мы получаем неравенство

ℓ(a− b)− deg a+ deg b− ℓ(b) ≥ 1− g.

При этом (◦) для b влечёт ℓ(b) = deg b+δ(b)+1−g ≥ deg b+1−g, так как δ всегда неотрицательна,
как размерность некоторого пространства. Это влечёт

ℓ(a− b)− deg a+ deg b− deg b− 1 + g ≥ 1− g ⇒ ℓ(a− b) ≥ deg a+ 2− 2g

Выбирая b так, что deg(a − b) < 0, мы получаем, что ℓ(a − b) = 0, откуда deg a ≤ 2g − 2. Это
доказывает первый пункт о существовании наибольшего параллелотопа.

Теперь докажем второе утверждение про одномерность получившегосяK-пространства. Пусть
λ, µ — два ненулевых дифференциала, предположим, что они независимы над K, имея целью найти
противоречие. Пусть λ, µ — два ненулевых дифференциала, предположим, что они независимы над
K, имея целью найти противоречие. Опять выберем произвольный дивизор b ∈ div(X), и k-базис
y1, . . . , yn ∈ ℓ(b).

Заметим, что если λ|Λ(a1) = 0 и µ|Λ(a2) = 0, то можно выбрать a := min(a1, a2), на параллело-
топе которого оба дифференциала нулевые: λ|Λ(a) = µ|Λ(a) = 0. На этот раз рассмотрим систему

48



из 2n дифференциалов y1λ, . . . , ynλ и y1µ, . . . , ynµ. Их можно мыслить, как линейно независимые
элементы

(
A

Λ(a−b)+K

)∗
. Это даёт оценку δ(a− b) ≥ 2ℓ(b). Аналогичные первому случаю выкладки

ℓ(a− b)− deg a+ deg b− δ(a− b) = 1− g ⇒ ℓ(a− b)− deg a+ deg b− 2(deg b+ 1− g) ≥ 1− g

на этот раз приводят нас к противоречию, так как последнее неравенство невозможно при доста-
точно большой степени b: в этом случае ℓ(a− b) = 0, и левая часть неограниченно мала.

Рассмотрим произвольный ненулевой дифференциал λ : A→ k. Пусть a — наибольший дивизор,
такой, что λ|Λ(a) = 0. Ясно, что наибольший дифференциал, на параллелотопе которого обнуляется
λf , равен a+ div(f). Значит, образ a ∈ Cl(X) не зависит от выбора дифференциала λ.

Определение 3.35 (Канонический класс). Класс этого максимального дивизора a ∈ Cl(X).

3.5.2 Вычет дифференциальной формы

Пусть P ∈ X, π — локальный параметр в точке P . Всякая функция f ∈ KP раскладывается в ряд

по степеням π в форме f =
∞∑

i=−∞
aiπ

i, где ai ∈ k, и при почти всех i < 0: ai = 0. Коэффициент a−1

называется вычетом функции f по отношению к локальному параметру π, и обозначается resπ(f).
Ясное дело, вычет зависит от выбора локального параметра.

Пусть ω ∈ Ω1(X), и мы по-прежнему рассматриваем ситуацию вблизи точки P . В некоторой
окрестности P модуль дифференциалов свободен, ранга 1, и там ω = ydπ для некоторой y ∈ k(X).
Определим вычет формы resP (ω) := resπ(y). Оказывается, что вычет формы не зависит от выбора
локального параметра: для выбора другого локального параметра u имеет место равенство

ydπ = y
dπ

du
du

где dπ
du — формальная производная ряда разложения функции π по локальному параметру u. Эта

формула помогает доказать, что resπ(y) = resu
(
y dπ
du

)
, и, более того, возникает грандиозный резуль-

тат ∑
P∈X

resP (ω) = 0,

который мы докажем чуть позднее.

Упражнение 3.36. Проверить, что для любой рациональной формы ω ∈ Ω1(P1):∑
P∈P1

resP (ω) = 0.

3.5.3 Формальные дифференциальные формы

Лекция 13 1
2 , 20 мая 2025 г.

Для ряда z = tn(a0+ a1t+ . . .) ∈ k((t)), где a0 ̸= 0, нормирование υ(z) равняется n. Разумеется, при
смене локального параметра на u = t(b0 + b1t+ . . .), где b0 ̸= 0, нормирование не меняется.

Предложение 3.37. Пусть y ∈ k((t)). Тогда rest(y) = resu
(
y dt
du

)
, где dt

du = b0 + 2b1 + 3b2 + . . . —
формальная производная ряда, выражающего u в k((t)).

Доказательство. Если υ(y) ≥ 0, то легко видеть, что обе части равны нулю.
Таким образом, можно разложить y = cnt

n + an+1t
n+1 + . . . + c−1t

−1 + y≥0, и раз для y≥0

предложение верно, то по линейности можно считать, что y = tn, где n < 0.
Далее ясно, что достаточно доказывать равенство после замены t на t̃ = at, где a ∈ k×. Добьёмся

такой заменой t на t̃ равенства t = u(1 + d2u+ d3u
2 + . . .).

Заметим, что res(tn) =

{
0, n ̸= −1

1, n = −1
.

Осталось доказать, что resu (u
n(1 + d2u+ . . .)n(1 + 2d2u+ . . .)) =

{
0, n ̸= −1

1, n = −1
.
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При n = −1 это несложно увидеть: вычет равен коэффициенту при u−1 у ряда 1+2d2u+...
u(1+d2u+...) , и

частное рядов, начинающихся с единицы, тоже является рядом, начинающимся с единицы.
При n ̸= −1 мы пойдём на следующий трюк. Заметим, что данное выражение — коэффициент у

ряда при u−1 — некий многочлен F от коэффициентов d2, d3, . . . (зависящий лишь от конечного чис-
ла оных) с целыми коэффициентами. Дело сводится к проверке того, что F ∈ Z[d2, d3, . . .] — нулевой
многочлен. Как известно, если все значения многочлена в поле характеристики нуль зануляются,
то и сам многочлен нулевой. Тем самым, можно считать, что char k = 0, например, k = C.

Так как n ̸= −1, то мы можем представить выражение tn dt
du в виде производной 1

n+1
d(tn+1)

du .
А вычет любой производной df

du всегда нулевой. В этом несложно убедиться, расписывая ряд f =∑
ciu

i по степеням u, и формально дифференцируя: коэффициент при u−1 равен 0 · u0.
Это несколько странное доказательство с переходом к характеристике нуль. Казалось бы, на-

до просто убедиться, что некоторый многочлен от коэффициентов di нулевой, но вычислить этот
многочлен не очень просто — надо уметь возводить ряд в степень n при n < 0, и следить за всеми
коэффициентами.

Пусть теперь t — не локальный параметр, а просто какой-то элемент поля рядов k((u)). Пред-
положим, что υ(t) = m ≥ 1. Возникает расширение полей k((t)) ⊂ k((u)) степени m, и можно
рассмотреть отображение следа tr : k((u)) → k((t)).

Для элементов x, y ∈ k((u)) можно определить формальную дифференциальную форму ydx.
Определим вычет дифференциальной формы ydx по отношению к локальному параметру u по
формуле resu (ydx) = resu

(
y dx
du

)
. Тем самым, resu(ydu) = resu(y).

Предложение 3.38. Пусть y ∈ k((u)). Тогда resu
(
y dt
dudu

)
= rest(tr(y)dt). Легко видеть, что соглас-

но нашему определению вычета дифференциальной формы, это равносильно равенству resu
(
y dt
du

)
=

rest(tr(y)).

Доказательство. Доказательство очень похоже на доказательство предыдущего предложения, и по
сути является обобщением предыдущего (при m = 1), однако использует его при доказательстве.
Как и раньше, заменяя t на t̃ = at, где a ∈ k×, можно считать, что t = um(1 + a1u+ . . .).

Предположим, что char k = 0. Сведение к этому случаю оставляется в качестве упражнения.
Так как при char k ̸= 0: m ̸= 0, то из ряда 1 + a1u + . . . можно извлечь корень m-й степени.

Например, можно написать ряд с неопределёнными коэффициентами bi, и по очереди их выражать
из уравнения (1 + b1u + . . .)m = (1 + a1u + . . .). Домножая этот корень m-й степени на u, мы
можем обозначить это произведение буквой v ∈ k((u)), и записать t = vm. Этот элемент v имеет
нормирование υ(v) = 1, и, значит, k((u)) = k((v)).

Как и в прошлом доказательстве 3.37, если υ(y) ≥ 0, то обе части, равенство которых надо
доказать, равны нулю, и, значит, по линейности можно считать, что y = vn, где n < 0.

Применяя цепное правило для рядов, мы получаем, что resu
(
y dt
du

)
= resu

(
y dt
dv

dv
du

)
. Применяя

предыдущее предложение, мы получаем, что это равно resv
(
y dt
dv

)
. Это уже несложно посчитать,

так как t = vm: resv(vnmvm−1) =

{
m, n = −m
0, n ̸= −m

.

Осталось разобраться с другой частью равенства: rest(tr(v
n)). Деля n на m с остатком, мы

можем представить n в виде n = ms + r, где s ∈ Z и 0 ≤ r < m. По k((t))-линейности следа
rest(tr(v

n)) = rest(t
str(vr)). При r = 0 ясно, что vr = 1, откуда след равен степени расширения

tr(vr) = m. При r ̸= 0 можно выбрать базис 1, v, . . . , vm−1 поля k((v)) над k((t)), и вычисляя след

по определению, мы получаем 0. Тем самым, rest(tstr(vr)) =


0, r ̸= 0

rest(t
s ·m) =

{
m, s = −1

0, s ̸= −1
, r = 0

.

Равенство сошлось.

После замены y на y dx
dt равенство 3.37 преобразуется в rest(y

dx
dt ) = resu(y

dx
du ).

Это позволяет ввести определение вычета формальной дифференциальной формы на кривой:
если k((t)) = KP , и ydx — формальная дифференциальная форма (то есть x, y ∈ k((t))), то мож-
но положить resP (ydx)

def
= rest

(
y dx
dx

)
. Равенство выше показывает, что определение корректно, а

именно, не зависит от выбора локального параметра.
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3.5.4 Связь формальных и обыкновенных дифференциальных форм

Перенесём это на настоящие (не формальные) рациональные формы ω ∈ Ω1(X). Пусть P ∈ X
— точка на кривой, и t — локальный параметр в точке P . Тогда dt — базис Ω1(X) над k(X), и
ydx = zdt для некоторой z ∈ k(X)). Из данного размышления непонятно, чему равен z в этом
равенстве. Однако оказывается, что верно следующее предложение.

Предложение 3.39. z = y dx
dt . В частности, формальная производная dx

dt , априори лежащая в
k((t)), на самом деле лежит в K = k(X).

Доказательство. Расширение k(X)/k(t) конечно (оно алгебраическое и конечнопорождённое); до-
кажем, что оно сепарабельно.

Лемма 3.40. Пусть K = k(X), S ∈ X, t — локальный параметр в точке S. Тогда расширение полей
k(X)/k(t) сепарабельно.

Доказательство. Разложим расширение k(X)/k(t) в башню сепарабельного E/k(t) и чисто несепа-
рабельного k(X)/E. Нам известно, что всякому расширению k степени трансцендентности 1 соот-
ветствует кривая, и морфизмы между этими кривыми соответствуют морфизмам между их полями
функций в обратную сторону. Тем самым, вложениям k(t) ↪→ E ↪→ k(X) соответствуют морфизмы
каких-то кривых.

Если отождествить нормирования, и точки, соответствующие этим нормированиям (в прошлом
семестре мы доказали, что между ними есть биекция), то над точкой Q ∈ P1, соответствующей
нормированию υ|k(t) висят точки P1, . . . , Pk, соответствующие нормированиям на E, продолжающим
υ|k(t).

Рассмотрим чисто несепарабельное расширение F ( p
√
a)/F . Заметим, что ∀x ∈ F ( p

√
a): xp ∈ F .

Это позволяет определить w̃ на F ( p
√
a) формулой w̃(x) = υ(xp), где υ — нормирование на F . Это

w̃ удовлетворяет всем аксиомам нормирования, кроме сюръективности. Пусть Im(w̃) = dZ (d > 0),
определим тогда w(x) = w̃

d . Легко видеть, что w — нормирование на F ( p
√
a), продолжающее υ, и

что по-другому продолжить υ на F ( p
√
a) никак нельзя. Итак, при чисто несепарабельном расши-

рении полей вида F ( p
√
a)/F всякое нормирование υ на F продолжается на F ( p

√
a) единственным

образом. Значит, это верно и для общего случая чисто несепарабельного расширения, так как оно
раскладывается в башню расширений вида F ( p

√
a)/F .

Тем самым, всякое нормирование υPi
на E единственным образом продолжается до нормирова-

ния на k(X), назовём его υQi
. По теореме из прошлого семестра о морфизме неособой кривой в P1,

степень расширения полей функций равна сумме индексов ветвления над точкой:

k∑
i=1

ePi/S = [E : k(t)];
k∑

i=1

eQi/S = [k(X) : k(t)] = [E : k(t)] · [k(X) : E].

С другой стороны,
∑
eQi/S =

∑
eQi/Pi

· ePi/S .
По теореме из прошлого семестра, доказывающейся при помощи аппроксимационной теоремы,

eQi/Pi
≤ [k(X) : E], откуда для всех i: eQi/Pi

= [k(X) : E].
Воспользуемся тем, что t — локальный параметр: среди υQ1 , . . . , υQk

найдётся нормирование υ
(ведь оно и правда продолжает υ|k(t)), без потери общности υ = υQ1 . Значит, eQ1/S = 1, откуда
[k(X) : E] = 1.

Так как x ∈ k(X), а расширение k(X)/k(t) конечно, то имеется некоторый многочлен f с коэф-
фициентами в k(t), корнем которого является x. Будем считать, что deg f минимальна. Домножая
на знаменатели, можно считать, что f — многочлен двух переменных с коэффициентами в k, такой,
что f(t, x) = 0. Из сепарабельности и потому что deg f минимальна, f ′x(t, x) ̸= 0.

С одной стороны, f(t, x) — некоторая функция из k(X), и можно записать её дифференциал
d(f(t, x)) = f ′t(t, x)dt+ f ′x(t, x)dx, что разумеется равно нулю, так как f(t, x) = 0.

Выразим dx = gdt для некоторой функции g ∈ k(X). Подставляя это в равенство d(f(t, x)) = 0,
мы получаем, что f ′t(t, x)dt + f ′x(t, x)gdt = 0. Рассмотрим f(t, x), как элемент k((t)). Выражая x
через t в выражении f(t, x), и дифференцируя полученный формальный степенной ряд по t, мы
получаем f ′t(t, x) + f ′x(t, x)

dx
dt = 0, что показывает: действительно g = dx

dt .

Определим теперь вычет настоящей дифференциальной формы ω ∈ Ω1(X). Пусть ω = ydx,
определим resP (ω) = rest

(
y dx

dt

)
. В силу только что доказанного предложения, ω = y dx

dt dt, откуда
в частности rest(ydt) = rest(y). Только что данное определение вычета дифференциальной формы
корректно: для другого локального параметра u: y dx

dt dt = y dx
dudu, и rest(y

dx
dt ) = resu(y

dx
du ).
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Лекция 14, 24 мая 2025 г.
Пусть K/k — конечнопорождённое расширение степени трансцендентности 1. Можно выбрать

t ∈ K, и получить конечное расширениеK/k(t), и, при этом можно считать, чтоK/k(t) сепарабельно
(например, можно взять в качестве t локальный параметр по произвольному нормированию, сепа-
рабельность согласно 3.40). Обозначим F := k(t), тогда расширение K/F конечно и сепарабельно.
Согласно теории полей, такое расширение циклическое, то есть порождено некоторым элементом
x ∈ K. Иными словами, K ∼= F [x]/g, где g ∈ F [x] — неприводимый многочлен.

Пополним F по нормированию, отвечающему точке P = 0 ∈ P1. Ясно, что FP [x]/(g) ∼= K⊗F FP .
Разумеется, образ g ∈ FP [x] уже необязательно неприводим. Разложим его на неприводимые

g = g1 · . . . · gs, и применим китайскую теорему об остатках: K ⊗ FP =
s∏

i=1

FP [x]/(gi).

Следующей теоремой воспользуемся без доказательства (желающие узнать его приглашаются
на курс теории чисел)

Теорема 3.41. Пусть F̃ /K — конечное расширение полей, υ — нормирование, по которому K

полно. Тогда υ продолжается на F̃ единственным образом, и продолжение тоже полно.

Применяя эту теорему, мы получаем нормирования на полях FP [x]. Композируя вложение K →
K ⊗ FP и проекции на компоненты произведения, получаем отображения полей K → FP [x]/(gi).
Отображения полей инъективны, значит, K ⊂ FP [x]/(gi) для любого i. При сужении на K норми-
рование с FP [x]/(gi) индуцируется, назовём его υi.

Заметим, что эти нормирования υi продолжают P -адическое нормирование на F : ясно, что вло-
жение F ↪→ K ↪→

∏
FP [x]/(gi) на самом деле диагонально вкладывает F ↪→

∏
FP .

Упражнение 3.42. Все υi различны, как нормирования на K.

Доказательство. При морфизме K → FP [x]/(gi) υP на FP [x]/(gi) продолжает υi. Покажем, что
при пополнении K по нормированию υi получившийся морфизм Kυi → FP [x]/(gi) — на самом деле
изоморфизм. Отсюда сразу последует, что все υi различны, так как из сепарабельности g все gi
различны, а при морфизме F [x]/(g) ∼−→ K → FP [x]/(gi): x 7→ x25.

Так как имеется включение F ⊂ K, где υi продолжает P -адическое нормирование на F , то
FP ⊂ Kυi

⊂ FP [x]/(gi). Так как образ x ∈ F [x]/(g) внутри Kυi
переходит в x ∈ FP [x]/(gi), и

FP ⊂ K, то K уже содержит все образующие FP [x]/(gi), значит, они совпадают.

Пусть нормирования υ1, . . . , υs на K соответствуют точкам Q1, . . . , Qs, эти точки висят над P .
Только что мы показали, что все Qi различны. Покажем, что других точек над P нет.

Для расширения FP [x]/(gi) над FP есть индекс ветвления ei и степень инерции fi (эти понятия
также появлялись в курсе алгебраической теории чисел; а именно, степень инерции fi — это степень
расширения полей вычетов k(w)/k(v), где k(υ) = Oυ/mυ). Так как k = kalg, то fi = 1. Тем самым,
согласно факту из курса теории чисел,

∑
ei =

∑
deg gi = deg g = [K : F ] (В общем виде этот факт

формулируется так:
∑
eifi = [K : F ]).

Но раз индекс ветвления KQi
над FP равен ei, то таков же и индекс ветвления нормирования υi

на K над υP на F . Раз все нормирования υi различны, то мы перечислили все нормирования на K
(здесь мы используем факт из прошлого семестра о том, что

∑
ei ≤ [K : F ] для индексов ветвления

продолжений нормирований, или же можно опять применить факт про
∑
eifi = [E : F ])26.

Соотнесём глобальный след tr расширения K над F и локальные следы tri для расширений
FP [x]/(gi) над FP . Рассмотрим x ∈ K. С одной стороны, tr(x) — след оператора умножения на
x ∈ K в F -векторном пространстве K. Тензорно домножая на FP , мы получаем, что он же —
след оператора умножения на x ⊗ 1 ∈ K ⊗ FP в FP -векторном пространстве K ⊗ FP =

∏
KQi

.
Раскладывая векторное пространство

∏
KQi в (конечную) прямую сумму полей KQi , мы получаем,

что tr(x) =
∑

tri(x⊗ 1).
25Здесь мы используем явный вид гомоморфизма из китайской теоремы об остатках: FP [x]/(g1 · . . . · gs) →

FP [x]/(g1)× · · · × FP [x]/(gs) устроен так: x 7→ (x, . . . , x).
26Насколько я понимаю, факт из теории чисел про

∑
eifi = [E : F ] можно и вообще не применять, достаточно

немного видоизменить доказательство упражнения 3.42. А именно, пусть υ⋆ — ещё одно нормирование на K, про-
должающее υP на F , и не равное ни одному из υ1, . . . , υs. Пополняя включение F ⊂ K, получаем FP ⊂ K⋆. При
этом K = F [x]/(g), и образ x ∈ K⋆ по-прежнему алгебраичен над F . Значит, найдётся g⋆ ∈ FP [x] — минимальный
многочлен x. Ясно, что g⋆|g. Значит, g⋆ = gi для какого-то 1 ≤ i ≤ s. Отсюда FP [x]/(gi) ⊂ K⋆. По теореме 3.41,
нормирование на FP [x]/(gi) совпадает с υi = υQi

, значит, таково и нормирование на K⋆ при сужении на K.
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Предложение 3.43. k(x)/k — чисто трансцендентное, K/k(x) — конечное сепарабельное. Пусть
x, y ∈ K, Q ∈ P1 — точка, отвечающая любому нормированию на k(x). Пусть над Q висят P1, . . . , Pn,
которые отвечают нормированиям на K. Утверждается, что resQ(tr(y)dx) =

∑
resPi

(ydx).

Доказательство. Доказательство состоит из формальных преобразований того, что мы уже по-
лучили. Обозначим через t ∈ k(x) локальный параметр в точке Q и через ui ∈ K — локальные
параметры в точке Pi.∑

resPi
(ydx) =

∑
resPi

(
y
dx

dt

dt

dui
dui

)
=
∑

resQ

(
tri

(
y
dx

dt

)
dt

)
=

при этом dx
dt ∈ k(x), откуда мы можем вынести эту производную за знак следа:

= resQ

(∑
tri(y)

dx

dt
dt

)
= resQ

(
tr(y)

dx

dt
dt

)
= resQ(tr(y)dx).

Следствие 3.44. Сумма вычетов ненулевой рациональной дифференциальной формы ω ∈ Ω1(X)
по всем точкам кривой равна нулю.

Доказательство. Ненулевая дифференциальная форма представима в виде ω = ydx, где x /∈ k.
Этот x можно мыслить, как доминантный морфизм X → P1. Используя предыдущее предложение,
можно расписать ∑

P∈X

resP (ω) =
∑
Q∈P1

∑
P∈x−1(Q)

resP (ω) =
∑
Q∈P1

(tr(y)dx).

Согласно упражнению 3.36, последняя сумма равна нулю.

Вернёмся к теореме Римана — Роха. Мы уже показали, что для любого дивизора a ∈ Div(X)
выполняется равенство

ℓ(a)− deg(a)− δ(a) = 1− g,

где g = δ(0) — некоторая константа, называемая родом. Напомним, что δ(a) = dimk

(
A

Λ(a)+K

)
.

Предложение 3.45. Пусть a ∈ Div(X). Тогда δ(a) = ℓ(c − a), где c — произвольный дивизор
из канонического класса в смысле определения 3.35 (ясно, что неважно, какой — ℓ выдерживает
линейную эквивалентность по модулю PDiv(X)).

Доказательство. Пусть λ — дифференциал и наибольший параллелотоп, на котором он нуль —
Λ(c).

Пусть b — произвольный дивизор, L(b) = {f | div(f) + b ≥ 0}. Тогда любой f ∈ L(b) мож-
но сопоставить дифференциал fλ, обнуляющийся на c + div(f). При этом div(f) + b ≥ 0, откуда

fλ|Λ(c−b) = 0. Мы получили морфизм векторных пространств L(b) →
(

A
L(c−b)+K

)∗
. Очевидно, он

инъективен; проверим, что он сюръективен.
Пусть µ — дифференциал, обнуляющийся на Λ(c−b). Пространство дифференциалов одномерно

над k(X), значит, λ = zµ для некоторого z ∈ k(X). Надо доказать, что z ∈ L(b). Так как максималь-
ный параллелотоп, на котором обнуляется λ, равен c, то максимальный паралелотоп, на котором
обнуляется zλ, равен Λ(c+ div(z)). С другой стороны, µ |Λ(c−b)= 0, откуда Λ(c− b) ⊂ Λ(c+ div(z)),
что и правда показывает z ∈ L(b).

Принимая b = c− a, мы получаем искомое.

Предложение позволяет записать равенство

ℓ(a)− ℓ(c− a) = deg a+ 1− g,

и для полной картины осталось понять, как геометрический род g связан с ранее определённым
понятием рода, и канонический класс c — с классом дивизора рациональной формы.
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3.5.5 Связь между дифференциалами и дифференциальными формами

Зафиксируем рациональную форму ydx, и рассмотрим линейное отображение λ : A → k, отправив
адель (ξP ) в сумму

∑
P∈X

resP (ξP ydx), где суммируются вычеты формальных дифференциальных

форм с коэффициентами в KP . Покажем, что так определённое λ — дифференциал.

• Если (ξP ) = ξ ∈ K, то действительно λ(ξ) = 0, так как тогда вычеты можно рассматривать уже
не как вычеты формальных дифференциальных форм, а как вычеты обычной рациональной
формы ξydx, и согласно 3.44, их сумма равна нулю.

• Далее увидим, что λ обнуляется на совершенно конкретном параллелотопе. Пусть a := (ydx),
рассмотрим (ξP ) ∈ Λ(a), то есть υP (ξP )+υP (a) ≥ 0. Тогда υP (ξP ydx) ≥ 0, откуда

∑
resP (ξP ydx) =

0.

• Проверим заодно, что Λ(a) — максимальный параллелотоп, на котором обнуляется λ. Пусть
b > a; в частности, для некоторой Q ∈ X: υQ(b) > υQ(a). Пусть t — локальный параметр в

точке Q. Обозначим m := υQ(a). Выберем (ξP ) ∈ Λ(b) так, что ξP =

{
0, P ̸= Q

1
tm+1 , P = Q

. Тогда

λ(ξP ) ̸= 0: все слагаемые resP (ξP ydx) равны нулю для P ̸= Q, а для P = Q: resQ(ξQydx) ̸= 0,
так как υQ(ξQydx) = −(υQ(a) + 1) + υQ(a) = −1.

Выше определённое отображение, сопоставляющее рациональной форме из Ω1(X) дифференци-
ал, K-линейно. Так мы получили изоморфизм K-пространства рациональных форм Ω(X) и K-
пространства дифференциалов. Это изоморфизм, так как оба пространства одномерны, и отобра-
жение ненулевое. При этом данное отображение сохраняет дивизоры, ассоциированные с дифферен-
циальными формами (дифференциалами): если (ω) — дивизор формы ω ∈ Ω(X), то максимальный
параллелотоп, на котором зануляется соответствующий дифференциал λω — тоже Λ((ω)). Это по-
казывает, что определения 3.22 и 3.35 согласованы (определяют одно и то же).

Осталось разобраться с родом. Если в равенстве

ℓ(a)− deg a− ℓ(c− a) = 1− g

положить a := 0 ∈ Div(X), то окажется, что g = ℓ(c) = ℓ((ω)) для произвольной формы ω ∈ Ω1(X).
Вспоминая, что ℓ((ω)) = dimk(L(ω)) = dimk{f ∈ k(X) | div(f) + (ω) = (fω) ≥ 0}, мы получаем
изоморфизм пространств L((ω)) и Ω[X], откуда и правда g = dimk Ω[X].

На этом доказательство теоремы Римана — Роха закончено по модулю мелких деталей — заме-
чания о характеристике в предложении 3.38, пары упражнений, и некоторых фактов из алгебраи-
ческой теории чисел.

В завершение курса дадим несколько упражнений на применение этой теоремы. В них везде X
— неособая проективная кривая.

Упражнение 3.46.

1. Пусть D ∈ Div(X), P ∈ X. Доказать, что ℓ(K − D − P ) ̸= ℓ(K − D) ровно тогда, когда
ℓ(D + P ) = ℓ(D).

2. Пусть D,D′ ∈ Div(X), такие, что D +D′ = K — какой-то дивизор из канонического класса.
Тогда ℓ(D)− ℓ(D′) = 1

2 (degD − degD′).

3. Пусть D ∈ Div(X), degD = 2g−2, ℓ(D) = g. Например, это верно, если D = K — канонический
дивизор. Докажите, что по-другому не может быть — этих условий достаточно, чтобы D был
каноническим дивизором.

4. Пусть P1, . . . , Pn — несколько точек на X. Докажите, что ∃f ∈ k(X), имеющая полюсы во всех
этих точках P1, . . . , Pn, и регулярная во всех остальных точках кривой X.

5. Докажите, что существует конечный морфизм f : X → P1, такой, что [k(X) : k(P1)] ≤ g + 1.

6. Пусть P ∈ X — точка. Докажите, что для любого дивизора D степени degD = 0 существует
неотрицательный дивизор D0: degD0 ≥ 0, такой, что D ∼ D0 − gP .
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3.6 Формула Гурвица
Пусть E/K — конечное сепарабельное расширение, K/k — конечнопорождённое расширение алгеб-
раически замкнутого поля k степени трансцендентности 1. Для такого расширения можно ввести
понятия рода поля g(K) — это будет род кривой X, имеющей поле функций K. Пусть E = k(Y ),
K = k(X), вложению полей соответствует морфизм Y → X. Пусть Q ∈ Y — прообраз P ∈ X. Эти
точки соответствуют нормированиям, и пусть для всех точек Q ∈ Y : eQ/P не делится на char k.
Обозначим n := [E : K].

Теорема 3.47. В сделанных предположениях 2gE − 2 = n(2gK − 2) +
∑

Q∈Y

(eQ − 1). Здесь eQ —

обозначение для eQ/P , где P — образ Q ∈ Y при отображении Y → X.

Доказательство. Пусть ω = ydx ∈ Ω1(X) — рациональная форма. Обозначим локальные парамет-
ры в точках P и Q через t и u соответственно. Посчитаем

υQ(ydx) = υQ

(
y
dx

dt

dt

du
du

)
= υQ

(
y
dx

dt

)
+ υQ

(
dt

du

)
=

Первая функция лежит в k(X), поэтому её нормирование выражается через соответствующее нор-
мирование на X. Чтобы разобраться с нормированием второй функции, запишем t = ues, где
υQ(s) = 0. Теперь dt

du = eue−1s + ue ds
du , и так как eQ ̸= 0 ∈ k, то нормирование первого слагае-

мого строго меньше нормирования второго; υQ
(
dt
du

)
= eQ − 1.

= eQυP

(
y
dx

dt

)
+ (eQ − 1)

Складывая левую часть по всем точкам кривой Y , получаем
∑

Q∈Y

υQ(ydx) = degY (ydx) = 2gE − 2.

Обозначим n := [k(Y ) : k(X)]. Складывая правую часть по всем точкам кривой Y , получаем, помимо
слагаемого

∑
(eQ − 1), ещё добавку

∑
Q∈Y

eQυP

(
y
dx

dt

)
=
∑
P∈X

∑
Q 7→P

eQυP

(
y
dx

dt

)
= n

∑
P∈X

υP

(
y
dx

dt

)
= n

∑
P∈X

υP (ydx) = n(2gK − 2).

Замечание 3.48. В доказательстве мы нигде не пользовались сепарабельностью E/K, но можно
проверить, что если расширение несепарабельно, то eQ/P делится на char k, и, стало быть, теорема
неприменима.

Следствие 3.49. 2gE − 2 ≥ n(2gK − 2).

Тем самым, возникают кривые сколь угодно большого рода.
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